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Abstract: Object detection has a wide range of applications as the most fundamental and challenging
task in computer vision. However, the image quality problems such as low brightness, low contrast,
and high noise in low-light scenes cause significant degradation of object detection performance.
To address this, this paper focuses on object detection algorithms in low-light scenarios, carries out
exploration and research from the aspects of low-light image enhancement and object detection, and
proposes low-level image enhancement for low-light object detection based on the FPGA MPSoC
method. On the one hand, the low-light dataset is expanded and the YOLOv3 object detection model
is trained based on the low-order image enhancement technique, which improves the detection
performance of the model in low-light scenarios; on the other hand, the model is deployed on the
MPSoC board to achieve an edge object detection system, which improves the detection efficiency.
Finally, validation experiments are conducted on the publicly available low-light object detection
dataset and the ZU3EG-AXU3EGB MPSoC board, and the results show that the method in this paper
can effectively improve the detection accuracy and efficiency.

Keywords: object detection; low-light image; image enhancement; FPGA MPSoC

1. Introduction

Target detection, as a fundamental task and research frontier in computer vision,
is an important foundation for other vision tasks such as instance segmentation [1] and
target tracking [2]. However, in some complex low-light scenes, the accuracy of target
detection methods is often also affected by image quality issues, and many practical
applications based on target detection have encountered difficulties as a result. For example,
images captured in low-light scenes often contain a lot of noise due to the light-sensitive
performance of the sensor. Therefore, the problem of target detection in low-light scenes is
of great practical importance.

The problem of low-light target detection can be divided into two sub-problems: low-
light image enhancement and generic target detection, where low-light image enhancement
is used to recover high-quality normal-light images from low-quality low-light images,
which is the key link to perform downstream target detection tasks [3]. Traditional low-light
image enhancement methods mainly start from basic image signal processing theories and
methods, and manually design filters or grey-scale mapping methods for image filtering or
light estimation to obtain high-quality normal-light images [4]. However, these methods
require a large amount of a priori knowledge and expert experience for manual tuning, and
it is difficult to balance multiple image quality degradation problems in complex scenes. In
recent years, deep learning-based low-light image enhancement methods have achieved
better enhancement results than the traditional ones, because deep neural networks can
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efficiently learn the mapping from low-light to normal-light distributions through end-to-
end training from paired low-light/normal-light image datasets [5]. However, paired data
are very expensive to collect and synthetic data cannot be adapted to complex real-world
scenarios. Therefore, how to use unpaired data for training and how to effectively improve
the performance of the enhanced target detection task is a valuable research topic.

Existing general-purpose target detection algorithms work well in clear images with
normal lighting, but when applied without modification to complex low-light scenes, the
performance of the algorithms is severely compromised [6]. However, most approaches
are still designed for human vision and focus on improving the quality of human visual
perception rather than improving the performance of the target detection task. In addition,
most current applications need to be implemented at the edge, where power consumption
and performance are important constraints. Therefore, how to combine shimmering image
enhancement with target detection algorithms and use them in MPSoC implementations is
a key research topic to solve the target detection problem in shimmering scenes.

Based on the above research background, we explores the target detection algorithms
in low-light scenarios, and proposes low-level image enhancement for low-light object
detection based on the MPSoC method. For low-light image enhancement, we adopt three
low-order image enhancement techniques to improve the image quality, and enhance the
existing low-light image data and realistically collected data to expand the training dataset,
which strengthens the foundation for training the downstream target detection model; for
general-purpose target detection, we train the YOLOv3 target detection model based on the
above dataset, and deploy it on the FPGA MPSoC to achieve high-performance detection.
The method proposed in this paper organically combines low-light image enhancement
and target detection models, and the overall research framework is shown in Figure 1. To
this end, we make the following contributions:

1. Three low-order data augmentation techniques were used to augment ExDark and
realistically acquired low-light image data to expand the training dataset.

2. The YOLOv3 target detection model based on PyTorch was deployed on FPGA MPSoC
for improving target detection performance.

