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Abstract: In recent years , deep learning approaches have achieved remarkable results in the field of
Single-Image Super-Resolution (SISR). To attain improved performance, most existing methods focus
on constructing more-complex networks that demand extensive computational resources, thereby
significantly impeding the advancement and real-world application of super-resolution techniques.
Furthermore, many lightweight super-resolution networks employ knowledge distillation strategies
to reduce network parameters, which can considerably slow down inference speeds. In response to
these challenges, we propose a Residual Network with an Efficient Transformer (RNET). RNET incor-
porates three effective design elements. First, we utilize Blueprint-Separable Convolution (BSConv)
instead of traditional convolution, effectively reducing the computational workload. Second, we pro-
pose a residual connection structure for local feature extraction, streamlining feature aggregation and
accelerating inference. Third, we introduce an efficient transformer module to enhance the network’s
ability to aggregate contextual features, resulting in recovered images with richer texture details.
Additionally, spatial attention and channel attention mechanisms are integrated into our model,
further augmenting its capabilities. We evaluate the proposed method on five general benchmark
test sets. With these innovations, our network outperforms existing efficient SR methods on all test
sets, achieving the best performance with the fewest parameters, particularly in the area of texture
detail enhancement in images.

Keywords: single-image super-resolution; blueprint-separable convolution; efficient transformer;
spatial attention; channel attention

1. Introduction

Single-Image Super-Resolution (SISR) [1] is one of the classical problems in the field of
computer vision and image processing; its main objective is to reconstruct a high-resolution
image from an input low-resolution image. To solve this highly ill-posed problem, many
different approaches have been proposed, among which, Convolutional Neural Networks
(CNNs), with their powerful feature extraction capabilities, have become the mainstream
approach in this field in recent years [2–4]. Recently, due to its success in Natural Language
Processing (NLP), transformers [5] have attracted the attention of the computer vision field,
and after its success in advanced computer vision [6,7], transformers have also provided
new approaches to underlying vision tasks [8,9] and super-resolution [10,11].

With the development of deep learning and convolutional neural networks, it has been
realized that deeper networks [2,12] can substantially improve the quality of recovered
images. Their remarkable achievements can be attributed in part to the utilization of
large-scale models characterized by dense parameters. This trend has, however, resulted
in an escalating demand for hardware resources in Super-Resolution (SR) networks. Such
resource intensiveness imposes constraints on the progress and real-world applicability
of SR techniques. To address this problem, many lightweight SR networks have been
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proposed. The main approaches currently include Neural Architecture Search (NAS) [13,14],
recursive operations [15], information or feature distillation mechanisms [16,17], and single-
pass shallow networks [15,18]. However, these methods often do not aggregate global
information well due to the limitations of the convolution operation, which leads to the
problem of artifacts in the recovered images.

With the emergence of transformers, many image restoration methods based on it
have achieved significant progress [11]. Particularly, a recently designed SwinIR network
has made groundbreaking advancements in super-resolution tasks. However, existing
transformer-based super-resolution networks still face challenges such as excessive param-
eter counts and slow inference speeds. Additionally, these networks are relatively weak
for spatial and channel modeling, leaving room for improvement. Moreover, there is a
limited amount of research on lightweight transformer networks specifically designed for
super-resolution tasks. Therefore, the objective of this study is to develop a lightweight
transformer network suitable for single-image super-resolution tasks.

Currently, most efficient SR models [16,17] employ feature distillation techniques
to reduce the parameter count. However, this approach is not hardware-friendly and
significantly reduces the inference speed [19]. To address these limitations, we propose
a Residual Network with Efficient Transformer (RNET) for lightweight image SR. This
introduces a novel approach called ‘local residual connections’. This method effectively
balances the parameter count and restoration performance while maintaining hardware-
friendliness. To achieve superior visual quality, we design a Hybrid Feature Extraction
Block (HFEB); it consists of three main components: (1) a local feature extraction module
built using Blueprint-Separable Convolution (BSConv) [20], which is an improved version
of Deep Separable Convolution (DSConv) [21], to achieve efficient separation and reduce
redundancy by better exploiting intra-kernel correlations; (2) an attention module, which
consists of Enhanced Spatial Attention (ESA) [16] and Contrast-aware Channel Attention
(CCA) [22] to enhance the model’s ability; and (3) an efficient transformer module, consist-
ing of Multi-BSConv head Transposed Attention (MBTA) that performs feature interactions
across channels, and a Gated-BSConv Feed-forward Network (GBFN). This transformer
module has linear complexity that greatly reduces the computational pressure and makes
the network better able to aggregate long-distance features. By incorporating these compo-
nents, our RNET significantly improves the performance of super-resolution tasks while
producing visually appealing and detail-rich restored images.

