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Abstract: Semi-supervised object detection has become a hot topic in recent years, but there are still
some challenges regarding false detection, duplicate detection, and inaccurate localization. This paper
presents a semi-supervised object detection method with multi-scale regularization and bounding box
re-prediction. Specifically, to improve the generalization of the two-stage object detector and to make
consistent predictions related to the image and its down-sampled counterpart, a novel multi-scale
regularization loss is proposed for the region proposal network and the region-of-interest head. Then,
in addition to using the classification probabilities of the pseudo-labels to exploit the unlabeled data,
this paper proposes a novel bounding box re-prediction strategy to re-predict the bounding boxes
of the pseudo-labels in the unlabeled images and select the pseudo-labels with reliable bounding
boxes (location coordinates) to improve the model’s localization accuracy based on its unsupervised
localization loss. Experiments on the public MS COCO and Pascal VOC show that our proposed
method achieves a competitive detection performance compared to other state-of-the-art methods.
Furthermore, our method offers a multi-scale regularization strategy and a reliably located pseudo-
label screening strategy, both of which facilitate the development of semi-supervised object detection
techniques and boost the object detection performance in autonomous driving, industrial inspection,
and agriculture automation.

Keywords: object detection; semi-supervised learning; multi-scale regularization; bounding box
re-prediction

1. Introduction

Object detection is used to identify and locate objects of interest (such as humans,
animals, vehicles, and other objects) in images or videos. In recent years, deep learning-
based object detection methods have been rapidly developed. However, the main deep
learning-based object detection methods [1–7] are supervised and heavily rely on large-scale
manually annotated datasets, such as MS COCO. When the dataset samples are insufficient,
the model generalization is compromised, resulting in lower detection accuracy. On the
other hand, the manual annotation of a large-scale dataset is highly labor-intensive and
expensive. Therefore, semi-supervised learning [8–16], which involves training with a small
amount of labeled data and a large amount of unlabeled data, is being investigated by more
and more researchers. By incorporating both labeled and unlabeled data, semi-supervised
learning can exploit the rich information in the unlabeled data and generate a more robust
and accurate model, reducing its dependence on a large amount of labeled data.

Semi-supervised object detection applies semi-supervised learning to object detection,
exploiting the information from unlabeled data. The semi-supervised object detection
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methods mainly fall into two categories: the methods based on consistency regulariza-
tion [17–21] and the methods based on pseudo-labels [22–33]. The former uses consistency
regularization to constrain the model to obtain the same prediction results for a given image
and its perturbed counterpart. The latter, as a mainstream version of the semi-supervised
object detection method, first utilizes a teacher model to predict pseudo-labels of unlabeled
data and then employs the labeled data and unlabeled data to train a student model. Dur-
ing training, the teacher model’s parameters are updated using the Exponential Moving
Average [34] (EMA) based on the student model’s parameters.

In recent years, many researchers have explored semi-supervised object detection
methods. Jeong et al. [17] proposed a consistency loss to produce the same predictions
for an image and its horizontally flipped counterpart. Zhou et al. [18] replaced the sparse
pseudo-boxes with dense prediction as a united and straightforward form of the pseudo-
label. Guo et al. [19] proposed Scale-Equivalent Distillation (SED) to alleviate the noise
problem that arises from the false negative samples and inaccurate bounding box regression.
Li et al. [20] proposed Multi-view Scale-invariant Learning (MSL) with mechanisms of
both label- and feature-level consistency to achieve feature consistency by aligning the
shifted feature pyramids in two varied scaled images. Miyato et al. [21] proposed a new
regularization method based on virtual adversarial loss, which is a new measure of the
local smoothness of the conditional label distribution. Sohn et al. [22] presented a self-
training and augmentation-driven consistency regularization framework, which trained a
detector with a limited number of annotated samples and generated pseudo-labels from
unlabeled samples. To further improve the quality of pseudo-labels, Zhou et al. [23]
proposed the Instant-Teaching framework, which employed a co-rectify method to rectify
erroneous predictions made by two structurally identical but independently trained models.
Tang et al. [24] proposed the Humble Teacher framework that utilized the EMA method and
soft-label mechanism for improving the accuracy of semi-supervised models. Li et al. [25]
proposed a novel self-correcting pseudo-label module and pseudo-label-guided copy–paste
technology to generate more reliable predictions and enhance instance representation
learning within diverse complex scenes. Liu et al. [26] introduced the Unbiased Teacher
framework to employ a real-time pseudo-label generation method, which addressed the
class-imbalance issue in object detection using focal loss [27] and the EMA. Xu et al. [28]
proposed the Soft Teacher framework, which introduced classification loss to address the
imbalanced foreground–background samples and utilized a bounding box discrepancy
filter to fully leverage the bounding box regression information from the unlabeled data.
Feng et al. [29] proposed a semi-supervised object detection method based on position
confidence weighting and introduced a Location-Aware Head (LAH) to reduce the pseudo-
label noise in the unlabeled data. Kim et al. [30] introduced a simple yet effective data
augmentation method, Mix/UnMix (MUM), to unmix feature tiles from the mixed image
tiles under the semi-supervised object detection framework. Cai et al. [31] proposed a semi-
supervised object detection method based on teacher–student models with strong–weak
heads. The strong and weak heads of the teacher model solved the quality measurement
problem of pseudo-label localization. Unbiased Teacher v2 [32] and Dense Learning
(DSL) [33] tried to combine semi-supervised learning methods with anchor-free detectors.
The former method removed the misleading impact on bounding box regression in pseudo-
labels by estimating the corresponding uncertainty, while the latter method proposed
an adaptive filtering strategy to assign dense pseudo-labels to each pixel. Additionallly,
the latter introduced an integrated teacher model to improve the stability and quality of
pseudo-labels.

