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Abstract: In this paper, we propose a Grid-based Non-uniform Probability Density Sampling Proba-
bilistic Roadmap algorithm (GN-PRM) in response to the challenges of difficult sampling in narrow
passages and low-probability map generation in traditional Probabilistic Roadmap algorithms (PRM).
The improved algorithm incorporates grid-based processing for map segmentation, employing non-
uniform probability density sampling based on the different attributes of each block to enhance
sampling probability in narrow passages. Additionally, considering the computational cost and fre-
quent ineffective searches in traditional PRM algorithms during pathfinding, this paper optimizes the
time required for query route planning by altering connection strategies to improve the algorithm’s
runtime. Finally, the simulation results indicate that, with a reduction of over 50% in undirected line
segments and a reduction of over 85% in runtime, the GN-PRM algorithm achieves a 100% success
rate in complex planning scenarios with a sampling point value of K = 500. In comparison, the
traditional PRM algorithm has a success rate of no more than 10%, with a sampling point value of
K = 500.

Keywords: path planning; AGV; probabilistic roadmap; grid-based

1. Introduction

Automatic guided vehicles (AGV) are intelligent industrial transportation devices
characterized by their high autonomy, flexibility, programmable control, and adaptabil-
ity [1]. Currently, they serve as a crucial component in the intelligent and automated
production of industries.

In AGV systems, path planning is a paramount aspect [2], serving as a prerequisite
for the correct movement of AGV vehicles. The results of path planning determine the
intelligence level and availability of AGV vehicles [3]. Various researchers have proposed
different methods to address path planning issues, such as the traditional A* [4] and D* [5]
algorithms. The A* algorithm combines Dijkstra and BFS algorithms, enhancing search
speed through learning a heuristic function. Additionally, drawing inspiration from nature,
many researchers have introduced novel algorithms, including artificial potential field [6,7]
algorithms, artificial bee colony [8,9], genetic algorithms [10], particle swarm optimiza-
tion [11], ant colony algorithms [12], and more. With the advancement of research in
artificial intelligence and deep learning, numerous researchers have proposed leveraging a
Large Language Model (LLM) for robot path planning [13–15]. These algorithms, compared
to others, require iteration and optimization to find the optimal path, potentially leading to
longer times being needed to obtain effective paths in complex environments [16].

In contrast to previous algorithms, path planning methods based on random sampling
have been widely applied and researched due to their higher planning speeds [17]. Among
these, the most traditional random sampling path planning methods are Rapidly Exploring
Random Trees (RRT) [18,19] and Probabilistic Roadmap methods (PRM) [20]. Compared
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to previous methods, random sampling algorithms use sampled points to describe the
free space [21]. The Rapidly Exploring Random Trees (RRT) algorithm randomly selects a
free point at each step and employs a separate query process to solve the path planning
problem [22]. The PRM algorithm constructs the free space, simultaneously selecting
all sampled points and conducting queries [23]. In comparison with the RRT algorithm,
the PRM algorithm, by pre-constructing the free space, can rapidly obtain the shortest
path. The algorithm primarily consists of two phases: the learning phase and the query
phase [24]. The learning phase primarily involves the use of different sets of points to
represent the entire workspace, with these points being randomly sampled throughout
the workspace. The algorithm also connects each point with all other points, conducting a
collision detection, and stores the generated collision-free lines to represent the connected
segments of the entire workspace. Consequently, after the learning phase, the original
workspace transforms into a workspace composed of freely sampled points and collision-
free lines generated by the algorithm. The query phase of the algorithm builds upon the
previous step by using a planning algorithm to perform path planning on the generated
collision-free lines, creating a connecting line from the starting point to the destination. The
PRM algorithm can pre-construct free points and collision-free lines that are tailored to a
specific environment, significantly reducing the time required for collision detection and
optimizing the efficiency of path planning.

However, due to the PRM algorithm’s reliance on random sampling for free point se-
lection, it exhibits a low success rate in solving path planning problems in narrow passages
and complex environments. To enhance the performance of the PRM algorithm, researchers
have proposed various methods to optimize the map-learning techniques of free spaces
in a narrow passages and complex environments. Boor, V et al. introduced Gaussian
sampling [25], which increases the sampling count in narrow passages by transforming
obstacle points into free points on the obstacle boundaries through random perturbation.
Hsu, D et al. proposed bridge sampling [26,27], determining collision-free midpoints that
serve as sampling points in narrow passages. Chen Yan [28] and others suggested a deep-
learning-based approach to train and optimize sampling, but these sampling methods often
require additional computational efforts to determine the landing positions of the sampling
points, which may not meet real-time requirements. Han Chao [29] and colleagues intro-
duced a light node-based sampling method, simulating illumination to sample unsampled
areas and ensure the connectivity of the region. While this method effectively meets the
requirements of simple narrow passage maps, it exhibits poor adaptability to irregular
narrow passages and general maps.