3. Low-light image enhancement and target detection models have been combined to
solve the target detection problem in low-light scenes.

The paper is structured as follows. Section 2 discusses related work on low-light
image enhancement and universal object detection. In Section 3, we introduce the dataset
and the image enhancement technology. In Section 4, we provide a detailed description
of the implementation of the model deployment on MPSoC. In Section 5, we evaluate the
feasibility of our approach. Section 6 concludes the paper.

Figure 1. The overall framework of the FOLD.

2. Related Work

In this section, we briefly describe two topics relevant to our work. The first subsection
describes existing methods for improving shimmering images. However, they mostly
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attempt to improve perceptual quality rather than object recognition performance. The
second subsection describes the studies of research on improving downstream visual tasks
through image enhancement techniques, and how deploying models on FPGA-based
MPSoCs can improve the performance of these techniques in edge computing scenarios.

2.1. Low-Light Image Enhancement

Actually, the quality of low-light images taken under poor lighting conditions is
usually very poor. Researchers from academic and industrial sectors have attempted to
recover high-quality images from low-light images through image enhancement methods.
Traditional methods primarily includes two categories: histogram-based methods and
retinex-based methods. The histogram-based methods, i.e., Adaptive Histogram Equaliza-
tion (AHE), can map the histogram of the entire image pixel by pixel to a new distribution.
The idea of retinex theory [7] is intended to separate illumination and reflectance, and
retinex-based methods typically utilize illumination maps to enhance image quality. How-
ever, due to the large amount of noise in shimmering images, the performance of the
conventional methods is poor.

Recently, deep learning (DL)-based approaches have performed well in many low-
level vision tasks, such as denoising [8]. Lore et al. [9] presented a depth autoencoder-based
solution which can simultaneously enhance the contrast of shimmering images as well as
denoising them. Wei et al. [10] incorporated DL algorithms with retinex theory to propose
an end-to-end framework for decomposition and illumination enhancement. The EEMEFN
method in [11] applied a multi-exposure fusion module and an edge enhancement module
for very low-illumination image enhancement.

Different from the approaches which aim to improve image quality for better hu-
man visual perception, this paper presents a shimmering image enhancement system for
edge computing scenarios which is intended to increase the performance of downstream
visual tasks. The target detection performance is utilized to quantitatively evaluate the
effectiveness of our approach, rather than from a perceptual quality perspective.

2.2. Deployment of Object Detection Models at the Edge

In recent years, research has highlighted the degradation of image quality on down-
stream visual tasks. Similarly, several researchers have attempted to exploit image enhance-
ment techniques to improve downstream visual tasks, such as image classification [12],
action recognition [13], and object detection [14]. Despite these methods offering limited
improvements in the perceptual quality of images, they can significantly increase the per-
formance of downstream visual tasks. Costa et al. [12] considered different types of noise
and noise levels and showed that these denoising methods can improve the classification
accuracy of noisy data. Kvyetnyy et al. [14] proposed an image denoising method based on
bilateral filtering, wavelet threshold, as well as enhancement methods for target detection.
Bai et al. [15] focused on small target detection and proposed an end-to-end generative
adversarial network to improve the detection performance of small targets.

In terms of hardware implementations, while GPUs have been shown to provide
extremely high throughput and are widely used for hardware acceleration of DNNs, they
are often not suitable for energy/power-constrained applications such as edge computing
scenarios due to their high power consumption [16]. FPGAs allow us to implement irregular
parallelism, custom data types, and application-specific hardware architectures, providing
great flexibility to adapt to newer DNN models with higher sparsity and compact network
structures [17,18].