Although pseudo-label-based semi-supervised object detection methods have led
to the achievement of numerous successes in recent years, these approaches ignore the
importance of regularization for semi-supervised detectors. These methods have a poor
generalization capability, especially if there is a lack of labeled data. Meanwhile, in previous
works, based on the detection results of the teacher model, a threshold was applied to each
detection’s highest classification probabilities to filter out a subset of high-quality, reliable
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pseudo-labels. These pseudo-labels were employed in the student model’s training for the
computation of classification loss. However, the classification probabilities of pseudo-labels
can only reflect the classification results of the detected objects instead of their localization
information; hence, unsupervised localization loss has often been ignored in previous
works. To address these issues, based on the Unbiased Teacher method, we propose a
semi-supervised object detection method with multi-scale regularization and bounding
box re-prediction. The contributions of this paper are as follows:

(1) A novel multi-scale regularization (MSR) strategy is proposed to constrain the Faster
R-CNN and to generate the same prediction results for both the input images and
their corresponding down-sampled ones, thus achieving better detection accuracy
with the student model.

(2) A novel bounding box re-prediction (BBRP) strategy is presented to re-predict the
object’s bounding box, obtaining reliably located pseudo-labels of unlabeled data and
thus improving the localization capability of the student model.

Experiments using the public MS COCO and Pascal VOC, which have been widely
used in previous semi-supervised object detection works [17,22–26,30], show that the
proposed method achieves a promising performance.

2. Materials and Methods
2.1. Overview of Our Proposed Method

The framework of our proposed semi-supervised object detection method based on
multi-scale regularization and bounding box re-prediction is shown in Figure 1. Firstly, the
dataset is divided into labeled data, X L = {xl

i |
Nl
i=1}, and unlabeled data, X U = {xu

i |
Nu
i=1}.

Nl and Nu are the amounts of labeled and unlabeled data, respectively. Nu � Nl . The
annotations of the labeled data are represented as YL = {yl

i |
Nl
i=1}. Each annotation includes

the center coordinates, width, height, and object classes of a bounding box. Then, based on
the teacher–student framework, the teacher and student models both adopt the two-stage
Faster R-CNN [6] as the object detector to predict the detection results. Specifically, in the
first stage, the backbone network of the Faster R-CNN extracts the features of images and
generates abundant region proposals for the foreground objects through the region proposal
network (RPN). In the second stage, the features of all proposals are scaled to a fixed size
using the region-of-interest (RoI) pooling operation, and then the RoI head is used to obtain
the final labels, including the localization information and classification probabilities.

To alleviate the issue of false detection and duplicate detection, a multi-scale regular-
ization strategy is integrated into the student Faster R-CNN to down-sample the strongly
augmented images and constrain these images and the corresponding down-sampled ones
so that both the RPN and RoI head of the student model produce consistent output. We
employ Lscale loss to constrain the student model in both the RPN and RoI head for accurate
detection results.

On the other hand, for unlabeled data, based on the pseudo-labels predicted by the
teacher model, our method uses thresholding technology to select reliably classified pseudo-
labels, whose classification probabilities are higher than a threshold of τ1. Meanwhile,
our method employs bounding box re-prediction to select reliably located pseudo-labels,
whose location coordinates are steady. Using these reliably classified pseudo-labels and
reliably located pseudo-labels, our method improves the student model’s generalization
of unlabeled data with the constraint of the Lunsup loss, which includes the unsupervised
classification loss and unsupervised localization loss from the RPN and RoI head in the
student model.