In order to address the issue of prolonged search times for current heuristic and bio-
inspired algorithms on large maps, as well as the inadequacy of sampling algorithms in
narrow passages, this paper proposes a grid-based non-uniform PRM (GN-PRM) algo-
rithm. By strategizing the point selection across different grids, the algorithm enhances the
probability of point selection in narrow passages. Additionally, the connection strategies
and methods are optimized to improve the algorithm’s operational speed. We achieved a
rapid and robust path planning for AGVs in complex environments on large maps. The
primary contributions of this paper are as follows:

1. To ensure the connectivity of the sampling graph and increase the number of samples
in the narrow passages, we optimize the strategy of extracting sampling points by
gridding, identifying, and classifying the features in each grid of the graph. Different
sampling strategies are used for different grids. The number of sampling points
in open areas is reduced and the number of sampling points in narrow passages is
increased, without changing the total number of sampling points, to ensure feasibility
in narrow passages.

2. In order to accelerate the algorithm’s running speed and better meet the real-time
requirements of path planning algorithms, we optimize the connection strategy of
sampling points, reduce the generation of undirected line segments by over 50%, and
further optimize the path through pruning. Without significantly increasing the length



Electronics 2024, 13, 225 3 of 16

of the route, this approach reduces over 40.9% the time needed to connect collision-free
lines during the program, thereby enhancing the algorithm’s operational speed.

3. To ensure the optimality of the planned path, we prune and optimize the routes
generated in the query phase, reducing the generation of redundant points. The
optimized route nodes are reduced by an average of 38.7%, and the route length
experiences a reduction of approximately 17.6%.

Section 2 primarily provides an overview of the operation process and principles of
the traditional PRM algorithm. Section 3 elaborates on the innovations and improvements
made in this paper concerning the GN-PRM algorithm, including grid partitioning, non-
uniform probability density sampling methods, and the optimization of route connections
and searches. Section 4 demonstrates the optimization results of the improved algorithm
through a comparison with the original. Section 5 concludes the entire document.

2. Traditional PRM Algorithm

The traditional PRM algorithm is a well-known global path planning algorithm that
allows for robots to find a collision-free path from a specified initial position to the corre-
sponding final destination. In the traditional PRM algorithm, the description of free space is
directly represented by free points and collision-free line segments. Through this approach,
the algorithm can effectively reduce the occupancy of the workspace during path planning.
The PRM algorithm primarily consists of a learning phase and a query phase. In Figure 1,
(a) illustrates an original map with a size of 500 × 500, (b) and (c) depict the sampling of
red points and the connection between undirected blue line segments performed by the
traditional PRM algorithm in the learning phase, and (d) shows the algorithm searching all
undirected line segments and providing the optimal path in red during the query phase.
The specific operations and descriptions of each phase are detailed below.
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2.1. The Learning Process

The primary objective during the learning phase is to construct a simplified free space
in the workspace through random sampling, which will be utilized for subsequent path
planning. During the learning phase, the algorithm primarily has two tasks: sampling
points and connecting sampled points to construct undirected line segments. The time
complexity of point sampling is typically approximately linear, i.e., O(k), while the time
complexity of constructing undirected line segments is usually approximately O(k̂2),
where K is the number of sampled points.
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Based on the data from the corresponding input map, we can divide the map space
Cs into free space C f ree and obstacle space Cobs. The operations in the learning phase are
mainly as illustrated in Figure 2.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 17 
 

 

Based on the data from the corresponding input map, we can divide the map space 𝐶𝑠 into free space 𝐶𝑓𝑟𝑒𝑒 and obstacle space 𝐶𝑜𝑏𝑠. The operations in the learning phase are 
mainly as illustrated in Figure 2.  

Start

Read map data

Divide Cfree
 and Cobs

Select sampling 
points

Meet the 
requirements?

Add to sampling 
point list Cp

 Sampling number 
achieved?

Connecting point 
sets to construct 

line segments

  Line segments 
collide?

Join line segment 
set

Traverse completed

Complete the 
learning phase

Y

N=N+1

N
Y

N N

N

 
Figure 2. Learning phase flowchart. 