In this paper, we focus on enhancing and extending low-light image data to strengthen
the foundation for downstream vision task model training, as well as deploying the target
detection model on FPGA-based MPSoCs to help the detector improve its performance to
serve edge computing scenarios.
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3. Training Datasets and Enhancement Technology
3.1. Low-Light Image Training Datasets

Existing large-scale genera- purpose target recognition datasets contain only a very
small number of low-light image samples, e.g., Microsoft COCO [19], ImageNet [20], and
PASCAL VOC [21], whose low-light images account for only about 1% of all samples,
making it difficult to use them effectively for training low-light image recognition models.
Therefore, the public dataset ExDark [22], which consists of all low-light images with
target-level annotations, is selected as the base dataset in this paper. The ExDark dataset
contains 7363 low-light images with 12 different target classes. Among them, the training
set contains 3000 images with 250 images in each category, the validation set contains
1800 images with 150 images in each category, and the test set contains 2563 images. Most
of the images in the dataset were downloaded from search engines, and a few images
were selected from the large public datasets mentioned above (Microsoft COCO, etc.). The
resolution and aspect ratios of these images vary widely, and the quality of the images
captured is variable. In addition to the target types, ExDark includes information on
10 different low-light scene categories, ranging from very low light to low light for complex
low-light scenes. It is worth noting that the dataset does not contain normal exposure
images paired with low-light images, making it difficult to apply supervised low-light
image enhancement algorithms to them.

The ExDark dataset contains a wide variety of scenes covering common low-light
scene types: (a) very low-light images; (b) low-light images with no light source; (c) low-
light images with an illuminated object surrounded by darkness; (d) low-light images
with a single visible light source; (e) low-light images with multiple, but weaker light
sources; (f) low-light images with multiple, but stronger light sources; (g) low-light images
with visible screens; (h) low-light images of an interior room with brightly lit windows;
(i) low-light images of an interior room with brightly lit screens; (j) low-light images of
an interior room; (k) low-light images of a target to be inspected in shadow; (l) low-light
images of a target to be inspected in darkness; and (m) low-light images of a target to
be inspected in a dark room with bright windows. The complexity of the scene types
contained in this dataset greatly increases the difficulty of recognition and detection, and it
is difficult for unimproved general-purpose target detection methods to work well enough
on this dataset. At the same time, the ExDark training dataset is too small, which affects
the performance of the model, so there is a great need to expand the ExDark dataset to
improve the generalization ability of the model.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.2. Low-Level Image Enhancement

Most of the current publicly available low-light image datasets are from the image
enhancement domain, where the images have no detection annotation information and
the number of them is difficult to support the training of shimmering image detection
models. In order to increase the available datasets, we will expand the datasets by col-
lecting 5000 low-light images from the real world and generate more low-light images by
combining low-order image enhancement techniques. Three low-cost image enhancement
methods will be used to process the ExDark and reality images, namely contrast adjustment,
enlarging target, and super resolution.

Contrast Adjustment: In this paper, the Histogram Equalization (HE) method is used
to adjust the contrast of an image. This method makes the distribution of grey levels in
the histogram more uniform, so that the dynamic range is expanded, thus enhancing the
contrast of the whole image [23].

Assuming that the grey level distribution of the very first image is f , g represents the
grey level distribution of the original image after the HE method. Let the grey levels in the
grey level distribution be r and s, and their corresponding numbers of pixels be fr and gs,
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respectively. Then the probability of the grey level distribution is given by Equation (1),
and D stands for the total grey levels.

p f (r) =
fr∫

r∈D
f (r)dr

, pg(s) =
gs∫

s∈D
gs

(1)

Equation (2) is derived from Equation (1):∫
p f (r)dr =

∫
pg(s)ds = 1 (2)

In order to make the histogram uniformly distributed, it is necessary to make the distribu-
tion probability of each grey level equal, and the derivation yields Equation (3):

pg(s) =
1

gmax − gmin
(3)

Bringing Equation (3) into Equation (2) leads to Equation (4):

∫ f

fmin

p f (r)dr =
∫ g

gmin

1
gmax − gmin

ds (4)

This gives the transformation Equation (5) for the HE method, where p f (r) is the distribu-
tion of the original map.

g = (gmax − gmin)pr(r) + gmin (5)

Enlarging Target: To better extract the subject features in low-light images, we use a
modified seam carving algorithm to magnify the subject. The seam carving algorithm’s
main feature is that it takes into account the importance of the content of the image, which
defines the importance of the different scenes in the image through the energy function [24];
then, by constantly deleting or copying the pixel lines that have the lowest energy, at the
same time, it maintains the original appearance of the visual subject at the maximum extent.
The original appearance of the visual subject at the same time accomplishes a non-equal
aspect ratio zoom.