Additionally, for the labeled data and their corresponding labels, we train the student
model in a supervised way, with the constraint of the Lsup loss, which includes the super-
vised classification loss and supervised localization loss from the RPN and RoI head in the
student model.
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It should be noted that our method adopts three kinds of losses: supervised loss, Lsup;
unsupervised loss, Lunsup; and multi-scale regularization loss Lscale, which are all derived
from both the RPN and RoI head of the student model. The student model uses the Gradient
Descent method to update its parameters according to the total loss function. Different
from the student model, the teacher model does not compute the loss function, and it only
uses the EMA to slightly update its parameters according to those of the student model.

Moreover, during training, we first use the available labeled data to train and optimize
our teacher model with the supervised loss. Then, we duplicate the trained weights
from the teacher model and apply them to the student model. After that, we train the
teacher–student framework using the three losses. Here, the teacher model takes the
weakly augmented images as input to accurately predict the pseudo-labels, while the
student model takes the strongly augmented images as input to be more robust. During the
inference phase, we only use the teacher model to produce the final object detection results.

Figure 1. The framework of the semi-supervised object detection method based on multi-scale
regularization and bounding box re-prediction. Our semi-supervised framework uses a teacher–
student framework, where the teacher model predicts pseudo-labels of unlabeled data and screens
the reliably classified pseudo-labels and reliably located pseudo-labels by the thresholding method
and the bounding box re-prediction (BBRP) method. The student model computes supervised loss,
unsupervised loss, and multi-scale regularization loss based on the ground-truth labels, reliably
classified pseudo-labels, and reliably located pseudo-labels, respectively.

2.2. Multi-Scale Regularization

To improve the generalization of the student model, we propose multi-scale regu-
larization loss for the RPN and RoI head of the detector. The pseudo-code is shown in
Algorithm 1.

Multi-scale regularization is illustrated in Figures 2 and 3. To increase the richness
of the training samples, the Scale Jittering strategy [28] is applied to the labeled data
and unlabeled data for data augmentation. Here, the images are randomly scaled within
the range from −50% to 150%. These scaled images then enable the model to obtain
different-sized features during training for better robustness.
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Algorithm 1 Multi-scale regularization.

Input: Unlabeled Image xu;
Output: Multi-Scale Regularization Loss Lrpn

scale, Lroihead
scale ;

1: xu = Scale Jittering(xu);
2: xu

d = Down_Sample(xu);
3: F = Backbone_Student(xu);
4: Fd = Backbone_Student(xu

d);
5: Proposals, ÔBJ = RPN_Student(F);
6: Proposalsd = Down_Sample(Proposals);
7: _, ÔBJd = RPN_Student(Fd);
8: ÔBJ

∗
= Down_Sample(ÔBJ);

9: Compute Lrpn
scale according to Equation (1);

10: ĈLS, R̂EG = RoI_Head_Student(xu, F, Proposals);
11: ĈLSd, R̂EGd = RoI_Head_Student(xu

d, Fd, Proposalsd);
12: Compute Lroihead

scale according to Equation (2);
13: return Lrpn

scale, Lroihead
scale .

Subsequently, we input the image xu and the corresponding down-sampled one xu
d

into the backbone network with a Feature Pyramid Network [35] (FPN) to extract feature
maps F and Fd and generate region proposals using the RPN of the student model. After
that, the objectness map ÔBJ of xu generated by the RPN is down-sampled to obtain ÔBJ

∗
,

which has the same shape as that of the objectness map of xu
d. The down-sample operation

is called MaxPooling. Thus, the Lscale loss for the RPN is computed as the Euclidean
distance between the objectness map of xu and that of xu

d, as shown in Equation (1).

Lrpn
scale(ÔBJ

∗
, ÔBJd) =

1
m

m

∑
i=1

∥∥∥ôbj
∗
[i]− ôbjd[i]

∥∥∥2

2
(1)

where ôbj[i] ∈ RA×Wi×Hi and ôbjd[i] ∈ RA×Wi
2 ×

Hi
2 represent the i-th objectness map of

xu and xu
d generated by the RPN, respectively. ôbj

∗
[i] ∈ RA×Wi

2 ×
Hi
2 is the spatially down-

sampled version of ôbj[i]. A is the number of anchors in an image. Wi = W
2(i−1) and

Hi =
H

2(i−1) present the width and height of the i-th objectness map ôbj[i]. W and H are the
width and height of the largest objectness map. m is the number of objectness maps (for
one single image, the backbone network of the detector outputs m feature maps of different
scales, and each feature map produces a corresponding objectness map; here, m = 5).

