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Abstract: The central element of a phased array antenna that performs beam electrical scanning, as
well as signal transmission and reception, is the transceiver (T/R) module. Higher standards have
been set for the integration, volume, power consumption, stability, and environmental adaptability of
T/R modules due to the increased operating frequency of phased array antennas, the variability of ap-
plication platforms, and the diversified development of system functions. Device-based multichannel
T/R modules are the key to realizing low-profile Ka-band phased array antenna microsystem archi-
tecture. The design and implementation of a low-profile, high-performance, and highly integrated
Ka-band phased array antenna T/R module are examined in this paper. Additionally, a dependable
Ka-band four-channel T/R module based on Si/GaAs/Low Temperature Co-fired Ceramic (LTCC),
applying multi-material heterogeneous integration architecture, is proposed and fabricated. The chip
architecture, transceiver link, LTCC substrates, interconnect interface, and packaging are all taken into
consideration when designing the T/R module. When compared to a standard phased array antenna,
the module’s profile shrunk from 40 mm to 8 mm, and its overall dimensions are only 10.8 mm ×
10 mm × 3 mm. It weighs 1 g, and with the same specs, the single channel volume was reduced by
95%. The T/R module has an output power of≥26 dBm for single-channel transmission, an efficiency
of ≥25%, and a noise factor of ≤4.4 dB. When compared to T/R modules based on System-on-Chip
(SOC) devices, the RF performance has significantly improved, as seen by an increase in single
channel output power and a decrease in the receiving noise factor. This work lays a foundation for the
devitalization and engineering application of T/R modules in highly reliable application scenarios.

Keywords: Ka-band; T/R module; phased array antenna; heterogeneous integration architecture

1. Introduction

The phased array antenna is widely used in the field of communication [1–6]. Its flexi-
ble and agile beam scanning technology accomplishes directional communication between
fast-moving and highly dynamic objects, while guaranteeing the tracking accuracy of high-
speed mobile platform communication. Simultaneously, low sidelobe and bare nulls in
directional diagrams can be achieved using array synthesis, enhancing the system’s ability
to withstand interference and producing more dependable and stable communication lines.
Because of their outstanding performance and rapid development, phased array antennas
are gaining importance and are extensively applied in the field of advanced military [7–10]
and commercial applications [11–14].

The central element of a phased array antenna that performs beam electrical scanning,
as well as signal transmission and reception, is the T/R module. Higher standards have
been set for the integration, volume, power consumption, stability, and environmental
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adaptability of T/R modules due to the increased operating frequency of phased array
antennas, the variability of application platforms, and the diversified development of
system functions [15–18].

It is essential to improve the T/R components integration to meet the development
trend of phased array antennas. Due to their complicated manufacturing and assembly
processes, lengthy process flows, and multiple levels of interconnection ranging from chip
circuits to system integration, traditional phased array antennas have trouble meeting the
cost and profile requirements of modern information systems. In contrast, millimeter-wave
phased array antenna microsystems with low profile and markedly improved functional
density can effectively satisfy the requirements of modern information systems for the high
integration and performance of phased array antennas, making them one of the research
hotspots in the industry. Among them, the devitalization of the multichannel T/R modules
is the key to achieving a low-profile phased array antenna microsystem architecture.

Radar’s capacity to acquire a large instantaneous bandwidth and, consequently, im-
prove imaging and detection accuracy can be facilitated by raising the operating frequency.
The long wavelength and large bandwidth of millimeter-waves provide massive com-
munication bandwidth attainment, enhance real-time transmission and anti-interference
capabilities, and speed up communication system response [19–22]. In order to attain a
broad scanning angle in a two-dimensional electric scanning array, it is imperative to reduce
antenna size and enhance device integration, as the separation between array elements
must be around half wavelength [23]. As demonstrated in Figure 1, millimeter-wave fre-
quency antennas with the same aperture can attain greater SNR and EIRP values, allowing
the terminal antenna to be smaller, while maintaining improved performance and energy
accumulation [23].
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Figure 1. EIRP of phased array antenna with 16 (a) and 1024 (b) phased-array elements. (c) The EIRP 
grows as N × N, while (d) the beamwidth reduces as N versus the number of phased-array elements 
in a square array. Images reproduced from the literature [23]. 