Firstly, the algorithm reads and initializes the map data, dividing the overall space 𝐶  into the free space 𝐶  and the obstacle space 𝐶 . Subsequently, random sampling 
points are selected by performing random sampling in the entire space 𝐶 , and the sam-
pled points are added to the list of sampling points 𝐶  . Finally, the algorithm checks 
whether the sampling task is complete. If the number of samples 𝐾 is less than the spec-
ified value, the algorithm continues sampling until the task is completed. 

Upon completing the description of the space using the set of points, we use collision-
free line segments between points to represent effective local paths. These collision-free 
lines ensure that the robot can navigate the free space. While learning the collision-free 
lines, the algorithm selects the first free point 𝑃 (𝑖 = 1) and another free point 𝑃 (𝑗 = 1) 
to construct a line segment. Subsequently, collision detection is performed on the learned 
line segment. If a collision occurs, the segment is discarded, and the process continues to 
another sampling point 𝑃 (𝑗 = 𝑗 + 1) Otherwise, the two endpoints of the path are added 
to the set of line segments until the entire set of points is traversed. It is worth noting that 
substantial resources are consumed when learning undirected line segments using this 
process to traverse the set of points. 

2.2. The Query Process 

Figure 2. Learning phase flowchart.

Firstly, the algorithm reads and initializes the map data, dividing the overall space
Cs into the free space C f ree and the obstacle space Cobs. Subsequently, random sampling
points are selected by performing random sampling in the entire space Cs, and the sampled
points are added to the list of sampling points Cp. Finally, the algorithm checks whether
the sampling task is complete. If the number of samples K is less than the specified value,
the algorithm continues sampling until the task is completed.

Upon completing the description of the space using the set of points, we use collision-
free line segments between points to represent effective local paths. These collision-free
lines ensure that the robot can navigate the free space. While learning the collision-free
lines, the algorithm selects the first free point Pi(i = 1) and another free point Pj(j = 1)
to construct a line segment. Subsequently, collision detection is performed on the learned
line segment. If a collision occurs, the segment is discarded, and the process continues to
another sampling point Pi(j = j + 1) Otherwise, the two endpoints of the path are added
to the set of line segments until the entire set of points is traversed. It is worth noting that
substantial resources are consumed when learning undirected line segments using this
process to traverse the set of points.
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2.2. The Query Process

The primary objective of the query process in the PRM algorithm is to leverage the
collision-free paths constructed during the learning phase to identify paths between the
starting and ending points. By employing local path planning, the algorithm aims to
discover an effective path, thereby obtaining a practical route from the initial position to
the final destination. Since collision-free local paths are established during the learning
process, the search for the optimal path is confined to the set of undirected line segments
derived from the learning process, rather than spanning the entire free space.

In the query process of the traditional PRM algorithm, the primary local path plan-
ners typically involve A* or Dijkstra algorithms. The Dijkstra algorithm employs the
greedy algorithm’s concept by progressively extending the shortest known paths, gradually
determining the shortest paths from the starting point to other vertices and ultimately
identifying the shortest path to the endpoint. In comparison to the Dijkstra algorithm, the
A* algorithm incorporates a heuristic function to determine the optimal path, resulting in
greater efficiency in path planning for static workspaces. Therefore, in the query process
of the traditional PRM algorithm, the A* algorithm has emerged as the predominant local
path planner. When utilizing the A* algorithm to complete the query process, the cost
function for evaluating paths is as follows:

f (x) = g(x) + h(x) (1)

where, f (x) represents the estimated total cost, g(x) denotes the actual cost from the path’s
starting point to the current node x, and h(x) represents the minimum estimated cost from
node x to the target endpoint, which is typically calculated using the Euclidean distance.
If g(x) is zero, only g(x) is effective, and the A* algorithm degenerates into the Dijkstra
algorithm. If h(x) is much larger than g(x), g(x) can be approximated to zero, and the A*
algorithm degenerates into the BFS algorithm.

The flowchart for the entire query phase is shown in Figure 3.
During the query process, we initially create two lists, the open list and the closed

list, to store the parameters of the points being queried. The closed list is used to store
points that have already been queried and can be disregarded, while the open list is used to
store the free points that need exploration. Next, we identify the overall nearest free points
that can form a local path with the initial query point p0 and estimate the cost of these
nearest free points according to the formula. Then, we select point p1 with the minimum
cost serving as the best-performing point, and remove the current query point p0 from the
open list. Finally, we check if the best-performing point p1 is the endpoint. If it has not
reached the endpoint, we use the previously selected p1 as the query point p′0 for the next
iteration, and continue querying the point p′1 with the lowest cost around p′0 until reaching
the endpoint.