Our main contributions are as follows:

1. We propose a local feature extraction module that utilizes BSConv and two efficient
attention modules and demonstrate its effectiveness at SR tasks.

2. We propose an efficient transformer module that enhances global feature extraction
without significantly increasing computational complexity. This module contributes
to producing more-detailed restored images.

3. We propose a strategy of local residual connections, which differs from the commonly
used feature distillation approach. This strategy maintains a low parameter count and
achieves excellent performance.

2. Related Work
2.1. CNN-Based Image Super-Resolution

In recent years, the successful application of deep Convolutional Neural Networks
(CNNs) in the underlying vision tasks has been widely recognized [23,24]. In particular,
SRCNN [2] was the first to introduce deep convolutional neural networks to the image SR
task; the authors used a pioneering three-layer convolutional neural network to map the
correlation between LR and HR images; they achieved encouraging results and provided a
new approach to the single-image super-resolution task. A number of approaches have
been subsequently proposed to further enhance the capabilities of convolutional neural
networks in SR tasks, among which, increasing the depth of the network and using residual
connection are widely recognized as effective approaches. Kim et al. [3] proposed VDSR,
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which uses a 19-layer convolutional neural network to achieve SISR. Lim et al. [12] modified
SRResNet [25] to construct a deeper and wider residual network, called EDSR, which has a
large number of learnable parameters that greatly improve SR performance and has served
as a baseline to inspire many subsequent works [16,26]. For example, Zhang et al. [4] added
a dense block to the original residual block, and soon after that, Zhang et al. [26] used
residual channel attention to further improve the ability of the network. In the last five
years, several works have explored different network frameworks, such as recurrent neural
networks [15,16], graphical neural networks [27], and generative adversarial networks
(GANs) [25,28]. Specially, Xintao et al. [28] used a network with a residual-in-residual
structure and successfully recovered more-realistic texture detail information with the
training strategy of a GAN.

2.2. Efficient Super-Resolution

Existing SR models often need to introduce large computational cost in order to im-
prove performance, which limits the practical application of these methods. To solve this
problem, many lightweight networks have been designed. For example, Deep Recurrent
Convolutional Network (DRCN) [29] and Deep Recurrent Residual Network (DRRN) [30]
reduce computation by introducing recursive layers to share parameters. Lai et al. [31] com-
bine a traditional image algorithm using a Laplacian pyramid with deep learning to achieve
real-time reconstruction. Tai et al. [32] propose MemNet, which uses a gating mechanism
to link deep features with shallow information. Zhang et al. [33] use a reparameterization
module to build a fast inference model that can be used for mobile devices. The IDN
proposed by Hui et al. [17] compresses the model size by using group convolution and
combining short-term and long-term features. Hui et al. [22] then propose an information
distillation strategy based on IDN that extracts hierarchical features step-by-step through
a splitting operation to further improve the efficiency of the model. Based on this work,
Liu et al. [16] further improve the information multiple distillation block in IMDN and
achieve better results. In addition, Han et al. [34] propose self-calibrating convolution
and pixel-focused blocks and achieve a performance improvement without increasing the
complexity. Wang et al. [35] propose a lightweight Contextal Transformation Layer (CTL)
and build a Contextal Transformation Network (CTN) based on it. CTN achieves good
results in both lightweight remote-sensing-image super-resolution tasks and natural-image
super-resolution tasks.

2.3. Vision Transformer

The success of transformers [5] in the field of natural language processing has also
attracted the attention of the computer vision community. The core idea of transform-
ers is self-attention, which captures long-term information between sequence elements.
Transformers have been successfully applied to many advanced vision tasks, including
image classification [6], target detection [36], and segmentation [37]. Although transformers
have shown strong capability for studying long-term dependencies between image pixels,
there is still a lot of work to show that convolution can help transformers achieve better
visual representation [38,39]. ViT [6] was the first work to replace convolution with a
transformer. To generate sequence elements, ViT flattens 2D image patches into vectors
and feeds them into a transformer. Also, transformers have been introduced to underlying
vision tasks [8,9], especially super-resolution [10,11]. Liang et al. [11] proposed SwinIR,
which introduced swin transformers [7] to SISR for the first time and demonstrated the
great potential of transformers in SR tasks. Wang et al. [40] propose Detail-Preserving
Transformer (DPT), which introduces a new self-attention mechanism that considers global
space-angle relationships. DPT has become the SOTA method in the field of light-field-
image SR. Currently, most ViTs segment images into a series of patches and then learn
their dependencies by self-attention. This helps networks build excellent long-range or
global dependencies. However, self-attention mechanisms bring huge computation and
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GPU resource consumption. Therefore, designing efficient vision transformers has become
a hot and open research topic in recent years.