Figure 1. EIRP of phased array antenna with 16 (a) and 1024 (b) phased-array elements. (c) The EIRP
grows as N × N, while (d) the beamwidth reduces as N versus the number of phased-array elements
in a square array. Images reproduced from the literature [23].

Furthermore, the system must integrate more electronic devices with varying functions
due to the devitalization and development trend of phased array antenna application
scenarios. Higher requirements have been put forward to improve the integration and
devitalization of T/R modules, and a low profile has become a very important factor to
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be considered in the design process of phased array antennas in order to avoid antenna
equipment taking up too much volume on the flight platform, which affects the overall
structural continuity and aerodynamic performance.

2. Related Works

Recently, both domestically and abroad, Ka-band phased array front-end microsystems
were created. Table 1 lists the noteworthy accomplishments.

Table 1. Research achievements of Ka-band T/R modules domestically and internationally.

Time Institution Module Technique Size
Output
Power
(dBm)

Noise Factor
(dB)

Other
Parameter Reference

2014

University of
Electronic

Science and
Technology of

China

Ka-band
6-channel
switching
delay line
module

LTCC 84 mm × 47
mm × 15 mm \ \ \ [24]

2015
The 13th
Research

Institute, CETC

Ka-band
16-channel

transmission
module

PCB multilayer
wiring technique

and multi-chip
assembly technique

60 mm × 80
mm × 4.8 mm >25 \ Linear gain >

25 dB [25]

2015
Institute of

Telecommunica-
tion Satellite,

CAST

Ka-band T/R
module LTCC 36 mm × 20

mm × l.l mm >24.6 <4.2

Receiving
gain ~33 dB,

output gain >
25 dB

[26]

2016 Beijing Institute
of Technology

Ka-band T/R
array LTCC

Single channel
cross-section 6
mm × 25 mm

>10.5 <4.5 \ [27]

2016

Xi’an Research
Institute of
Navigation
Technology

Ku-band 3D
miniaturized
T/R module

LTCC, BGA 9.5 mm × 9.5
mm × 3.8 mm >24.5 <3.5 Receiving

gain > 25 dB [28]

2016 Ching-Yun Chu
Ka-band

4-channel T/R
chip

65 nm CMOS
technique

4 mm × 2.5
mm ~18.5 ~4.4 \ [29]

2017

Nanjing
Research

Institute of
Electronics
Technology

Ka-band
8-channel T/R

module
LTCC 43 mm × 39.5

mm × 3.5 mm \ \ Return loss >
15 dB [30]

2020
Southwest

China Institute
of Electronic
Technology

Ka-band
circularly
polarized

phased array
antenna

LTCC 46 mm × 44
mm × 2.8 mm \ \ \ [31]

2020

Nanjing
Research

Institute of
Electronics
Technology

Ka-band
64-channel

phased array
antenna

Silicon based
packaging

integration, chip
embedded
packaging

\ \ \ \ [32]

2020

Chengdu radio
wave

technology Co.,
Ltd.

Ka-band
128-unit tile
phased array

antenna

Integrated
packaging of

Si-based
multifunctional

and GaAs
transceiver chips

93 mm × 93
mm × 52 mm >20 <6.5 \ [33]

2021

Aerospace
Information

Research
Institute,
Chinese

Academy of
Sciences

Ka-band
4-channel T/R

module

LTCC, BGA,
multi-material
heterogeneous

integration

10.8 mm × 10
mm × 3 mm ≥26 ≤4.4 Efficiency ≥

25% This work

2023
The 13th
Research

Institute, CETC

Ka-band
4-channel T/R

module

Silicon-based
MEMs, TSV, 3D

integration
18 mm × 19.5
mm × 3 mm ≥30 ≤4.6 [34]

