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Abstract: The effects of proton irradiation on CMOS Single-Photon Avalanche Diodes (SPADs) are
investigated in this article. The I–V characteristics, dark count rate (DCR), and photon detection
probability (PDP) of the CMOS SPADs were measured under 30 MeV and 52 MeV proton irradiations.
Two types of SPAD, with and without shallow trench isolation (STI), were designed. According to
the experimental results, the leakage current, breakdown voltage, and PDP did not change after
irradiation at a DDD of 2.82 × 108 MeV/g, but the DCR increased significantly at five different higher
voltages. The DCR increased by 506 cps at an excess voltage of 2 V and 10,846 cps at 10 V after 30 MeV
proton irradiation. A γ irradiation was conducted with a TID of 10 krad (Si). The DCR after the γ

irradiation increased from 256 cps to 336 cps at an excess voltage of 10 V. The comparison of the DCR
after proton and γ-ray irradiation with two structures of SPAD indicates that the major increase in
the DCR was due to the depletion region defects caused by proton displacement damage rather than
the Si-SiO2 interface trap generated by ionization.

Keywords: CMOS SPAD; proton radiation; DCR; displacement damage

1. Introduction

A Single-Photon Avalanche Diode (SPAD) is a photodiode that operates in Geiger
mode with a reverse bias voltage higher than its avalanche breakdown voltage, and it
utilizes an avalanche process to achieve single-photon detection capability. When photons
are absorbed in the multiplication region of SPADs, a self-sustaining avalanche may be
generated, and the current increases rapidly in the realm of picoseconds. By measuring
the detectable current during the avalanche process, the arrival time of photons can be
recorded [1]. An external quenching circuit is used to restore a SPAD to its initial state while
waiting for the next photon to enter the multiplication region. By repeating the process
above, single-photon detection and counting can be achieved. It can be seen that there is a
dead time after the avalanche process, which may limit the maximum counting rate of the
detected photons.

Due to their performance of high sensitivity, high detection efficiency, reliability, and
low jitter noise, SPADs are widely used in some applications that require a low dark
count rate (DCR), a low breakdown voltage, a low leakage current, a high gain, and high
photon detection efficiency. SPADs are used in various fields, such as light detection and
ranging (LiDAR), Non-Line of Sight (NLOS) imaging, fluorescence spectroscopy analysis,
astronomic observations, optical communication, and quantum key distribution in weak
light detection. When non-visible light must be used, especially in the near-infrared
spectrum, high efficiency is very important [2].

At present, many research institutions and companies are developing SPADs with
high efficiency, low noise, and high gain for different application scenarios, such as visible
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and infrared light. In 2019, NASA reported an avalanche photodiode (APD) focal plane
array assembled with linear-mode photon-counting capability for space lidar applications.
The APD array uses a high-density, vertically integrated photodiode frame structure,
and a preamplifier in the ROIC is directly integrated under the APD array to reduce
the transmission capacitance. A microlens array is used to improve the fill factor. Its
spectral response ranges from 0.9- to 4.3-µm wavelengths, its photon detection efficiency
is as high as 70%, and it has a dark count rate of <250 kHz at 110 K [3]. In 2022, silicon
photomultipliers (SiPMs), which are SPAD arrays based on a standard 55 nm Bipolar–
CMOS–DMOS (BCD) technology, were developed by the Ecole Polytechnique Federale de
Lausanne (EPFL). SiPMs are integrated into a coaxial light detection and ranging (LiDAR)
system with a time-correlated single-photon counting (TCSPC) module system. Each SPAD
cell is passively quenched by a monolithically integrated 3.3 V-thick oxide transistor. The
measured gain is 3.4 × 105 at a 5 V excess bias voltage. The single-photon timing resolution
(SPTR) is 185 ps, and the multiple-photon timing resolution (MPTR) is 120 ps at a 3.3 V
excess bias voltage. Under the condition of a 25 m distance, the accuracies of SPTR and
MPTR are 2 cm and 2 mm [4]. In 2022, a best-performing CMOS SPAD with a peak photon
detection probability (PDP) of 55% at 480 nm, spanning from the near ultraviolet (NUV)
to near infrared (NIR) spectrum, and a normalized dark count rate (DCR) of 0.2 cps/µm2