Let i be an n ∗ m image with vertical pixel lines defined as follows:

Sx = {Sx
i }

n
i=1 = {(x(i), i)}n

i=1, s, t, ∀i, |x(i)− x(i − 1) ≤ 1| (6)

Here, x(i) is the mapping: x : [1, . . . , n] → [1, . . . , m]. From the above equation, it can be
seen that the vertical pixel line is an 8-connected path consisting of pixels from the first to
the last row of the image, with one and only one pixel removed from each row. Similarly,
the horizontal pixel line is defined as:

Sy = {Sy
j }

m

j=1
= {(x(j), j)}m

j=1, s, t, ∀j, |x(j)− x(j − 1) ≤ 1| (7)

where x(j) is the mapping: y : [1, . . . , m] → [1, . . . , n]. Horizontal pixel lines are 8-connected
paths consisting of pixels from the first to the last column of the image, with one and
only one pixel removed from each column. Thus, the path of the vertical pixel line is
Is = {I(si)}n

j=1 = {I(x(i), i)}n
i=1. Then the path of the horizontal pixel line has a similar

situation. If a row or column of an image is to be deleted, then processing an image results
in all pixels below or to the right of the line being shifted up or to the left to complement
the deleted pixel line.

Line cropping has a limited effect on the visual appearance of an image; it only affects
the area around the line being deleted or added, and has no effect at all on the remaining
pixels in the image. Therefore, it is crucial to find the appropriate pixel line. Knowing
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that the energy function of each pixel of an image is e, the total energy of the pixel line is
defined as

E(s) = E(Is) =
n

∑
i=1

e(I(si)) (8)

Find the vertical pixel line with the lowest total energy:

S∗ = min E(s) = min
s

n

∑
i=1

e(I(si)) (9)

The horizontal pixel lines are found in a similar way. The finding of the lowest energy pixel
line is solved using the dynamic programming method. For a pixel point (i, j) in image I,
remembering that the cumulative energy of the point is M(i, j), we have{

M(i, j) = e(i, j) + min(M(i − 1, j − 1), M(i − 1, j + 1)), i ̸= 1
M(i, j) = e(i, j), i = 1

(10)

Therefore, it is only necessary to traverse the second to last row in image I and calculate
the above equation to derive the cumulative energy. The pixel point in the last row with
the smallest cumulative energy is the end point of the vertical pixel line with the smallest
energy. Then, we go back from this point, each time looking for the pixel point with the
smallest cumulative energy in the field previous to the known minimum cumulative energy
point, and so on, until the vertical pixel line with the smallest energy is found.

For finding horizontal pixel lines, the method is similar and has cumulative energy
M(i, j), as in the following equation:{

M(i, j) = e(i, j) + min(M(i − 1, j − 1), M(i − 1, j + 1)), j ̸= 1
M(i, j) = e(i, j), j = 1

(11)

As can be seen from the formula for cumulative energy, the minimum of the last line
of M must be the end of the vertical minimum energy line, so the vertical minimum energy
line can be found by backtracking from this point. The method of finding the horizontal
minimum energy line is similar.

To make the pixel importance calculation more reasonable, the original algorithm
is improved by the following process: multiplying the gradient map with the visual
saliency map to obtain the final importance energy map of the whole image, calculating
the cumulative energy map of the image, and then searching for the lowest energy point,
going back to find the lowest energy line, and deleting or inserting the lowest energy line
to obtain the final target image. The improved algorithm can better preserve the subject
effect, especially for visual subjects in dark lighting conditions.