The comparison above makes clear how well the TR module developed in this work
performs in terms of the noise coefficient, output power, and single channel volume. With a
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weight of 1 g and an overall dimension of only 10.8 mm× 10 mm× 3 mm, this device-based
design greatly enhances T/R module integration when compared to conventional phased
array antenna T/R modules. The volume of a single channel drops by 95% with the same
specs. When compared to T/R modules based on SOC devices, the RF performance has
significantly improved, manifested by an increase in single-channel output power and a
decrease in the receiving noise factor. The single-channel output power is >26 dBm, the
efficiency is≥25%, and the noise factor is <4.4 dB thanks to the comprehensive optimization
from aspects of chip architecture, transceiver link, LTCC substrate, interconnection interface,
and packaging architecture design.

A majority of the modules in earlier studies were created and integrated using single
materials like silicon, PCBs, and LTCC. Despite being the most widely used and developed
solutions for compact sizing requirements, CMOS, SiGe, and multilayer PCB technologies
still struggle to balance the low loss, low noise, large output power, and high transmission
of RF signals, among other things. Numerous levels of interlayer interconnections, intricate
manufacturing and assembly processes, considerable signal losses, and noise introduced at
the interlayer interconnections are among the factors that typically limit the reduction of
component volume and profile, leading to large single-channel volume. In this regard, this
article designed and implemented a highly reliable Ka-band device-based four-channel
T/R module based on multi-material heterogeneous integration architecture applying
Si/GaAs/LTCC. With its high integration, straightforward interface, and high output
power per unit volume, the device-based T/R module presented in this paper offers a
practical and efficient design example for device-based multichannel T/R modules with
dependable applications below Ka-band frequency.

3. Architecture Design
3.1. Architecture Scheme of 3D Heterogeneous Integration

At present, silicon-based circuit integration, three-dimensional heterogeneous integra-
tion, brick or tile type, and three-dimensional heterogeneous flat plate type are the most
common phased array antenna microsystem architectures [32,35,36]. Brick and tile types
are classic phased array antenna microsystem designs that accomplish hybrid circuit inte-
gration, chip mechanical support, and environmental protection by using metal shells as
packaging carriers for different functional modules. Their advantages include inexpensive
research and development investment cost and high single-channel output power; yet
there are several tiers of connections, significant manufacturing complexity, and challenges
in cutting costs and profiles. Silicon-based circuit integration and heterogeneous integra-
tion belong to chip-level and wafer-level integration. Enhancing qualification ratios (like
stacking success ratios), resolving problems with thermal mechanical reliability (such mis-
matches in thermal expansion coefficients), and enhancing interconnection performance are
the main challenges associated with these two approaches. They also call for sophisticated
machinery, intricate procedures, and significant investments in research and development.
Through a three-dimensional assembly interconnection, the three-dimensional heteroge-
neous flat panel scheme integrates circuits based on diverse functional materials that are
made independently. This can combine the benefits of various high-integration techniques
and simplify connectivity.

Table 2 summarizes the characteristic indicators of the antenna microsystem architec-
ture mentioned above. The three-dimensional heterogeneous flat plate scheme may not
have the highest integration when compared to other architectures, but it has a flexible
design and a strong universal system architecture, satisfies real-world needs, and has
comparatively low research and development costs. It may successfully address the needs
of the application, while taking into account a number of limitations, including those
related to performance, cost, space, and reliability. This results in high integration and
small size, making it a workable option for systems and devices with superior stability and
high efficiency.
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Table 2. Comparison of phase array antenna microsystem architecture.