Similarly, to make the detector’s prediction more robust, our method constrains the
RoI head outputs of the student model on the feature map and the down-sampled ones
to make them more consistent for the unlabeled data, as shown in Figure 3. Firstly, our
student model employs the backbone and RPN to obtain the feature maps and region
proposals of images xu and xu

d, respectively. Then, based on the feature maps and region
proposals, RoI pooling converts the features inside the proposals into a fixed size. Finally,
these converted features from the two feature maps are inputted into the RoI head to obtain
the classification output and regression output. Here, Fd shares the same region proposals
with F due to the down-sampling operation. The RoI head output (classification output or
regression output) of the two feature maps (F and Fd) have the same size, so the Lscale loss
for the RoI head can be computed according to Equation (2).

Lroihead
scale (ĈLS, ĈLSd, R̂EG, R̂EGd) =

1
n

n
∑

i=1

∥∥∥ĉls
i − ĉls

i
d

∥∥∥2

2
+ 1

n

n
∑

i=1

∥∥∥r̂egi − r̂egi
d

∥∥∥2

2
(2)
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where ĉls
i ∈ RC and r̂egi ∈ R4 are the classification output (classification probabilities) and

regression output (bounding box) of the i-th region proposal of image xu. ĉls
i
d ∈ RC and

r̂egi
d ∈ R4 are the classification output and regression output of the i-th region proposal

of image xu
d. C is the number of object classes (C = 80 for the COCO dataset). n is the

number of region proposals, which we set to be 1000 for each image in our method. Since
the regression outputs of images xu and xu

d are of different scales, the parameters of each
regressed bounding box are normalized using Equation (3).

xreg = (x̂− xa)/wa, yreg = (ŷ− ya)/ha

wreg = log(ŵ/wa), hreg = log(ĥ/ha)

xreg
d = (x̂d − xd,a)/wd,a, yreg

d = (ŷd − yd,a)/hd,a

wreg
d = log(ŵd/wd,a), hreg

d = log(ĥd/hd,a) (3)

where x, y, w, and h represent the center coordinates, width, and height of the region
proposal. Variables x̂, xa, and xreg represent the predicted box, anchor box, and normalized
regressed box, respectively (as do y, w, and h). r̂egi = [xreg, yreg, wreg, hreg] and r̂egi

d =
[xreg

d , yreg
d , wreg

d , hreg
d ].

Figure 2. An illustration of multi-scale regularization loss in the RPN. Based on the image and its
down-sampled counterpart, our method extracts the feature maps and constrains the RPN to produce
consistent results for images and their down-sampled ones.

Finally, the multi-scale regularization loss from the RPN and RoI head in the student
model can be summarized with Equation (4).

Lscale = Lrpn
scale + Lroihead

scale (4)

It is worth noting that the loss functions Lrpn
scale and Lroihead

scale can be computed with one
forward propagation based on the image xu and the corresponding down-sampled one xu

d.
To make it clear, we illustrate the two loss functions separately.
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Figure 3. An illustration of multi-scale regularization loss in the RoI head. Based on F, Fd, and region
proposals, our method constrains the RoI head to generate consistent predictions for feature maps of
different scales.

2.3. Bounding Box Re-Prediction

Most of the semi-supervised methods set a threshold for the predicted classification
score to obtain reliable pseudo-labels. However, these pseudo-labels only ensure that
the classification output of the detection is reliable and cannot guarantee the reliability
of the regression output, i.e., the bounding box, for detection. Therefore, we propose
the bounding box re-prediction strategy to refine the bounding box of each pseudo-label
initially predicted by the teacher model for better localization accuracy.

Specifically, the unlabeled image xu is input into the teacher model, and the RPN
of the teacher model predicts the region proposals. Based on these region proposals, a
classification and regression operation is performed for the RoI head of the teacher model to
obtain the prediction results B0 (including the classification scores and location coordinates).
Then, we set a threshold τ1 for the classification score to filter out the reliably classified
pseudo-labels for the unsupervised classification loss computation. To further obtain
reliably located pseudo-labels, based on the initial prediction results B0 from the teacher
model, our method employs BBRP on the RoI head of the teacher model to re-predict the
bounding box of each region proposal and to obtain the refined prediction results Btmp. The
pseudo-code of BBRP is shown in Algorithm 2. Thus, our method obtains reliably located
pseudo-labels for unsupervised localization loss computation on unlabeled data.

Algorithm 2 Bounding box re-prediction.