Through the aforementioned learning and querying processes, the traditional PRM
algorithm can be used in path planning for AGV cars in common environments. However,
due to the inherent randomness in the sampling points during the learning process, the
completeness of the traditional PRM algorithm is relatively poor. This deficiency becomes
more apparent in specific types of maps, such as those containing narrow passages and
multiple corners, where it often fails to establish connectivity from the starting point to
the endpoint, resulting in path planning failures. A simple solution to this problem is to
increase the number of sampling points on the map. However, this inevitably generates a
large number of invalid points, leading to an increase in algorithm runtime and the wastage
of computational resources. To address these issues, this paper proposes a grid-based
non-uniform-sampling optimized PRM algorithm.
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3. The Optimized PRM Algorithm

This chapter primarily introduces improvement measures for the GN-PRM algorithm.
These enhancements include optimizing the sampling effectiveness within narrow passages
in complex, large-scale map environments through non-uniform density sampling with
grid-based methods. Additionally, it aims to boost algorithm performance by refining
strategies for generating undirected line segments and optimizing the paths obtained
through pruning methods.

3.1. Optimized Learning Phase

To fulfill path planning tasks, conventional algorithms initially simplify the real en-
vironment into a representative two-dimensional map. Subsequently, they employ the
traditional Probabilistic Roadmap (PRM) algorithm to derive the workspace, which is
primarily composed of sampling points and collision-free line segments. The sampling
points serve as the foundation for the formation of collision-free line segments. Figure 4
illustrates the operation of the traditional PRM algorithm in scenarios involving narrow
passages. When confronted with complex environments featuring various narrow passages,
it is challenging to obtain free points within these narrow passages using random sampling
methods. This challenge stems from the relatively small size of the free space in narrow
passages compared to the overall free space in the map, making it arduous to acquire
free points through random sampling. Consequently, some narrow passages cannot be
adequately represented in the sampled workspace, resulting in path planning failures in
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complex environments with narrow passages. As shown in Figure 4c, due to the insufficient
number of red points taken in narrow passages, the algorithm is unable to plan an effective
path from the starting point to the endpoint.
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3.1.1. Grid-Based Map Partitioning

We can observe that, during the sampling process in the traditional Probabilistic
Roadmap (PRM) algorithm, the probability of sampling points falling in non-narrow
passage areas is significantly higher than in narrow passage areas, as non-narrow passage
areas are much larger. Consequently, this imbalance in sampling probabilities results in
the failure of subsequent path planning. Furthermore, in non-narrow passage areas, there
are many points where land in open areas often fails to contribute effectively to later path
planning. This implies that the number of sampling points in open areas exceeds the
algorithm’s requirements, while the number of sampling points in narrow passage areas
is insufficient.

To address this issue, we introduced a preprocessing step for the map before en-
tering the learning phase. Assuming that the current size of the read map space Cs is
height × width, and the grid size is blockSize, the number of obtainable grids t can be
calculated as follows:

t = ceil
(

height
BlockSize

)
× ceil

(
width

BlockSize

)
(2)

After partitioning the grids, we classify each grid. When a grid contains no obstacle
points, we consider it an open-area grid and label it as such. If a grid is entirely filled
with obstacle points, we consider it an inaccessible grid and label it as an obstacle grid. If
the number of obstacle points in a grid is below a low predefined threshold, thresholdlow,
we classify it as a somewhat open-area grid. If the number of obstacle points in a grid
exceeds a higher predefined threshold, thresholdhigh, we identify it as a potentially narrow
passage-related grid and label it a dangerous grid. When the number of obstacle points in a
grid is below thresholdhigh and above thresholdlow, we consider it to potentially represent
the edge of an obstacle or the entrance/exit of a narrow passage, labeling it a somewhat
dangerous grid.

After partitioning the grids, we classify each grid based on its content. A grid con-
taining no obstacle points is categorized as an open-area grid and labeled accordingly.
Conversely, if a grid is entirely occupied by obstacle points, we designate it an inaccessible
grid and label it as an obstacle grid. Grids with obstacle points below a predefined lower
threshold, thresholdlow, are classified as a somewhat open-area grid. In cases where the
number of obstacle points in a grid exceeds a higher predefined threshold, thresholdhigh,
we identify the grid as a potentially narrow passage-related grid and label it as a dangerous
grid. Grids with obstacle points below thresholdhigh and above thresholdlow are considered
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to potentially represent the edge of an obstacle or the entrance/exit of a narrow passage,
and we label them as somewhat dangerous grids.