Super Resolution: In this paper, we use the SwinIR network model based on Trans-
former to reconstruct the image with ultra-high resolution, which consists of three modules:
shallow feature extraction, deep feature extraction, and reconstruction module [25]. The
shallow feature extraction module uses a convolutional layer to extract shallow features,
which are passed directly to the reconstruction module to preserve low-frequency infor-
mation. The deep feature extraction module consists mainly of residual Swin Transformer
Blocks (RSTBs) containing Swin Transformers, and each RSTB uses multiple Swin Trans-
former layers for local attention and cross-window interaction. In addition, SwinIR adds
a convolutional layer at the end of the block for feature enhancement and uses a residual
link to provide a shortcut for feature aggregation. Finally, shallow and deep features are
fused in the reconstruction module to achieve high-quality image reconstruction. The
Swin Transformer layer is based on the standard multi-head self-attention of the original
Transformer layer. The main difference is the self-attention and shift window mechanism.
Given an input of size W × H × C, the Swin Transformer first transforms the input to
(HW/M2)× M2 × C and divides it into one window with dimensions M × M and with-
out overlapping, where HW/M2 is the total number of windows. Then, the self-attention
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of each window is calculated separately. For a local window feature X ∈ RM2×C, the query
vector Q, the key vector K, and the value vector V are computed as follows (12):

Q = XPQ, K = XPK, V = XPV (12)

where PQ, PK, and PV are the learnable matrices of the query vectors, the key vectors,
the value vectors, and share weights between the windows, respectively, and in general,
Q, K, V ∈ RM2×d

through the self-attention mechanism within a local window is calculated
as can be seen below. The attention matrix is shown in Equation (13):

Attention(Q, K, V) = so f tMax(
QKT
√

d
+ B)V (13)

where B is the learnable relative positional encoding. d =
C

Nhead
, and Nhead represents

the amount of attention from multiple heads. Thereafter, we execute the attention func-
tion h times in parallel and stitch together the results of the multi-headed self-attention
mechanism.

A multi-layer perception containing two fully connected layers is then used, with
a Gelu nonlinear function between the fully connected layers, which increases the non-
linear expressiveness of the model. In addition, the multi-head attention using residual
connections and the multi-layer LayerNorm layer is added before the two modules of
multi-head attention and multi-layer perception using residual connection. The whole
process is expressed in Equations (14) and (15):

X = MSA(LN(X)) + X (14)

X = MLP(LN(X)) + X (15)

In summary, we augmented the images using three lower-order image processing tech-
niques with the aim of expanding the training dataset to improve the performance of the
higher-order visual model, and Figure 2 shows some of the processed images.

Figure 2. Image display after low-level data enhancement.

4. Implementation of Model Deployment on MPSoC

In this section, we use the Vitis-AI development environment [26] to implement the
deployment of object detection models onto MPSoCs and the implementation process
is shown in Figure 3. The Vitis-AI development environment consists primarily of the
Vitis-AI Development Kit (DNNDK) for AI inference on Xilinx ZYNQ series hardware
platforms at the edge or in the cloud, consisting of optimized DPU IP cores, tool libraries,
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runtime libraries, and a library of deep neural network (DNN) models. DNNDK consists
of optimized DPU IP cores, tool libraries, runtime libraries, and a library of DNN models.
The tools provided by Vitis-AI call the DPU IP cores on the PL side, making it easy to
develop DNN inference-based applications on the object board. Currently, the deployment
of DNN on hardware platforms supports the TensorFolw framework based on the Python
language and the Caffe framework based on the C++ language. In this paper, the object
recognition model is developed based on DNN of TensorFlow, and the object board model
is ZU3EG-AXU3EGB.

Figure 3. Implementation process of model deployment on MPSoC.