Input: Feature map F, prediction results B0;
Output: Reliably located pseudo-labels yu

loc;
1: Btmp=RoI_Head_Teacher(F, B0);
2: yu

loc={};
3: for b in Btmp do
4: if b.cls_prob > τ2 then
5: for b0 in B0 do
6: o = IoU(b, b0);
7: if o > τ3 then
8: yu

loc ← Append(b);
9: end if

10: end for
11: end if
12: end for
13: return yu

loc.
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2.4. Loss Function

The loss function of our proposed method is as follows:

L = Lsup + αLunsup + βLscale (5)

Lsup = Lrpn
cls (Ŷ l

cls
,Y l

cls
) + Lrpn

loc (Ŷ
l
loc,Y l

loc) + Lroihead
cls (Ŷ l

cls,Y l
cls) + Lroihead

loc (Ŷ l
loc,Y l

loc) (6)

Lunsup = Lrpn
cls (Ŷu

cls
,Yu

cls
) + Lrpn

loc (Ŷ
u
loc,Yu

loc) + Lroihead
cls (Ŷu

cls,Yu
cls) + Lroihead

loc (Ŷu
loc,Yu

loc) (7)

where Lsup is the supervised loss computed based on the labeled data X L and the corre-
sponding label YL (including Y l

cls and Y l
loc). Lsup is the summation of the classification loss

Lrpn
cls and localization loss Lrpn

loc generated by the RPN, and the classification loss Lroihead
cls

and localization loss Lroihead
loc generated by the RoI head of the student model. Lunsup is

the unsupervised loss computed based on the unlabeled data X U and its corresponding
reliably classified pseudo-labels Yu

cls and reliably located pseudo-labels Yu
loc. Lunsup has a

similar computation procedure as Lsup. Note that Y l
cls

and Yu
cls

include 0–1 labels for the
background or foreground of the image. Lscale represents the multi-scale regularization loss,
as defined in Equation (4). α and β are the weighted coefficients of the loss function; here,
α = 2 and β = 1. The classification loss Lcls (Lrpn

cls or Lroihead
cls ) is computed with Equation (8).

The localization loss Lloc (Lrpn
loc or Lroihead

loc ) is defined with Equation (10).

Lcls(Ŷ ,Y) = 1
Ncls

Ncls

∑
i=1

lcls(ŷi, yi) (8)

lcls(p, y) = −y(1− p)γ log(p)− (1− y)pγ log(1− p) (9)

Lloc(R̂,R) = 1
Nloc

Nloc

∑
i=1

lloc(r̂i, ri) (10)

lloc(r̂, r) =
{

0.5(r̂− r)2, if |r̂− r| < 1
|r̂− r| − 0.5, otherwise

(11)

where Ncls indicates the number of ground-truth labels for the supervised loss or reliably
classified pseudo-labels for the unsupervised loss. Nloc indicates the number of ground-
truth bounding boxes for the supervised loss or reliably located pseudo-labels for the
unsupervised loss. ŷi is the highest classification probability predicted by the student
model, and yi is the corresponding ground truth. r̂i is the region proposal predicted by the
student model, and ri is the corresponding ground truth. γ = 2.0 in this paper.

2.5. Datasets

In our experiment, we validate our proposed method using the MS COCO [36] and
Pascal VOC [37] datasets. Table 1 shows the number of images and categories in the
datasets. The reasons for selecting these two datasets are as follows: (1) The MS COCO and
Pascal VOC datasets consist of images depicting common objects of complex scenes. The
COCO dataset is a large-scale dataset with over 100,000 images and 80 common categories,
while the VOC dataset has a lot of images and 20 common categories. These datasets
include a large number of samples and various categories of objects, as well as annotations
(bounding boxes and categories), for each image. This is a convenient method for us to
conduct effective experiments and analyses in different situations. (2) The MS COCO
and Pascal VOC datasets are two baseline datasets that have been widely used in other
semi-supervised object detection studies [17,22–26,30], and, thus, they will facilitate a fair
comparison between our method and other state-of-the-art methods. For comparison, we
follow the same settings used in previous works.
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(1) In the COCO2017-Train dataset, 1%, 2%, 5%, and 10% images are randomly sampled
as labeled data, and the rest of the images are used as unlabeled data. These labeled data
and unlabeled data are used as the training data. The COCO2017-Val dataset is used as the
test data.

(2) The VOC2007-Train and -Val datasets are used as labeled data and the VOC2012-
Train and-Val datasets are used as unlabeled data. These labeled data and unlabeled data
are used as the training data. The VOC2007-Test dataset is used as the test data.

Table 1. Detailed description of MS COCO and Pascal VOC datasets. The number of images and
categories of each dataset are shown.

Dataset Train Val Test Total Categories

VOC2007 2501 2510 4952 9963 20
VOC2012 5717 5832 - 11,549 20

COCO2017 118,287 5000 - 123,287 80

3. Experiments

We conducted quantitative and qualitative experiments to evaluate the performance
of our proposed semi-supervised object detection method.