When the map size is 500 × 500, the grid size is 50, thresholdlow is set to 0.1 × BlockSize2,
and thresholdhigh is set to 0.5 × BlockSize2, the program’s execution results are shown in
Figure 5. In Figure 5, the red area represents the identified dangerous grids, the blue area
represents somewhat dangerous grids, and the green area represents obstacle grids. It can
be observed that the narrow passage areas are effectively identified and marked.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

When the map size is 500 × 500, the grid size is 50, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤  is set to 0.1 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 , and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ℎ𝑖𝑔ℎ is set to 0.5 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 , the program’s execution 
results are shown in Figure 5. In Figure 5, the red area represents the identified dangerous 
grids, the blue area represents somewhat dangerous grids, and the green area represents 
obstacle grids. It can be observed that the narrow passage areas are effectively identified 
and marked. 

 
Figure 5. Grid annotation map. (a1,a2) Original map; (b1,b2) grid map; (c1,c2) identified grid map. 

3.1.2. Non-Uniform Probability Density Sampling 
After the map is divided into grids, we can adopt different sampling strategies for 

grids with different attributes to improve the success rate of path planning. 
Obstacle grids are entirely occupied by obstacles, rendering them impassable. Con-

sequently, during sampling, these grids are ignored to focus sampling efforts on areas 
with potential connectivity. No sampling is conducted for obstacle grids to redistribute 
the sampling probability to other regions. 

For open grids, as there are no obstacle points inside the grid, creating a relatively 
open space, if a large number of points fall into an open grid, redundancy in sampling 
points within the same grid may occur due to the proximity and the fact that, in most 
cases, only one sampling point per grid is retained in subsequent query processes. To ad-
dress this issue and maximize the effectiveness of sampling points, our sampling strategy 
for open grids is to only take the center point of the grid as a fixed sampling point. 

Somewhat dangerous grids share most attributes with open grids, although there are 
minimal obstacle points inside the grid; therefore, redundancy in sampling points may 
still occur if a large number of points fall into the open gird. Therefore, the sampling strat-
egy for somewhat dangerous grids is the same as that for open grids, taking the center 
point as the fixed sampling point. 

Since they contain a certain number of obstacle points and are often passages for nar-
row passages or obstacle boundaries, sampling within dangerous grid points is generally 
more valuable than in open grids or somewhat dangerous grids. Therefore, we need to 
increase the sampling probability in such grids. When the total number of sampling 
points, k, is greater than the number of grids, t, we perform a random sampling for each 
dangerous grid and then conduct a random sampling for all dangerous grids until a suf-
ficient number of sampling points are obtained. With this sampling method, we represent 
open and somewhat open grids by extracting center points while ensuring that each 

Figure 5. Grid annotation map. (a1,a2) Original map; (b1,b2) grid map; (c1,c2) identified grid map.

3.1.2. Non-Uniform Probability Density Sampling

After the map is divided into grids, we can adopt different sampling strategies for
grids with different attributes to improve the success rate of path planning.

Obstacle grids are entirely occupied by obstacles, rendering them impassable. Con-
sequently, during sampling, these grids are ignored to focus sampling efforts on areas
with potential connectivity. No sampling is conducted for obstacle grids to redistribute the
sampling probability to other regions.

For open grids, as there are no obstacle points inside the grid, creating a relatively
open space, if a large number of points fall into an open grid, redundancy in sampling
points within the same grid may occur due to the proximity and the fact that, in most cases,
only one sampling point per grid is retained in subsequent query processes. To address this
issue and maximize the effectiveness of sampling points, our sampling strategy for open
grids is to only take the center point of the grid as a fixed sampling point.

Somewhat dangerous grids share most attributes with open grids, although there are
minimal obstacle points inside the grid; therefore, redundancy in sampling points may still
occur if a large number of points fall into the open gird. Therefore, the sampling strategy
for somewhat dangerous grids is the same as that for open grids, taking the center point as
the fixed sampling point.