Integrated
Architecture of
Phased Array

Antenna
Microsystems

Requirements
for Chip

Integration
Technique

Requirements
Single

Channel
Output Power

Testability
Research and
Development

Cost

Million
Level Batch
Production

Cost

Brick and wafer
type Low

Metal shells with
multi-chip planar
packaging; high-

and
low-frequency

cable
interconnection

High Good Low High

Three-
dimensional

heterogeneous
flat plate type

Relatively high

Ceramic, silicon,
and glass adapter
plates; embedded

packaging;
hybrid multilayer

boards; and
surface assembly

Relatively high Relatively good Relatively low Relatively
low

Silicon based
RF circuit

integration
High

SOC chips and
their packaging

techniques based
on Si

Complementary
Metal Oxide

Semiconductor
(CMOS) and SiGe

BiCMOS

Low Relatively good High Low

heterogeneous
integration High

Si CMOS and
SiGe BiCMOS
wafer-based

technique; direct
heterojunction of

silicon
compounds

Low Bad Very high Low

2016

Xi’an Research
Institute of
Navigation
Technology

Ku-band 3D
miniaturized T/R

module
LTCC, Ball Grid

Array (BGA)
9.5 mm × 9.5

mm × 3.8 mm

Transmission
output power >

24.5 dBm,
receiver gain >

25 dB, and
receiving noise
factor < 3.5 dB

[17]

Based on this, this article adopts a three-dimensional heterogeneous flat panel integra-
tion scheme for T/R module to achieve devitalization.

3.2. Link Design of T/R Module

The link design of T/R module needs to meet the requirements of high integration,
large output power, and low loss. The functional modules of the transceiver link are divided
after carefully weighing the benefits and drawbacks of Si and GaAs-based technologies
in order to further enhance the integration of the T/R module. The Ka-band 0.5 W four-
channel five-chip architecture, or the 1.25 chips per channel method, is employed in this
article. It consists of one Si-based four-channel amplitude-phase multifunctional chip and
four 0.5 W GaAs transceiver multifunctional chips. A 6-bit phase shifter, a 6-bit attenuator,
a driver amplifier, and a transceiver switching interface are integrated inside each channel
of the four-channel Si-based amplitude-phase multifunctional chip, as seen in Figure 2. A
power amplifier, a low-noise receiving amplifier, and a transceiver switch are all internally
integrated within the GaAs transceiver multifunctional device.
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The GaAs transceiver multifunctional chip uses a two-stage amplification structure
for its power amplifier, and a four-stage amplification and five-stage matching structure for
its low-noise amplifier, which incorporates feedback networks. In order to increase the low-
noise amplifier’s stability, feedback networks are also added at the input and output ends
of all stages of amplification. At the input stage, noise-coefficient matching is utilized to
obtain good noise factors. The transceiver switch adopts a single pole double throw switch
structure. The traditional Wilkinson power divider model is utilized by the four-channel
Si-based amplitude-phase multifunctional power divider, which has an insertion loss of
roughly 2 dB (not counting the 6 dB distribution loss). In order to improve channel isolation
and make it easier to accurately calibrate the amplitude and phase of phased array antenna
channels, the switch employs a single-pole three-throw switch, which has three states:
transmission, reception, and load. Drive amplifiers 2 and 3 use an RC negative feedback
structure to ensure a large output power, while amplifier 5 uses a two-stage amplification
structure and negative feedback to achieve a high gain, while ensuring output power.
Drive amplifiers 1 and 4 adopt a traditional amplifier structure due to their small input
power. For the purpose of increasing the input P-1dB, the receiving phase shifter has a
passive phase shifter structure, with a large displacement phase loss of roughly 3 dB and a
small displacement phase loss of about 9.5 dB The transmission phase shifter adopts an
active phase shifter structure to reduce the size, with a loss of approximately 2.5 dB. The
attenuator adopts a traditional single-ended structure and adds parallel capacitors for phase
compensation. The receiving large-bit attenuation of 16 dB is achieved by cascading two 8
dB attenuation circuits. Both chips are internally integrated with active bias, eliminating the
need for additional power modulation circuits, which can save on the number of peripheral
devices and simplify the assembly and production.

This design uses Si-based technology to achieve low-power and small-size amplitude-
phase control and power management circuits, as well as GaAs technology to achieve
excellent amplifier output power, efficiency, and noise factor.