3. Method

In this section, we first present the overall architecture of the Residual Network with
Efficient Transformer (RNET). Then, we introduce the Hybrid Feature Extraction Block
(HFEB), which can efficiently extract the texture information of the image. Finally, we
introduce the Efficient Transformer (ET) block.

3.1. Network Structure

The overall structure of our method Residual Network with Efficient Transformer (RNET)
is shown in Figure 1. RNET is composed of three main parts: a shallow feature extraction
module, a deep feature extraction module, and an image reconstruction module.

Figure 1. The structure of the proposed RNET for lightweight image super-resolution.

Regarding the shallow feature extraction module: first, given the input low-resolution
image ILR ∈ RH×W×Cin , we use BSConv to obtain the shallow features F0 ∈ RH×W×C. The
structure of BSConv is shown in Figure 3. The process can be expressed as follows:

F0 = HBSconv(ILR) (1)

where HBSconv(·) denotes BSConv. Next, the deep feature extraction module consists of
multiple directly connected Hybrid Feature Extraction Blocks (HFEBs), and this process
can be expressed as:

Fn = Hn
HFEB(Fn−1) (2)

where Hn
HFEB(·) denotes the nth HFEB. Fn−1 and Fn, respectively, denote the input features

and output features of the nth HFEB. In addition, we use a BSConv layer HBSconv(·) to
smooth the depth features. Lastly, the image reconstruction module HRec(·) consists of
a 3 × 3 standard convolution with pixel shuffling: the objective is to upsample the fused
features and recover them to HR size. Finally, we fuse shallow and deep features by adding
global residual connections. The process can be expressed as:

ISR = HRec(HBSconv(Fn) + F0) (3)

where ISR indicates the final recovered image through the above network.

3.2. Hybrid Feature Extraction Block

In this subsection, we introduce the Hybrid Feature Extraction Block (HFEB): the spe-
cific structure of this module is shown in Figure 2c. We use BSConv instead of traditional
convolution, which greatly reduces the computational burden. Also, we use local residual
connections instead of separable distillation structures. Kong et al. [19] demonstrate that
the local residual structure can significantly reduce inference time while maintaining the
model’s capability.
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Figure 2. (a) The architecture of CCA block. (b) The architecture of ET block (c) The architecture of
our Hybrid Feature Extraction Block (HFEB). (d) The architecture of ESA block.

HFEB is divided into three main parts to extract image features: namely, a local feature
extraction module, a hybrid attention mechanism, and an efficient transformer. First, we
use several stacked BSConv and LeakyRelu layers to extract local features. Specifically,
each BSConv layer is equipped with a LeakyRelu activation function. Given the input
feature Fin, this part can be described as:

FLF1 = σ(HBSconv(Fin))

FLF2 = σ(HBSconv(FLF1))

FLF3 = σ(HBSconv(FLF2))

Fout1 = Fin + FLF3

(4)

where FLFn denotes the output of the nth BSConv and LeakyRelu combination module,
σ(·) denotes the LeakyRelu activation function, HBSconv(·) denotes BSConv opration, and
Fout1 represents the output of the entire local feature extraction module.

Next, to get more-detailed information, we first pass the output of the local feature part
through a 1 × 1 convolution before feeding it to the hybrid attention module. This module
consists of a lightweight Enhanced Spatial Attention (ESA) block [16] and a Contrast-aware
Channel Attention (CCA) block [22], and this process can be formulated as:

Fout2 = HCCA(HESA(Hconv1×1(Fout1))) (5)

HCCA(·) and HESA(·) represent the CCA block and ESA block, respectively. Hconv1×1(·)
represents the 1 × 1 convolution. Fout2 represents the output of the hybrid attention module.