Since they contain a certain number of obstacle points and are often passages for
narrow passages or obstacle boundaries, sampling within dangerous grid points is generally
more valuable than in open grids or somewhat dangerous grids. Therefore, we need to
increase the sampling probability in such grids. When the total number of sampling points,
k, is greater than the number of grids, t, we perform a random sampling for each dangerous
grid and then conduct a random sampling for all dangerous grids until a sufficient number
of sampling points are obtained. With this sampling method, we represent open and



Electronics 2024, 13, 225 9 of 16

somewhat open grids by extracting center points while ensuring that each dangerous grid
has at least one sampling point representing it. Additionally, this approach reduces the
sampling frequency for obstacle grids, open grids, and somewhat open grids, thereby
increasing the probability of sampling in narrow passages and improving the planning
success rate of the PRM algorithm.

3.2. Optimized Query Phase

During the operation of the traditional PRM algorithm, sampling determines the
completeness of the entire algorithm, i.e., whether the working space can be expressed
through sampling on the original map. Meanwhile, connection and search operations
need to be performed on the sampled point set. These two aspects determine the overall
speed of the algorithm. To enhance the algorithm’s speed and better meet the real-time
path computation requirements, this paper has made corresponding improvements to the
connection and optimization strategies in the traditional PRM algorithm.

3.2.1. Optimized Connection Strategy

After sampling, the PRM algorithm needs to connect and store the points in the sam-
pled space to form collision-free line segments. The traditional PRM algorithm typically
traverses the entire set of sampled points, testing their connectivity with other points, result-
ing in a time complexity of O

(
n2). As the number of samples, k increases, the algorithm’s

runtime exponentially rises, making it challenging to meet real-time requirements. Com-
pared to the GN-PRM, our algorithm achieves a substantial reduction in the connection of
sampling points within open areas through the implementation of a restricted connection
radius and variable probability sampling. This reduction contributes to a notable decrease
in algorithmic execution time without compromising the completeness of probabilistic
algorithms. Consequently, the overall operational speed of the algorithm is enhanced.

During the connection process, it was observed that many undirected line segments
connecting points in open areas are, in fact, invalid and suboptimal. They not only occupy
space in the point set but also increase the workload for subsequent searches. Therefore,
this paper proposes a method to reduce redundant nodes by assigning a circular constraint
to sampled points. Assuming the current node coordinates are (x1, y1), this will only
connect with coordinates within a circle, centered on the current coordinates with a radius
of ‘distance’. When the distance is infinite, the algorithm degenerates into the standard
connection method in the ordinary PRM algorithm. However, if the distance is too small,
this may lead to the loss of valid path solutions.

As the total number of sampled points, k, is greater than the number of grids, t,
each grid must contain at least one point to ensure connectivity between grid points. To
balance overall algorithm connectivity and the existence of valid paths, this paper sets
distance = 1.5BlockSize. This ensures a certain level of connectivity while allowing for
grids in open areas to connect with nearby open grids in eight directions, resulting in a more
efficient path. After adding circular constraints, as in the case of the same sample points
K = 150, the comparison of generated undirected line segments is shown in Figure 6. In
Figure 6, Red points are PRM sampling points and starting and ending points, blue points
are open grid points, yellow points are GN-PRM sampling points and the blue lines are
undirected line segments.

The table below presents the number of undirected line segments generated by dif-
ferent algorithms on various maps. All data are presented in Table 1. The data in the
table represent the averages obtained after running each algorithm 50 times on different
maps. Through comparison, it can be observed that, in comparison to the traditional PRM
algorithm, the algorithm proposed in this paper reduces the number of nodes by 56.7%.
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Table 1. Comparison table of connection nodes.

Map Sampling Count PRM Nodes GN-PRM Nodes Reduce Percentage

1 150 5333.54 2027.4 61.98%
2 150 2494.5 1317.06 47.20%
3 150 4822.84 2168.56 55.03%
4 150 5599.38 2143.92 61.71%
5 150 3711.72 1573.32 57.61%

Average percentage reduction of nodes 56.70%

3.2.2. Path Pruning Optimization

By employing the aforementioned optimized query method, we can obtain a reachable
path from the initial point to the target point. However, as illustrated in Figure 7, the
restriction on the connection between sampled points and other sampled points beyond
a certain distance leads to a situation where, on a potentially optimal route, the optimal
starting point and the optimal ending point may not be directly connected as they exceed
the specified distance. Instead, they can only be indirectly linked through other points,
introducing the possibility of redundant points occurring along the entire planned route.
Therefore, it is necessary to perform a secondary pruning optimization on the obtained
path during the query process.