Compared with single-chip integrated architecture, the discrete 1.25-chip architecture
can fully exploit the advantages of various process technologies, effectively balancing
integration, process feasibility, functionality, and performance. When it comes to large-scale
and affordable production, the discrete 1.25-chip architecture is superior to the multi-chip
discrete architecture because it can significantly improve integration, simplify the T/R
module layout design, streamline the production and assembly process, and guarantee
amplitude and phase consistency across channels. The discrete 1.25 chip architecture
achieves a high performance, high integration, and good process implementation of the
T/R module. The four-channel amplitude-phase multifunctional chip adopts the 55 nm Si
CMOS technique, with a size of 3.50× 5.00× 0.10 mm, while the transceiver multifunctional
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chip uses a 0.25 µm GaAs p-type high-electron mobility transistor (pHEMT) technique,
measuring 2.42 mm × 1.85 mm × 0.10 mm.

Based on the above four-channel and five-chip T/R chip architecture, a device-based
four-channel T/R module is constructed, consisting of one Si-based amplitude-phase
multifunctional chip, four GaAs transceiver multifunctional chips, and a passive conversion
structure. Under the guidance of wave control signals, each T/R channel is capable
of independently achieving receiving phase shift and attenuation, transmission phase
shift, and receiving/transmission/load state switching. Figure 3 displays the indication
allocation and link design. IL, NF, G, Pin, and Pout denote insertion loss, noise factor, gain,
input power, and output power, respectively. It can be observed that the active gain of
the receiving channel is greater than 30 dB, and the noise factor is less than 4.4 dB. The
transmission channel’s saturated output power is higher than 26 dBm.
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The amplitude-phase multifunctional chip and transceiver multifunctional chip of the
T/R module described in the paper are placed in the reserved slots of the LTCC multilayer
substrate, and the LTCC substrate multilayer wiring provides electrical interconnection,
heat dissipation channels, and mechanical support. The LTCC multilayer substrate material
is FST07, with a relative dielectric constant of 6.6 and a loss angle tangent of 0.002. There
are fifteen LTCC layers in total, and each layer is 96 µm thick, as shown in Figure 4a.
Silver-based slurry is utilized on ceramic substrates to produce high-precision, high-density
microwave and low-frequency circuits. The second layer of the LTCC substrate is a large-
area grounding pad. Punch the substrate from the surface layer to the second layer and
then stack and press them to form a blind cavity. Place the four-channel T/R sleeve on the
large area grounding pad in the cavity, so that the chips and the surface pads are basically
on the same horizontal plane, facilitating bonding operations and shortening the length of
gold wires. The conductors from the third-to-fifth layers of the substrate form the power
and control circuits, connected to the surface and bottom conductors through the conductor
through holes, providing power and control signals for the four-channel T/R chips. The
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sixth-to-fifteenth layers of the LTCC substrate are Ka-band signal horizontal transmission
layers, where the sixth layer is the upper ground layer for the stripline, isolating the
microwave signal layer and the low-frequency signal layer to enhance shielding. The
eleventh layer is the Ka-band signal horizontal transmission line layer. The bottom layer
serves as the lower ground plane for the stripline, and the sixth ground plane is connected
to the bottom ground plane through the conductor through holes arranged on both sides of
the stripline, playing a shielding role. A Ka-band signal, power supply, and control signal
pad are also located on the bottom layer. The BGA solder balls implanted on the bottom
pad are interconnected with external circuit boards to achieve both high- and low-frequency
signal input and output. The last surface coating layer is an electroless Ni/Pd/Au film
that is utilized for bonding pads for bare chips, surface-mounted resistive and capacitive
devices, wire-bonding connecting pads, and bonding pads for metal frame packaging.
Figure 4b exhibits the printing and punching layout for each layer.
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Figure 4. Schematic and layout of multilayer LTCC substrate: (a) schematic of multilayer LTCC
substrate and (b) layout of LTCC substrate.