3.1. Settings and Details
3.1.1. Evaluation Metrics

To quantitatively measure the performance of our semi-supervised object detection
method, we adopted mAP50, mAP75, and mAP50:95 as evaluation metrics. The formula to
determine the mean average precision (mAP) is as follows:

mAP =

1∫
0

P(R)dR (12)

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

where P is the precision, R is the recall, TP represents the number of positive samples
predicted as positive, FP represents the number of negative samples predicted as positive,
and FN represents the number of positive samples predicted as negative. Given an In-
tersection over Union (IoU = Intersection/Union) of two bounding boxes, we can draw
a precision–recall (P-R) curve, and the area under the P-R curve is the mAP. So, mAP50
represents the mAP when the IoU is 0.5; mAP75 represents the mAP when the IoU is 0.75;
and mAP50:95 represents the mean of the mAP values when the IoU is 0.5, 0.55, 0.6,..., 0.95.

3.1.2. Implementation Details

Our experiments were performed on Ubuntu 16.04 with Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz and NVIDIA Tesla T4 GPU (×4). The proposed method was built on the
Detectron2 [38] deep learning framework.

As for data augmentation, Horizontal Flipping is used as a weak augmentation
method, while Color Jittering, Gaussian Blur, and Cutout [39] are applied as strong aug-
mentation methods. The batch sizes of both the labeled data and unlabeled data are set as
4. The learning rate is 0.005, and the momentum is 0.9. The number of training iterations
for the following ablation experiment is 120K. The thresholds are τ1 = 0.7, τ2 = 0.3, and
τ3 = 0.95. The weighted coefficients α and β of the loss function are set as 2 and 1, respec-
tively. The student model uses the SGD optimizer and Gradient Descent method to update
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the parameters. The teacher model depends on the EMA to update its parameters based on
the parameters of the student model, as shown in Equation (15).

θT
t = ψθT

t−1 + (1− ψ)θS
t (15)

where θT is the teacher model’s parameter, θS is the student model’s parameter, t is the
current iteration, and ψ is set as 0.9996.

We also conduct additional experiments to determine other hyper-parameters of our
method. τ1 is set as 0.7, which is consistent with the settings of the Unbiased Teacher
method [26]. τ2 and τ3 are the important hyper-parameters in the BBRP strategy. Table 2
shows the performance of our method with different values of τ2 and τ3. We can observe
from Table 2 that the model achieves the highest mAP when τ2 = 0.3 and τ3 = 0.95. Table 3
shows the performance of our method with different values of α and β for the loss function.
We can observe that when α = 3.0, the training of the model cannot converge. Our method
achieves the highest mAP when α = 2.0 and β = 1.0.

Table 2. The performance of our method with different τ2 and τ3 values for BBRP. It can be seen that
our method achieves the highest mAP when τ2 = 0.3 and τ3 = 0.95.

τ2 τ3 mAP50:95

0.2

0.98 21.90
0.95 21.95
0.9 21.82
0.8 21.34
0.7 20.67

0.3

0.98 22.21
0.95 22.46
0.9 22.13
0.8 21.65
0.7 20.89

0.4

0.98 21.70
0.95 21.65
0.9 21.51
0.8 21.19
0.7 20.38

Table 3. The performances of our method with different α and β for the loss function. It can be seen
that our method achieves the highest mAP when α = 2.0 and β = 1.0.

α β mAP50:95

1.0
1.0 21.12
2.0 21.02
3.0 20.78

2.0
1.0 22.46
2.0 22.32
3.0 21.95

3.0
1.0 Cannot Converge
2.0 Cannot Converge
3.0 Cannot Converge

During training, the mAP curve of our method evolves, as shown in Figure 4, using
the COCO 1% labeled data. As a comparison, we also draw the mAP curve of the baseline
semi-supervised method, Unbiased Teacher. We can see that both methods converge as the
iterations increase.
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Figure 4. mAP curves of Unbiased Teacher method and our method during training with COCO 1%
labeled data. Both methods converge as the iterations increase.

3.2. Comparison with State-of-the-Art Methods

To verify the effectiveness of our method, we compared our method with other state-of-
the-art semi-supervised object detection methods, as shown in Table 4: consistency-based
semi-supervised learning (CSD) [17], STAC [22], Instant-Teaching [23], Humble Teacher [24],
Robust Teacher [25], Unbiased Teacher [26], and MUM [30]. The supervised method is
a baseline that only uses labeled data for fully supervised training. The CSD method
introduces consistency loss for an image and its horizontally flipped counterpart into
semi-supervised learning. The STAC method adopts a self-training and augmentation-
driven consistency regularization framework. The Instant-Teaching method co-rectifies
the erroneous predictions of two structurally identical but independently trained models
on the same image. The Humble Teacher method uses the EMA and soft-label mecha-
nism to improve semi-supervised models. The Robust Teacher method introduces a new
self-correcting pseudo-label module and pseudo-label-guided copy–paste technology to
generate more reliable predictions for semi-supervised detection. The Unbiased Teacher
method employs a real-time pseudo-label generation method. The MUM method presents
an effective data augmentation method for semi-supervised models.