The path pruning technique is a typical and effective method to optimize the initial
path obtained during the query process. The typical path pruning technique is primarily
based on the fundamental principle that the sum of two sides of a triangle must be greater
than the third side, allowing for for the pruning of redundant nodes on the path. Therefore,
path pruning techniques can generate a new, optimized path that closely approximates the
shortest path. In the PRM algorithm, the initial path obtained during the query process is
primarily described using free points. Consequently, path pruning techniques can reduce
the number of free points required to describe the optimal path and optimize the required
memory, as illustrated in the Figure 8.
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Assuming that the path obtained through the path query method consists of N points
denoted as P0, P1, P2,. . ., PN , we initiate data parameterization by placing the starting point
into a new point set and initializing the point marker as Pstart = P0, i = 1. Initially,
we connect Pstart+i with Pstart and perform collision detection. If the line segment exhibits
no collision, i is incremented by 1, and the process is repeated, connecting Pstart+i with
Pstart and assessing collision. The event of a collision between a point Pt and Pstart implies
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that the preceding point Pt−1 can be directly connected to Pstart. Consequently, all points
between Pstart and Pt−1 are discarded, Pt−1 is incorporated into a new set of path points,
and the new Pstart is set as Pt−1. This process is iterated until a connection is detected
between Pstart and the endpoint. Finally, the endpoint is added to the pruned path point
set, completing the pruning.

Figure 9 illustrates a comparison of the paths before and after pruning, with the blue
line segments representing the pre-pruning path and the red line segments representing
the post-pruning path. Compared to the path before optimization, the pruned path exhibits
a reduction in the number of nodes and overall path length.
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4. Simulations
4.1. Simulation Simulation Comparison between PRM and GN-PRM

In this section, we primarily evaluate the performance of the optimized PRM path
algorithm. The experiment comprises four maps, as illustrated in Figure 10a–d: a regular
map, a map with simple narrow passages, a map with complex narrow passages, and a
map with irregular narrow passages, respectively. The size of each map is 500 × 500, with
the starting point set at (10,10) and the endpoint at (490,490). To ensure the accuracy of
our data, each map underwent 10 experiments, and the final data represent the average
of these 10 trials. The simulations in this section were conducted on a personal computer
with a 3.70 GHz Intel-Core (i5-8400) CPU and 32 GB of memory.

To demonstrate the performance of the optimized sampling algorithm, we conducted
a comparative analysis with the traditional PRM algorithm. Each algorithm was executed
50 times, and the planning success rate, average planning time, and average planning
length were selected as metrics to compare their merits. Based on the results presented in
Table 2, the following conclusions can be drawn:

(1) In the regular map (a), both the traditional algorithm and the improved algorithm
demonstrate effective path planning. With an increase in the number of sampled points, the
learning and query times for both PRM algorithms also increase. However, the optimized
PRM algorithm proposed in this paper not only ensures an average planning length
that is superior to traditional algorithms but also significantly reduces planning time by
minimizing redundant routes, thus improving the algorithm’s real-time performance.

(2) In the maps with simple narrow passages (b), complex narrow passages (c), and
irregular narrow passages (d), by comparing the success rates when constructing a free
space under the same sampled value (K), our algorithm exhibits a higher successful solution
rate than the traditional algorithm. The traditional PRM algorithm struggles to complete
route planning when the sampled point number (K) is small, whereas our algorithm
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maintains a high planning completion rate. As K increases, although the success rate of the
traditional PRM algorithm improves compared to smaller K values, it still faces challenges
in successfully planning routes.

(3) Through a comparison of the constructed route lengths, it is evident that, despite the
improved algorithm discarding some connections between undirected line segments, the
optimization through pruning that occurs in the experiments on all four maps consistently
results in better average route lengths for the improved algorithm under the same K values.
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Table 2. PRM and GN-PRM simulation data table.

Map Sampling Count
Success Rate Average Planning Time (s) Average Planning Length