3.3. Device-Based Packaging Design

The four-channel T/R module adopts device-based packaging. As shown in Figure 5,
the device-based T/R module uses an LTCC substrate as the packaging substrate, and
the 4J29 Kovar alloy with a similar thermal expansion coefficient to the LTCC substrate
within a wide temperature range (−70~500 ◦C) is selected as the enclosure material. The
electrical interconnection interface adopts the BGA form, and the LTCC substrate is coated
with Ni/Pd/Au film on the surface and then welded with gold tin alloy solder to form an
airtight packaging for the metal enclosure and cover plate. The device-based T/R module
achieves functional integration of mechanical support, 3D wiring, and heat dissipation
by utilizing the dielectric characteristics, mechanical strength, thermal conductivity, and
sealing qualities of the ceramic materials themselves. The components are interconnected
with external circuits through a surface mount assembly, saving the size and weight of high-
and low-frequency connectors and improving the integration of phased array antenna
systems. The silver slurry is used as the conductor of 3D wiring, and the surface is coated
with an electroless Ni/Pd/Au-plating process to meet the assembly requirements of various
components and greatly reduce the process cost.
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4. Optimization of Interconnection Structure
4.1. Design of Device Based Interconnection Interface

When mounting and interconnecting components of this device-based T/R module,
the interconnection is required to occupy a small area of the multifunctional board, have
low millimeter-wave RF transmission loss, and have good isolation inside and among
modules. In order to satisfy the high-performance and low-profile connecting requirements
of phased array antenna microsystems, the T/R module referred to in this article uses a
BGA as its interconnection interface for signal transmission, regardless of frequency.

BGA packaging can accomplish high-density RF and low-frequency connections by using
solder balls in place of conventional metal leads or connectors. The balls are arranged in a
two-dimensional array on the back of the packing substrate. Its short signal transmission
path and minimal cable parasitic impact help to achieve a good transmission performance.
BGA solder balls can be arranged in a coaxial-like structure, as seen in Figure 6, with a solder
ball located in the center to replace the inner conductor of the coaxial line, and a circle of
solder balls on the periphery to replace the grounding shielding layer of the standard coaxial
line. The coaxial-structure BGA interface can achieve great shielding of electromagnetic wave
signals in the Ka-band range, as shown in Figure 6, thereby achieving high isolation between
RF ports. Figure 7 presents HFSS models comparing electric fields, as well as magnetic field
distributions of the quasi-coaxial structure and coaxial structure, showing excellent and similar
performance in confining the electromagnetic field inside for both structures.
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4.2. Design of RF Full-Path Interconnection

In the article, the transceiver multifunctional chip is connected to LTCC through wire
bonding after being pasted to a large-area solder pad, using conductive adhesive. The
millimeter-wave signal is transmitted from the surface to the BGA solder ball output at the
bottom of the LTCC substrate in three-dimensional form. It is necessary to optimize the
design of the millimeter-wave signal full path interconnection structure of “chip–gold wire–
LTCC surface–vertical interconnection–stripline–vertical interconnection–BGA solder ball”.

The high-frequency structural simulator (HFSS) model’s simulation results demon-
strate that an impedance mismatch arises from the discontinuous structure between the
bonding wire and the pad when chips are directly bonded through gold wire to the inner
conductor of a vertical coaxial structure. This leads to a notable decline in the performance
of signal transmission. Zin is also in a state of impedance mismatch. Since this degradation
is more noticeable at higher frequencies, the transmission performance must be improved
on successive striplines by conducting impedance matching.

As illustrated in Figure 8a, a model of the RF path “chip–gold wire–coaxial structure–
stripline–coaxial structure–BGA solder ball” was established for the device-based T/R
module in order to optimize the interconnection structure. This was achieved by adding
multiple matching structures with varying line widths and lengths to the stripline.

Figure 8b presents the simulation findings. It can be seen that, in the wide frequency
range of 20–30 GH, the reflection coefficient is less than −20 dB, and the transmission
loss is less than 0.4 dB. The electric field distribution results are shown in Figure 8c and
show that the electromagnetic field is confined to the transmission path, indicating that the
interconnection structure has an excellent transmission performance.

The difference between the RF input channel and output interface of the device-based
T/R module is that the overall port of the amplitude-phase multifunctional chip on the RF
input channel has larger wiring space, and the LTCC substrate’s surface can accommodate
the addition of a coplanar waveguide. The HFSS simulation model is shown in Figure 9a.
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Figure 9. (a) HFSS model of radio frequency input interconnection structure. (b) Simulation results
of tile T/R module radio frequency input interconnection structure. (c) Simulation results of electric
field distribution in interconnection structure.