at an excess bias of 6 V was proposed. Its after-pulsing probability is about 0.1% at a
dead time of ∼3 ns, and its single-photon time resolution (SPTR) is 12.1 ps (FWHM) at
a 6 V excess bias voltage with a diameter of 25 µm. SPADs operate over a wide range of
temperatures, from −65 ◦C to 40 ◦C, reaching a normalized DCR of 1.6 mcps/µm2 at a 6 V
excess bias voltage and −65 ◦C [5]. Some big companies, such as STMicroelectronics, Sony,
and HAMAMATSU, have also developed a series of SPADs for different applications.

In the field of radiation detection, SPAD arrays combined with different types of
scintillators, which can absorb energy from radiation, are mainly used in high-sensitivity
gamma-ray detectors and medical PET imaging [6–9]. Scintillator detectors are used for
real-time radiation dose rate detection above the environmental background. PET imaging
uses radioactive isotope tracing methods to display its location and concentration. By
detecting the gamma photons generated by an isotope, the emission position of the photons
can be reconstructed, and changes in metabolic processes and other physiological activities
can be visualized. In addition, a single SPAD can be used to detect low-energy electrons
and X-rays. A SPAD collects electrons generated by incident electrons and X-rays in the
multiplication region instead of the photons emitted by scintillators. This makes detection
faster and more accurate.

With the dramatic increase in interest in satellite-to-ground quantum communication
and space environment detection, SPADs, with the advantages of high efficiency, low power
consumption, easy integration, and anti-magnetic field performance, are more and more
widely used in space and high-energy radiation detection [10–13]. But they are inevitably
exposed to radiation environments, which can affect the performance of SPADs. Most
satellite-to-ground quantum communication satellites are in near-earth orbit at an orbital
altitude of 500 km, and the space radiation environment includes electrons and protons
in the Van Allen radiation belt and high-energy protons in the South Atlantic Anomaly
(SAA) region [14–17]. The space radiation environment during deep space exploration
is dominated by high-energy galactic cosmic rays, including most of the particles in the
periodic table from Z = 1 to Z = 92, with energies ranging from 1 MeV/n to 1 TeV/n. SiPMs
were used in space-borne scintillation detectors for many space missions. For example, they
have been used for the gain control system on board the Hard X-ray Modulation Telescope
(HXMT), a Chinese X-ray space observatory launched in June 2017 [18]. The experiment
GMOD assembled an SiPMs array with a CeBr3 scintillator and an Application-Specific
Integrated Circuit (ASIC) to detect cosmic gamma-ray phenomena such as Gamma-Ray
Bursts (GRBs) in space carried by the Educational Irish Research Satellite 1 (EIRSAT-1).
This is a 2U cube satellite deployed from the International Space Station, and it remained
in orbit at an altitude of 405 km and a tilt of 51.6 degrees for a year, which is a safe space
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environment to avoid serious damage to SiPMs. SiPMs are also used in the Large Hadron
Collider CMS, LHCb, and the proposed International Linear Collider (ILC) at the European
Organization for Nuclear Research (CERN), which reaches 1014 p/cm2 [19,20].

In radiation environments, protons, electrons, γ rays, and heavy ions can cause certain
parameters, such as the breakdown voltage, leakage current, DCR, gain, and photon
detection efficiency, to deteriorate at different levels through the displacement damage dose
(DDD) effect and the Total Ionizing Dose (TID) effect [21,22]. This is due to the point defects
in silicon and the interface defects at the Si-SiO2 interface near STI. These defects include the
vacancy (VSi), the substitutional phosphorus (PSi), the interstitial oxygen (Oi), the double
vacancy (VSiVSi), the A-center (VSiOi), and the E-center (PSiVSi). They are electrically active
and act as efficient generation–recombination centers which cause leakage currents and
DCR increases [23–27].