For a fair comparison, all methods use the Faster R-CNN with a Resnet-50 back-
bone [40] as the object detector. We can see from Table 4 that, compared with fully su-
pervised training, when using COCO 1%, 2%, 5%, and 10% labeled data, our presented
method improves mAP50:95 by 13.41%, 13.65%, 11.26%, and 9.03%, respectively. Compared
with the Unbiased Teacher method, with the same four different proportions of labeled
data, our proposed method improves mAP50:95 by 4.32%, 4.12%, 3.08%, and 3.76%. Our
presented method outperforms the other semi-supervised methods under comparison
in most scenarios. We can also see from Table 5 that, on the VOC dataset, our method
outperforms other methods in terms of mAP50 and mAP50:95.
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Table 4. Comparison with other state-of-the-art methods using the COCO dataset (to determine the
metric mAP50:95 under different ratios of labeled data). Our method achieves the best results in all
four situations.

mAP50:95
Method 1% 2% 5% 10%

Supervised 9.05 12.70 18.47 23.86
CSD [17] 10.51 13.93 18.63 22.46
STAC [22] 13.97 18.25 24.38 28.64
Instant-Teaching [23] 18.05 22.45 26.75 30.40
Humble Teacher [24] 16.96 21.72 27.70 31.61
Robust Teacher [25] 17.91 21.88 25.81 28.81
Unbiased Teacher [26] 18.14 22.23 26.65 29.13
MUM [30] 21.88 24.84 28.52 31.87
Our Method 22.46 26.35 29.73 32.89

Table 5. Comparison with other state-of-the-art methods using the VOC dataset. Our method
achieves the best results for the metrics mAP50 and mAP50:95.

Method mAP50 mAP50:95

Supervised 76.70 43.60
CSD [17] 74.70 -
STAC [22] 77.45 44.64
Instant-Teaching [23] 79.20 50.00
Humble Teacher [24] 80.94 53.04
Robust Teacher [25] 80.24 53.47
Unbiased Teacher [26] 79.30 53.50
MUM [30] 80.04 52.31
Our Method 81.29 55.26

Due to the additional computational cost introduced by our innovative method com-
pared to that of the traditional Unbiased Teacher method, we performed a comparative
experiment to test the training speed of the model to evaluate its training efficiency. We
found that the Unbiased Teacher model takes 0.347 s per iteration for training, while our
model takes 0.471 s per iteration. Our model requires slightly more training time than the
Unbiased Teacher model. The inference speed of a single image using our model or the
Unbiased Teacher model is 0.116 s on a Tesla T4 GPU.

3.3. Ablation Study

To investigate the effectiveness of our proposed method’s components, we conducted
the ablation experiments on partially labeled data, as shown in Table 6. As an example,
the experiment was performed using COCO 1% labeled data. Aug indicates the Scale
Jittering strategy, MSR (RoI head) indicates the multi-scale regularization strategy for the
RoI head, MSR (RPN) indicates the multi-scale regularization strategy for the RPN, and
BBRP indicates the bounding box re-prediction strategy.

Table 6. Ablation experiments to test multi-scale regularization strategy and bounding box re-
prediction strategy. Xindicates that the corresponding component is used in our proposed method
for the ablation experiment. Each component of our method is effective.

Aug MSR (RPN) MSR (RoI Head) BBRP mAP50 mAP75 mAP50:95

33.50 16.65 17.71
X 35.62 18.44 19.18
X X 36.18 19.24 19.86
X X X 37.02 20.02 20.74
X X X X 37.21 21.44 22.46
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From Table 6, we can see that the Scale Jittering strategy can improve the detection
accuracy of our method by 1.47% in mAP50:95. With the MSR strategy for the RPN, our
method achieves a 0.68% improvement in mAP50:95. With the MSR strategy for the RoI
head, our method achieves a 0.88% improvement in mAP50:95. In summary, with the
MSR strategy, our method increases mAP50 by 1.40%, mAP75 by 1.58%, and mAP50:95 by
1.56%. With the BBRP strategy, our method obtains a 0.19% improvement in mAP50, 1.42%
improvement in mAP75, and 1.72% improvement in mAP50:95. Finally, when combining
the MSR strategy and BBRP strategy, our method increases by 3.71%, 4.79%, and 4.75% in
mAP50, mAP75, and mAP50:95, respectively.

Up to now, the ablation experiment has proved the effectiveness of each component
of our method. The reasons for this are as follows: (1) The multi-scale regularization
strategy exploits the multi-scale information from the unlabeled data, thereby boosting
the model’s detection performance of multi-scale objects and also improving the model’s
robustness. (2) The bounding box re-prediction strategy selects reliably located pseudo-
labels during training to further constrain the model for better localization accuracy when
using unlabeled data.