Simulation results are shown in Figure 9b, where the reflection coefficient is less
than −20 dB and the transmission loss is less than 0.4 dB in the wide frequency range of
20–30 GHz. The electric field simulation model is shown in Figure 9c, presenting that the
electromagnetic field is also well confined to the transmission path.
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5. Testing the Key Parameters of the Device-Based T/R Module

Figure 10 displays the device-based T/R module’s photo and testing environment.
The module weighs 1 g and has overall dimensions of 10.8× 10× 3 mm. The testing results
are summarized in Table 1.
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Figure 10. (a) Fabricated prototype of tile T/R module. (b) Size comparison between T/R modules
and a clip. (c) A T/R module weight of 10.4 g. (d) Test environment of tile T/R module.

To measure the receiving performance of the module’s single channel, put the other
three channels into receiving standby mode, meaning that the receiving amplifier is turned
off; and put the RF port into load mode.

The results of the single-channel ground-state receiving test are shown in Figure 11,
and it can be seen that the in-band receiving gain exceeds 26 dB. Considering that the
four-in-one power synthesis network introduces an additional insertion loss of about 6 dB,
the in-band receiving gain for a single channel ground state is greater than 33 dB, which
matches the predicted value 30.6 dB in Figure 3 well. The in-band noise factor is less than
4.4 dB, agreeing with the value 4.4 dB put forward in Figure 3. The test results meet our
expectations.
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Figure 11. Measurement results of single-channel base-state reception.

The test results of the 6-bit attenuator and phaser are shown in Figure 12. The am-
plitude or phase measured following a particular amplitude modulation (a) or phase
modulation (b) on the basis of a single-channel ground state is represented by each curve in
Figure 12, with the particular amplitude modulation or frequency modulation value shown
on the label of the curve. It is shown that the test results agree well with the set values
within a wide band range (f0 − 2~f0 + 2 GHz, f0 = 24), verifying that this T/R module has
stable and accurate attenuation and phase-shifting effects.
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(b) phase modulation.

Set the RF port to the load state and the other three channels to the transmitting
standby state—that is, with the transmitting amplifier turned off—when evaluating the
transmission performance of the module’s single channel.

The test results of the single-channel transmission output power and current are
shown in Figure 13. It can be seen that the output power of the device-based four-channel
T/R module within a single channel 4 G bandwidth is greater than 26.2 dBm, which is
superior, as seen from the comparison in Table 1. Additionally, the emission current, which
has a maximum value of 300 mA and is related to efficiency at different frequencies, has an
efficiency of more than 25%. The test results comply with the design values in Figure 3,
considering a 6 dB insertion loss induced by the one-to-four power divider.
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6. Conclusions

This work offers a device-based four-channel T/R module scheme based on a multi-
material heterogeneous integration architecture incorporating Si/GaAs/LTCC to meet the
demand for the devitalization of T/R modules in the millimeter-wave phased array antenna
microsystem architecture design. By designing the chip architecture, connections, wiring,
packaging, interfaces for interconnection, and full path interconnection, millimeter-wave
four channel T/R modules are devitalized, and their critical parameters are tested. This
module breaks through the device-based packaging of millimeter-wave signal full-path
three-dimensional transmission interconnection, achieving a four-channel module overall
size of 10.8 mm× 10 mm× 3 mm, weight of 1 g, single-channel transmission output power
≥ 26 dBm, efficiency ≥ 25%, and noise factor ≤ 4.4 dB, meeting the high-performance T/R
module requirements of Ka-band phased array antenna microsystems for high dynamic
platform communication. When compared to other T/R modules, this one has advantages
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like simple integration, a straightforward interface for connecting, and a high output power
per unit volume.

With its low profile, high power, and low loss, this research offers a practical and
workable design example for a device-based multichannel T/R module design. It has a
wide range of applications and enormous potential, but more research and development
are required.
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