To study the SPAD radiation effect of protons, a SPAD of 180 nm standard CMOS
technology with a P-I-N structure and radiation tolerance design is used in this experiment.
The sensitivity of ionization radiation damage and displacement radiation damage for
SPADs is investigated using γ rays and protons beams. Two types of SPADs, with and
without Shallow Trench Isolation (STI), are also designed and compared to study the
influence of the Si-SiO2 interface defects near the STI after radiation. The dark current,
breakdown voltage, DCR, and photon detection probability (PDP) of the SPADs before and
after irradiation are measured, and the radiation damage mechanism of the CMOS SPAD
is analyzed.

2. Experimental Design

The CMOS SPAD, as shown in Figure 1, is based on the P-I-N structure, with a P-well
epitaxial layer and n-type buried channel, and designed by the 180 nm CMOS process.
Figure 2 is the cross-section of the SPAD [28,29]. In this design, the n-type buried channel
ensures isolation from the substrate, while the deep n-well structure provides contact
from N+ to the n-type buried channel. The lateral diffusion and light doping of the P
epitaxial layer can avoid premature breakdown at the edge of the junction depletion region.
The p+/DNW junction, enabling wider depletion, along with novel guard ring designs,
facilitate device operation at up to 10 V of excess bias. The DCR is mainly caused by
the tunneling noise at an excess bias of 10 V, but in this design, a P-I-N structure with
standard CMOS technology is used to reduce the tunneling noise, resulting in better noise
performance. The CMOS SPAD had a photon detection probability (PDP) greater than 40%
from 440 to 620 nm, and the dark count rate (DCR) was 12.85 cps/µm2. In addition, due
to the use of n-type buried channels, the peak electric field of the detector is concentrated
between the n-type buried channels and the P epitaxial layer.
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Figure 2. Cross-section of the P-I-N-structure SPAD.

Proton irradiation experiments at two different energies of 30 MeV and 52 MeV were
conducted on the Cyclotron Proton Accelerator in the air, and a laser pointing system was
used to align it with the beamline center. The proton beam region is 5 cm × 5 cm, and the
uncertainty of the beam intensity had a variation of ±5%. The proton line energy transport
(LET), Nonionizing Energy Loss (NIEL), Total Ionizing Dose (TID), and displacement
damage dose (DDD) are shown in Table 1. The LET data come from the NIST stopping
power and range tables for the protons program PSTAR, and the NIEL data come from
Ref. [30]. The DDD of the SPAD in LEO orbit with an altitude of 400 km and an inclination of
51.6◦ was 19.6 TeV/g with a 2 mm shielding thickness of aluminum [31]. As a contrast, we
chose a proton fluence of 5 × 1010 p/cm2 at energies of 30 MeV and 52 MeV. All the SPAD
pins were shorted and connected to ground during the irradiation, and I–V characteristics
and PDP measurements were performed before and after irradiation. The parameter
testing system for a SPAD includes a Keysight semiconductor parameter analyzer and a
DCR and PDP measurement system. The DCR and PDP measurement system consists
of a light source, a filter, a spectrograph, an integrating sphere, a sample chamber, and a
light source calibration and computer control system, as shown in Figure 3. The halogen
lamps can provide a stable light source with a wavelength range of 350 nm–1100 nm.
Monochromatic light with specific frequencies can be generated after light passes through
the filters and spectrometers. The integrating sphere can reduce small errors caused by
an uneven distribution of incident light sources on the detector or beam offset during
measurement, thus improving the accuracy of a measurement. The output trigger pulse
count of the device is read by an oscilloscope, and then the data are statistically analyzed to
obtain the DCR and PDP. A passive quenching circuit with a 50 kΩ resistor was used to
measure the DCR, and the DCR is defined as the average counts of pulses per second (cps)
in a 1 min measurement in darkness.
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Table 1. LET, NIEL, TID, and DDD of 30 MeV and 52 MeV protons.