In the above process, DNN parameter quantization calibration and DPU kernel com-
pilation are key to achieving model-to-MPSoC deployment. Quantization calibration is
the process of converting the parameters of a model from high-precision quantities to
low-precision quantities, thereby reducing the storage space and memory footprint of
the model. In this paper, the quantization calibration of the object detection model is
performed to speed up the computation and reduce the power consumption of the device,
making it suitable for MPSoC deployment. Once the neural network has been trained in
the Mainstream framework, the network model can be exported as a .pb file containing
the model’s parameter information. Before the DPU imports this parameter information, it
must first be quantized, i.e., fixed-point. The fixed-point process requires the input of an
unlabelled test set. Test data are required for post-quantization calibration to recover or
optimize accuracy degradation due to information loss during the quantization process,
and to improve model generalization. Once the quantized .pb model is obtained, the DPU
kernel compilation phase will proceed. The DPU kernel is compiled using the Vitis AI
compiler. During the compilation process, the Vitis AI compiler converts the pre-processed
deep learning model IR into binary code and stores it in an .elf file. This file can be loaded
and executed by the DPU for efficient computation and inference tasks.

After obtaining the .elf file, the next step is to cross-compile it, which is used to
generate the dynamic link library .so file. It contains the YOLOv3 kernel and only needs a
Python application driver to perform the YOLOv3 extrapolation on the object board. The
64-bit ARM GCC cross-compile toolchain in the Xilinx Runtime docker is used to generate
the dynamic link library files. This is followed by setting up the object board to boot and
initialize the Petalinux system image, and configuring the runtime environment. At this
point, the full process of object detection model deployment to an MPSoC implementation
is in place.

The ARM side of the object board uses the DNNDK API (Python) to input the pre-
processed image into the DPU, and obtains the data after the convolution operation of the
DPU through the API. Figure 4 shows the flow of the object board for edge computing tasks.
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Place the compiled dynamic link library .so file in the same directory as the application,
use the DNNDK API to parse the .so file, make the DPU refer to the library file to run in a
predetermined way, and then use the API to retrieve the data from the memory allocated by
the DPU. Finally, display the coordinates and category information of the object obtained
after processing.

Figure 4. Object detection process based on MPSoC.

5. Experiment Results and Analysis
5.1. Experiment Setup

The hardware configuration used in the experiment is AMD 2700X, Nvidia GeForce
GTX 2070 graphics card, Linux operating system; the software environment is CUDA11.1.0,
Cudnn8.0, and the deep learning framework is TensorFlow. The training process adopts
the SGD optimizer, the initial learning rate is 0.02, the momentum size is 0.9, the batchsize
is 8, and the number of iterations is 150. The initial learning rate is 0.02, the momentum
size is 0.9, the batch size is 8, and the number of iterations is 150.

5.2. Datasets and Evaluation Indicators
5.2.1. Datasets

FLIR dataset: The FLIR dataset [27] was released by FLIR in 2018 and contains 10 k
manually annotated thermal infrared images and their corresponding reference RGB images
acquired during day and night. The FLIR dataset is an image-unaligned multispectral
multi-object detection dataset consisting of RGB images captured by the FLIR BlackFly RGB
camera with a resolution of 1280 × 1024 and thermal infrared images captured by the FLIR
Tau2 thermal camera with a resolution of 640 × 512. LLVIP dataset: Jia et al. [28] proposed
the LLVIP dataset, which contains a large number of street-level images of pedestrians and
cyclists captured by a multispectral camera with an overhead surveillance view. Most of
the images were taken in very dark scenes. In addition, we also used the Exdark dataset
and real-life low-light images for our experiments, which are described in Section 3.

5.2.2. Evaluation Indicators

In this paper, the FOLD algorithm is compared with other methods to measure its
performance. The experimental models in this paper are all evaluated using the target detec-
tion metric proposed by the MS-COCO dataset: mean average precision (mAP) [19,29,30].
LOP mAP50, mAP75, and mAP denote the average of all AP values for all categories
when the intersection over union (IoU) is 0.50, 0.75, and 0.50:0.95, respectively. In addition,
this paper compares them in terms of detection performance and computational perfor-
mance. Detection performance is measured in frames per second (FPS). Computational
performance is compared in terms of computational efficiency, processing time, and power
consumption. Computational efficiency is defined as the number of image processes per
unit time.