3.4. Visualization

Figure 5 visualizes the prediction results of our method and those of the representative
semi-supervised Unbiased Teacher method. As an example, the experiment is carried out
with 1% labeled data. It can be seen that the Unbiased Teacher model suffers from false
detection (the sports balls indicated by the red arrows in Figure 5a), missed detection (the
elephant and persons indicated by the red arrows in Figure 5b,c), and duplicate detection
(the flying person indicated by the red arrow in Figure 5c). These issues lead to unreliable
pseudo-labels in the teacher model and affect the student model’s learning. In contrast, our
method extracts the multi-scale features from the unlabeled data using the MSR strategy
and robustly detects multi-scale objects in the images. Therefore, MSR can effectively solve
these incorrect detection issues and improve the generalization capability of the model.
On the other hand, as shown in Figure 5d, the Unbiased Teacher method only roughly
locates the objects under some circumstances and ignores part of the object. However, our
proposed method employs BBRP to select the reliably located pseudo-labels to improve the
localization ability of our model. Therefore, our semi-supervised method can accurately
detect the target objects.

Figure 5. Detection visualization of the results from the Unbiased Teacher method and our proposed
method. (a) the sports balls pointed by three red arrows indicate the false detection. (b) the elephant
pointed by the red arrow indicates the missed detection. (c) the flying person pointed by the red
arrow indicates the duplicate detection, and the other two persons pointed by the red arrows indicate
the missed detection. (d) the bear indicates the inaccurate localization. The visualization shows that
our approach accurately detects the target objects.
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4. Discussion

Semi-supervised object detection methods often encounter false detection and du-
plicate detection due to the limited amount of labeled data. During semi-supervised
training, it is challenging for a poor-performance teacher model to provide high-quality
pseudo-labels. Therefore, we introduce a multi-scale regularization strategy to boost the
semi-supervised object detector’s performance. On the other hand, semi-supervised object
detection methods typically use a thresholding method to filter pseudo-labels of unla-
beled data and utilize them for the computation of unsupervised loss. However, these
reliably classified pseudo-labels only produce accurate classification results and uncertain
localization results. Hence, the localization information of unlabeled data is often ignored.

Our method is a semi-supervised object detection method based on multi-scale regular-
ization and bounding box re-prediction. The multi-scale regularization strategy effectively
alleviates the issue of false detection and duplicate detection by constraining the model to
produce consistent predictions for images at different scales. This improvement notably
enhances the robustness of the model. The bounding box re-prediction strategy improves
the localization capability of the detector by using the RoI head of the Faster R-CNN to
perform re-prediction on the detection results. It considers the bounding boxes with similar
re-prediction results as reliably located pseudo-labels, which are then used for computing
the unsupervised localization loss. This approach effectively enhances the detector’s local-
ization ability. Our semi-supervised object detection framework can be applied in many
scenarios, such as autonomous driving, industrial inspection, and agriculture automation.

Although the two proposed strategies effectively enhance the accuracy of semi-
supervised object detectors, there are still some issues to be addressed:

(1) Training efficiency. Our method introduces additional computational costs, which
decreases the training efficiency to some extent.

(2) Domain adaptation. When the model begins semi-supervised learning, the training of
the model becomes unstable due to the distribution gap between the labeled data and
unlabeled data. We will try domain adaptation to alleviate this issue.

(3) Label assignment. Our method obtains reliably classified pseudo-labels using the
thresholding method, which is a simple label assignment strategy. In the future, we
will try other strategies to improve the performance of our method.

We will further improve our semi-supervised object detection method in our future
work based on these perspectives.

5. Conclusions

Based on the teacher–student framework, this paper proposes a semi-supervised object
detection method with multi-scale regularization and bounding box re-prediction. With a
small amount of labeled data and a large amount of unlabeled data, our method trains a
semi-supervised detection model to detect various objects in the images. Furthermore, to
alleviate the detection issues suffered by the traditional semi-supervised object detection
methods, our method proposes a multi-scale regularization strategy to effectively improve
the generalization of the model. Additionally, our method presents a novel bounding box
re-prediction strategy to select the reliably located pseudo-labels for the accurate location
of objects in the unlabeled data. The experiments show that our semi-supervised method
has a promising detection performance. Moreover, as a regularization strategy, multi-scale
regularization can be applied to emerging technologies such as Transformer and its variants
in contrastive language-image learning, human action recognition, semantic segmentation,
and so on. While bounding box re-prediction can be combined with other novel semi-
supervised object detection methods, such as semi-supervised vision Transformers and so
on. In the future, we will mainly focus on the training efficiency of the method, domain
adaptation between labeled data and unlabeled data, and label assignment to further
improve our method.
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