Proton Energy
(MeV)

LET
(MeV/(g/cm2))

NIEL
(MeV/(g/cm2))

Fluence
(p/cm2)

TID
(krad)

DDD
(MeV/g)

30 1.47 × 10 5.63 × 10−3 5.00 × 1010 11.8 2.82 × 108

52 9.58 × 10 3.37 × 10−3 5.00 × 1010 7.66 1.69 × 108

3. Results
3.1. I–V Characteristics

Figure 4 shows the I–V characteristics of the CMOS SPAD. The leakage current of
the SPAD after 30 MeV proton irradiation did not increase significantly before reaching
the avalanche breakdown voltage. When a bias voltage of 26 V was applied, the reverse
current increased from 5.47 mA to 5.71 mA. Table 2 shows a comparison of the SPAD
breakdown voltages. The breakdown voltage increased by only 20 mV after 30 MeV proton
irradiation, while it remained unchanged after 52 MeV proton irradiation. This indicates
that proton displacement damage can lead to a slight increase in the breakdown voltage,
but not significantly. This is similar to the results of SPAD γ experiments based on the same
P-I-N structure in Ref. [28], indicating that the leakage current and breakdown voltage (VB)
are almost insensitive to ionization damage and displacement damage.
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Figure 4. I–V characteristics for CMOS SPAD.

Table 2. Comparison of the SPAD breakdown voltage.

Proton Energy
(MeV)

VB (Fresh)
(V)

VB (5 × 1010 p/cm2)
(V)

30 24.23 24.25
52 24.18 24.18

3.2. DCR

Figure 5 shows the DCR data under different excess voltages before and after irra-
diation with a passive quenching circuit at 23 ◦C. It can be seen that before irradiation,
the DCR increases with the increase in excess voltage from 74cps@2V to 256cps @10V. But
after proton irradiation, the increase in the DCR is very significant. The DCR increases
from 74cps@2V before irradiation to 520cps@2V after 52 MeV proton irradiation. This is
consistent with the trend of DCR change with excess voltage before irradiation. However,
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due to the increase in displacement damage defects in the junction depletion region caused
by proton irradiation, the trend of DCR increase with higher excess voltage is significantly
enhanced. The DCR increased form 580cps@2V to 11102cps@10V after 30 MeV proton
irradiation. Under the same proton fluence of 5 × 1010 p/cm2, the change caused by
30 MeV proton irradiation is greater than that caused by 52 MeV proton irradiation. This
is due to the NIEL of low-energy protons being higher than that of high-energy protons,
resulting in a DDD of 2.82 × 108 MeV/g for the 30 MeV protons, which is higher than the
DDD of 1.69 × 108 MeV/g for the 52 MeV protons. So, the displacement damage defects
generated by the 30 MeV protons in the junction depletion region resulted in a larger DCR
at the same excess voltage.
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Figure 5. DCR of different excess voltages after proton and γ irradiation.

The TID and DDD caused by proton irradiation resulted in Si-SiO2 interface defects
and junction depletion region defects. In order to confirm the main reason for the increase
in the DCR, γ irradiation was conducted with a TID of 10 krad(Si), while the TID of the
52 MeV proton was only 7.66 krad(Si). The DCR after γ irradiation increased from 256 cps
to 336 cps at an excess voltage of 10 V. However, after proton irradiation, the DCR increased
to 7160 cps, which is approximately 20 times greater than that of γ irradiation, indicating
that the increase in the DCR is mainly caused by the displacement damage of proton
irradiation, and the TID effect is not obvious.

3.3. PDP

The PDP is defined as the ratio of the SPAD-detected photons to the incident photons
and reflects the generation of photo-generated carriers. It reflects the photosensitivity of
the SPAD. The PDP depends on two main parameters: the absorption probability and
the triggering efficiency. The absorption probability is the probability of photons being
absorbed in the depletion region, and it depends on the reflectivity, the depth of the junction,
and the thickness of the depletion region, while the triggering efficiency is the probability of
photo-generated electron–hole pairs triggering a self-sustaining avalanche process, which
depends on the electric field [1]. Figure 6 shows a comparison of the PDP curve at an excess
voltage of 6 V before and after 30 MeV proton irradiation. It can be seen that there is no
significant change in the PDP in the wavelength range of 400 nm–800 nm. The maximum
PDP of the SPAD is 37.9% and 38.6% at a wavelength of 500 nm. This indicates that the
depletion region defects caused by a proton displacement irradiation damage dose of
2.82 × 108 MeV/g have no effect on the absorption of incident photons and the generation
of photo-generated carriers, so the PDP does not change. Ref. [28] reports that the PDP
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also has no changes after γ irradiation, which also means that the PDP is not an important
radiation-sensitive parameter to consider in radiation environments [32].
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4. Discussion