5.3. Experimental Results and Analysis
5.3.1. Comparison of Detection Performance

In this section, we compare the detection performance of the FOLD proposed in this
paper with other methods on FLIR, LLVIP, ExDark, and real image datasets. The algorithms
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compared include eight algorithms such as YOLOv3 based on unimodal RGB images,
YOLOv5 based on unimodal RGB images, CFT [31], CCIFNet [32], LIME + YOLOv3,
LIME + YOLOv5, DCE_ZERO + YOLOv3, and DCE_ZERO + YOLOv5. The first two are
simple object detection models, while the last six are object detection models with image
enhancement capabilities, including LIME and DCE_ZERO [33], which are two low-light
image enhancement methods. From Tables 1–4, it can be seen that the FOLD algorithm
achieves the highest detection results under the mAP50, mAP75, and mAP evaluation
metrics. Although it is about the same as the dedicated LIME and DCE_ZERO methods,
it still has a slight advantage. In general, the FOLD algorithm proposed in this paper
achieves satisfactory detection results under all IoU thresholds, indicating that the method
can be well generalized to different IoU thresholds. This shows that the method can be well
generalized to different types of images.

Table 1. Performance comparison of different algorithms on FLIR dataset.

Method Backbone Data mAP50 mAP75 mAP

YOLOv3 DarkNet RGB 0.834 0.373 0.421
YOLOv5 CSPDarkNet RGB 0.893 0.507 0.503

CFT CSPDarkNet RGB+T 0.955 0.717 0.628
CCIFNet ResNet50 RGB+T 0.969 0.736 0.651

LIME + YOLOv3 DarkNet RGB 0.959 0.741 0.659
LIME + YOLOv5 CSPDarkNet RGB 0.961 0.743 0.660

DCE_ZERO + YOLOv3 DarkNet RGB 0.955 0.738 0.656
DCE_ZERO + YOLOv5 CSPDarkNet RGB 0.951 0.732 0.654

FOLD DarkNet RGB 0.971 0.743 0.662

Table 2. Performance comparison of different algorithms on LLVIP dataset.

Method Backbone Data mAP50 mAP75 mAP

YOLOv3 DarkNet RGB 0.850 0.369 0.431
YOLOv5 CSPDarkNet RGB 0.897 0.524 0.502

CFT CSPDarkNet RGB + T 0.971 0.722 0.638
CCIFNet ResNet50 RGB + T 0.970 0.728 0.631

LIME + YOLOv3 DarkNet RGB 0.963 0.761 0.621
LIME + YOLOv5 CSPDarkNet RGB 0.970 0.758 0.603

DCE_ZERO + YOLOv3 DarkNet RGB 0.961 0.752 0.591
DCE_ZERO + YOLOv5 CSPDarkNet RGB 0.943 0.697 0.593

FOLD DarkNet RGB 0.972 0.773 0.651

Table 3. Performance comparison of different algorithms on ExDark dataset.

Method Backbone Data mAP50 mAP75 mAP

YOLOv3 DarkNet RGB 0.839 0.368 0.429
YOLOv5 CSPDarkNet RGB 0.918 0.539 0.525

CFT CSPDarkNet RGB + T 0.972 0.727 0.638
CCIFNet ResNet50 RGB + T 0.974 0.727 0.645

LIME + YOLOv3 DarkNet RGB 0.966 0.756 0.684
LIME + YOLOv5 CSPDarkNet RGB 0.976 0.760 0.688

DCE_ZERO + YOLOv3 DarkNet RGB 0.969 0.750 0.677
DCE_ZERO + YOLOv5 CSPDarkNet RGB 0.971 0.752 0.674

FOLD DarkNet RGB 0.977 0.753 0.681
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Table 4. Performance comparison of different algorithms on Real-image dataset.