PRM GN-PRM PRM GN-PRM PRM GN-PRM

a 150 100% 100% 2.42 0.31 698.04 693.01
500 100% 100% 23.04 0.87 691.59 688.59

b
150 2% 96% 2.40 0.20 731.98 736.02
500 28% 100% 22.36 0.90 737.62 719.32

c 150 0% 100% / 0.17 / 875.68
500 6% 100% 21.53 0.90 902.19 854.45

d
150 0% 92% / 0.17 / 737.82
500 4% 100% 18.74 0.85 740.13 727.55

4.2. Simulation Simulation Comparison between GA and GN-PRM

To analyze and compare the GN-PRM algorithm with other algorithms, we used
the GN-PRM and the Genetic Algorithm (GA), using each algorithm 50 times. We used
planning success rate, average planning time, and average planning length as key indicators
for the comparative analysis between the two algorithms. The maps considered in this
comparison consist of two simple maps, one simple narrow passages map and one complex
narrow passages map, as illustrated in Figure 11.
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The parameters of the experimental platform remain consistent with previous settings.
The predefined parameters for the Genetic Algorithm (GA) include the number of iterations
and the population size. A larger number of iterations and a larger population generally
lead to improved planning effectiveness and a higher planning success rate. However,
this improvement comes at the cost of an increased iteration time, resulting in a higher
overall time requirement for the algorithm. To strike a balance between time efficiency and
success rate, we set the population size of the GA algorithm to 50, with 10 iterations, for an
optimal real-time performance in a simple map. In a more complex map, we adjusted the
population size to 300 and increased the number of iterations to 25 to enhance the planning
success rate. For the GN-PRM algorithm, we consistently set the sampling point parameter
as K = 150. The simulation data are presented in Table 3. Based on the data in Table 3, we
can conduct an analysis and draw conclusions.

Table 3. GA and GN-PRM simulation data table.

Map
Success Rate Average Planning Time (s) Average Planning Length

GA GN-PRM GA GN-PRM GA GN-PRM

a 96% 100% 1.37 0.19 755.44 719.38

b 100% 100% 1.40 0.19 774.52 693.14

c 80% 98% 10.36 0.19 751.54 727.84

d 2% 100% 12.38 0.14 725.00 732.31

(1) In simple maps (a) and (b), both the Genetic Algorithm and GN-PRM demonstrate
an almost 100% success rate in completing trajectory planning. However, given the iterative
nature of the GA algorithm, its computational time is relatively high. The GN-PRM
algorithm, on the other hand, exhibits an average running time that is more than 80% lower
than that of the GA algorithm, showcasing superior real-time performance. Concerning
the average planned path length, the GA algorithm, which lacks optimization pruning
methods, yields a route approximately 5–10% longer than that of the GN-PRM algorithm.

(2) In a narrow passage map (c), although the success rate of the GN-PRM algorithm
remains nearly constant, the success rate of the GA algorithm drops to only 80%. However,
due to the extensive iterations and population size in complex maps, the average running
time of the GA algorithm is more than 50 times that of the GN-PRM algorithm, rendering it
unable to meet the real-time requirements of path planning. In the tightly folded narrow
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passage map (d), the GA algorithm struggles to plan viable paths, while the GN-PRM
algorithm consistently achieves a 100% planning success rate with efficiency.

5. Conclusions

In this paper, we propose a novel GN-PRM algorithm that is designed to effectively
address the path planning problem for mobile robots navigating through complex environ-
ments with narrow passages. Firstly, we employed a grid-based discretization of the map
and assigned labels to each grid point based on the distribution of obstacles, implementing
diverse sampling strategies for different labeled grid points to enhance the algorithm’s
sampling ability within narrow passages. Secondly, we reduced the generation of free
segments by limiting the connections between free points and other excessively distant
free points, thereby decreasing the algorithm’s computational overhead and enhancing its
operational speed. Thirdly, we utilized pruning techniques to eliminate redundant points
from the path, ensuring that, even with the exclusion of certain undirected line segments,
the algorithm can still yield shorter paths. Finally, extensive comparative experiments with
the original PRM and RRT algorithms demonstrated that our proposed PRM algorithm not
only improves planning success rates but also significantly reduces algorithm execution
times, effectively addressing path planning challenges in narrow workspace environments.
The GN-PRM algorithm can be widely applied in industrial production, distribution logis-
tics for AGVs, wheeled robots, and in other areas. Researchers involved in AGV or robot
path planning can refer to our paper for insights, utilizing our grid-based non-uniform
probability density sampling method to reproduce the paper’s results or to pioneer new
algorithms. The results of this paper are reproducible.

The GN-PRM algorithm proposed in this paper primarily addresses the path planning
problem for mobile robots in a globally static state. However, the planned route might
not be suitable for the robot’s kinematic model in real-world scenarios, especially when
dealing with large turning angles. Furthermore, in practical workspaces, the information
regarding complex environments often changes over time. Therefore, integrating the
PRM algorithm with other methodologies to achieve enhanced navigation results and
address path planning challenges in dynamic environments is a crucial research direction.
Combining this algorithm with dynamic window methods, deep learning approaches, and
other dynamic obstacle-avoidance methods is a promising research avenue, providing
valuable insights for fellow researchers.
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