From the previous results, it can be concluded that the SPAD leakage current, break-
down voltage, and PDP are not sensitive to proton displacement damage, but the DCR is
very sensitive. The DCR reflects the inherent noise inside a single-photon detector. The
sources of noise in silicon devices include thermal noise, tunneling-assisted noise, and
trap-assisted noise. Among them, thermal noise and tunneling-assisted noise are related to
the operating temperature, doping concentration, and excess voltage of the device. Trap-
assisted noise is related to defects introduced during the CMOS manufacturing process,
and trap defects introduced during irradiation also produce trap-assisted noise [33–37]. The
thermal generation and band-to-band tunneling effects of free carriers within the depletion
region collectively contribute to the DCR, which is largely dependent on temperature.
When the temperature increases by 10 ◦C near the room temperature of 23 ◦C, the DCR
usually increases by more than double [38,39]. At this temperature, thermal generation
is the main noise source. The thermal generation of free carriers is closely related to the
presence of impurities and crystal defects, which introduce local energy levels near the
middle of the band gap. According to the Shockley–Read–Hall theory, electron–hole pairs
are generated sequentially through generation–recombination (G-R) centers. The proton
irradiation of silicon-based devices can also form deep-energy-level defects near the center
of the energy band in the depletion region, which can trap or emit electrons and become
the trap center. These irradiated deep-energy-level defects contribute to the increase in
the dark count rate. Besides the thermal effect, another major contributor to the DCR
are Poole–Frenkel effects and rap-assisted tunneling, but the DCR does not significantly
increase with temperature but instead increases with excess bias, which usually happens in
high-doping junctions. The effects of displacement damage on semiconductor materials
and devices can be understood in terms of the energy levels introduced in the bandgap.
Those radiation-induced levels result in the following effects: the recombination lifetime
and diffusion length are reduced; the generation lifetime decreases; majority-carrier and
minority-carrier trapping increase; the majority-carrier concentration changes; the thermal
generation of electron–hole pairs is enhanced in the presence of a sufficiently high electric
field; tunneling at junctions is enabled; and radiation-induced defects reduce the carrier
mobility and can exhibit metastable configurations [40,41].

To analyze the displacement damage of protons in the SPAD, we used The Stopping
and Range of Ions in Matter Software (SRIM) to simulate the proton transportation process,
which is a program written by J.F. Ziegler, M.D. Ziegler, and J.P. Biersack to simulate the
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interaction process of ion beams with solids, and the Monte Carlo method was used to
calculate details such as vacancies, energy deposition, and particle positions during the
collision process [42].

The simulation results of the proton trajectory, stopping power, and energy deposition
per unit distance in the photo collector region are shown in Figure 7. At the SPAD surface,
the stopping power of silicon for the 30 MeV protons is higher than that for the 52 MeV
protons, indicating that the damage caused by the 30 MeV protons on silicon is more
severe under the fluence of 5 × 1010 p/cm2. As the incident depth increases, the deposited
energy of the 30 MeV protons in silicon increases significantly, which is manifested as an
enhancement of proton scattering in the same number of particle trajectories, resulting in
a larger projected area of the incident direction. The calculated number of vacancies in
silicon is shown in Table 3. Comparing the difference between the vacancy numbers and
the ∆DCR under different excess voltages, it is found that the number of vacancies is 24 for
each 30 MeV proton and 13.7 for each 52 MeV proton, and the ratio is 1.75. However, the
ratio of DCR increase at the five excess voltages varies from 0.93 to 1.59, which is a little
lower than the ratio of vacancy. This may be because not all trap vacancies contribute to
the generation of carriers, which will cause the DCR in the depletion region to increase;
some vacancies are used for the carrier’s recombination. The DCR increase is defined as

∆DCR = DCR after irradiation − DCR before irradiation (1)

Table 3. The ratio of vacancies and ∆DCR at different excess voltages.