Method Backbone Data mAP50 mAP75 mAP

YOLOv3 DarkNet RGB 0.869 0.380 0.434
YOLOv5 CSPDarkNet RGB 0.910 0.521 0.511

CFT CSPDarkNet RGB + T 0.968 0.723 0.632
CCIFNet ResNet50 RGB + T 0.965 0.719 0.632

LIME + YOLOv3 DarkNet RGB 0.969 0.764 0.671
LIME + YOLOv5 CSPDarkNet RGB 0.971 0.776 0.674

DCE_ZERO + YOLOv3 DarkNet RGB 0.962 0.767 0.669
DCE_ZERO + YOLOv5 CSPDarkNet RGB 0.968 0.769 0.672

FOLD DarkNet RGB 0.976 0.776 0.678

5.3.2. Comparison of Computational Performance

In this section, we deploy FOLD on boards such as FPGA MPSoC, RK3588, Raspberry
Pi, and Atlas to perform target detection on images from FLIR, LLVIP, ExDark, and Real-
image datasets, respectively, to compare the computational performance. A material object
of an FPGA MPSoC for target detection based on FOLD is shown in Figure 5.

Figure 5. Material object of target detection system.

As can be seen from Table 5, the average detection rates of the FOLD deployed on FPGA
MPSoC, RK3588, Raspberry Pi, and Atlas are 87.25, 45.75, 10.5, and 16.25, respectively. The
detection rate deployed on FPGA MPSoC completely exceeds the 25 FPS rate and is much higher
than the other few detection rates, which satisfies the naked eye observation without delay.
In general, the deployment of the FOLD algorithm proposed in this paper on FPGA MPSoC
achieves satisfactory detection rates, which indicates that the FPGA-based implementation of
the target detection model can be applied to most of the downstream edge vision tasks.

Table 5. Comparison of detection rate in frames per second (FPS).

Onboard
Datasets

FLIR LLVIP ExDark Real-Image Avg.

FPGA MPSoC 92 89 85 83 87.25
RK3588 49 46 45 43 45.75

Raspberry Pi 12 11 11 8 10.5
Atlas 18 16 16 15 16.25

The average computational efficiency (CE), processing time (PT), and power consump-
tion (PC) of FOLD deployed on FPGA MPSoC, RK3588, Raspberry Pi, and Atlas are shown
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in Table 6. It can be seen that the power consumption of FOLD deployed on FPGA MPSoC
is not the lowest, but the processing time is much lower than the time deployed on other
devices. Therefore, the deployment of the FOLD algorithm proposed in this paper on FPGA
MPSoC achieves satisfactory computational efficiency, which indicates that the deployment
scheme has certain advantages to achieve high processing efficiency.

Table 6. Comparison of computation performance on different platforms.

Onboard CE PT (ms) PC (W)

FPGA MPSoC 12.46 11.45 7.0
RK3588 6.35 21.86 7.2

Raspberry Pi 1.64 95.23 6.4
Atlas 2.95 61.54 5.5

5.3.3. Limitations

To investigate the robustness and limitations of the proposed method, we performed
real-world tests in an external field with different illumination levels. When the illumination
is lower than 0.01 lux, the proposed microbiology-enhanced target detection method will
be more limited, and it is easy to have the problem that the target cannot be detected or the
dark part will be circled out; at this time, the detection accuracy objectively increases and
the system robustness benefits images of poor quality.

6. Conclusions and Future Work

In this paper, we explore and investigate object detection and related problems in
low-light scenes, and propose a low-level image enhancement method for low-light object
detection based on MPSoC. Aiming at the current problem of the lack of low-light image
datasets and its poor quality, three low-order image enhancement methods are adopted to
expand the dataset and improve the detection performance of YOLO in low-light scenes.
Aiming at the problem of the limited improvement of the object detection performance
of the existing low-light image enhancement methods, an edge object detection system
based on the deployment of MPSoC is realized, which effectively improves the detection
efficiency of the edge end. In future work, we will use more low-light image enhancement
techniques for downstream visual tasks and explore a wider range of image evaluation
metrics to comprehensively evaluate the effectiveness of different image enhancement
techniques and their positive gain on object detection performance.
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