Proton
Energy
(MeV)

Total
Vacancies

(/ion)

∆DCR@2V
(cps)

∆DCR@4V
(cps)

∆DCR@6V
(cps)

∆DCR@8V
(cps)

∆DCR@10V
(cps)

30 24 506 2020 3468 6584 10,846
52 13.7 446 1268 2686 4488 6904

ratio 1.75 1.13 1.59 1.29 1.47 1.57

In order to analyze the influence of Si-SiO2 interface defects on the STI structure, two
types of SPAD units, with and without an STI structure, were designed on the same chip.
The simulation results of the SPAD design and the electric field distribution with and
without an STI structure are shown in Figure 8. Between the p-well and deep n-well, we
designed an STI structure using silicon dioxide as an insulating layer. It can be seen that
the electric field distribution near the STI structure changes significantly. After ionizing
radiation, interface charges accumulate at the Si-SiO2 interface near the STI structure.

After proton irradiation with the same fluence, the DCR was measured under different
excess voltages. The results are shown in Figure 9. The comparison of the results with and
without an STI structure before irradiation shows that the presence of the STI structure
increases the DCR from 256 cps to 362 cps under a 10 V bias. The interface defects in the STI
structure before irradiation increase the DCR by 41.4%. Ref. [28] has proven that the increase
in the DCR caused by ionizing irradiation is mainly due to the induced Si-SiO2 interface
traps near the STI structure. The DCR of the SPAD with and without an STI structure
significantly increased after irradiation. At 10 V, the DCR increased by 30 times. However,
when the excess voltage was 0–8 V, the DCR of the SPAD without an STI structure was
higher than that of the SPAD with an STI structure. When the excess voltage was greater
than 8 V, the DCR of the SPAD without the STI structure was lower. A possible reason for
this is that the Si-SiO2 interface defect charges near the STI structure will be released from
the interface and drift into the depletion region when the electric field exceeds a certain
value, and then an avalanche process is formed, resulting in an increase in the DCR.
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5. Conclusions

Proton irradiations on the CMOS SPAD of 30 MeV and 52 MeV are studied in this arti-
cle. The leakage current, breakdown voltage, and PDP before and after proton irradiations
were measured and compared with γ rays. SPAD units with and without an STI structure
were designed and simulated, and we summarize our results as follows:
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1. After the 30 MeV proton radiation, the reverse current increased from 5.47 mA
to 5.71 mA at a bias voltage of 26 V. The breakdown voltage increased by only 20 mV
after the 30 MeV proton irradiation, while it remained unchanged after the 52 MeV proton
irradiation. The reported results of the SPAD γ experiments based on the same P-I-N
structure in Ref. [17] indicate that the breakdown voltage (VB) is almost insensitive to
ionization damage and displacement damage.

2. Before irradiation, the DCR increased with an increase in the excess voltage from
74cps@2V to 256cps@10V, but the DCR increased rapidly to 520cps@2V and 7160cps@10V
after the 52 MeV proton irradiation. For the 30 MeV proton irradiation, the DCR increased
form 580cps@2V to 11102cps@10V. The displacement damage defects generated by the
30 MeV protons with a DDD of 2.82 × 108 MeV/g resulted in a larger DCR increase than
a DDD of 1.69 × 108 MeV/g for the 52 MeV protons at the same excess voltage. The
trend of the DCR increasing with a higher excess voltage is significantly enhanced due
to the displacement damage defects in the junction depletion region. A comparison of γ
irradiation with a TID of 10 krad (Si) and the 52 MeV protons with a TID of 7.66 krad (Si)
shows that the increase in the DCR is mainly caused by the displacement damage of proton
irradiation instead of the TID effect.

3. The SPAD units with and without an STI structure also show that the main reason
for the DCR increase is the depletion region defects caused by proton displacement damage
rather than the Si-SiO2 interface trap generated by ionization.

4. The comparison of the leakage current, breakdown voltage, and PDP shows that
the design of the SPAD based on the standard CMOS process exhibits good radiation
hardening, but the process of the depletion region should be improved to reduce the DCR
after irradiation.
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