Finally, to better aggregate global information, we feed the output of the hybrid
attention module into the Efficient Transformer (ET) module. This module consists of Multi-
BSConv head Transposed Attention (MBTA) and Gated-BSConv Feed-forward Network
(GBFN); it retains the global feature extraction capability of a transformer while greatly
reducing the computational burden. The whole process can be described as:

Fout = HET(Fout2) = HGBFN((HMBTA(Fout2)) (6)

where HET(·) represents the ET block. HGBFN(·) and HMBTA(·) represent the GBFN and
MBTA, respectively. Fout represents the output of the whole HFEB.
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3.2.1. BSConv

BSConv is a method that decomposes the standard convolution into a point-wise
1 × 1 convolution and a depth-wise convolution. It can be regarded as a variant of depth-
separable convolution. The structure of BSConv is shown in Figure 3. Similar to depth-
separable convolution, it has less computational burden than standard convolution, and it
has been shown that BSConv has better results than standard convolution in most cases [20].

Figure 3. The structure of BSConv, where DWConv represents the depth-wise convolution.

3.2.2. ESA and CCA

The effectiveness of ESA and CCA modules for SR tasks has been demonstrated [16,22],
so we introduce these two modules into our HFEB. The structure of ESA is shown in
Figure 2d. It uses a 1 × 1 convolution to reduce the input channel, and it uses strided
convolution and strided max-pooling to reduce the spatial size. Then, to obtain better
results and higher efficiency, a group of BSConv layers are used to extract features instead
of standard convolution. Features are processed by a 1 × 1 convolution to restore the origin
channel. Finally, a Sigmoid function generates the attention matrix and the multiplied
input feature. In order to achieve both spatial and channel information, we add the CCA
block [22] after the ESA block. The structure of the CCA module is shown in Figure 2a; the
structure represents a channel attention module specifically designed for low-level image
processing. In contrast to conventional channel attention modules, CCA adopts the sum
of the standard deviation and mean instead of global pooling. This modification proves
advantageous for enhancing image details and texture structure information. Figure 4
presents the visualization results of feature maps before and after the incorporation of these
two modules. Upon integrating the ESA and CCA modules, the proposed HFEB in this
paper demonstrates improved capability to extract clearer edge and texture information.
The inclusion of these two attention modules allows our network to further enhance the
accuracy of SISR.

Figure 4. Feature map visualization results. Column (a) is the input image. Column (b) is the feature
map visualization result without adding ESA and CCA modules. Column (c) is the feature map
visualization result after adding ESA and CCA modules.
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3.3. Efficient Transformer

Inspired by Restormer [41], in order to achieve better global modeling capabilities, we
adopt an efficient transformer module, as shown in Figure 2b, consisting of MBTA and
GBFN to further improve the performance of the network. The specific structure is shown
in Figure 5.

Figure 5. The architecture of our Efficient Transformer (ET) block. (a) The architecture of MBTA in ET.
(b) The architecture of GBFN in ET.

3.3.1. Multi-BSConv Head Transposed Attention (MBTA)

The computational cost in a traditional transformer mainly comes from the self-
attention layer. The time and memory complexity of the key-query dot-product interaction
grows quadratically with the spatial resolution of the input. MBTA, on the other hand,
greatly reduces the computational overhead by using cross-channel rather than cross-space
self-attention; the specific structure is shown in Figure 5a. The MBTA process is described
below: for the input nominal X ∈ RH×W×C, we first achieve cross-channel pixel-level fea-
ture aggregation by 1 × 1 point-wise convolution, and subsequently, we use 3 × 3 BSConv
to extract channel contextual information. The advantage of using deep convolution is
that it can better focus on the local context before generating the global feature map. The
query (Q), key (K), and value (V) are generated from the above process. This process can be
formulated as:

Q = Hq
BSconv

(
Hq

p(LN(X))
)

K = Hk
BSconv

(
Hk

p(LN(X))
)

V = Hv
BSconv

(
Hv

p(LN(X))
) (7)

where HBSconv(·) denotes the BSConv, Hp(·) denotes the 1 × 1 point-wise convolution, and
LN denotes the layer normalization.

Next, a transposed attention map of size RC×C is generated by reshaping the query
and key projection via their dot product. This process can be formulated as:

Attention(Q, K, V) = V · So f tmax(K · Q/α)

X̂ = Hp(Attention(Q, K, V)) + X
(8)

where So f tmax denotes the function of softmax to generate the probability map, α is a
learnable scaling parameter to control the size of the dot product of K and Q before applying
the softmax function, and Hp(·) indicates the point-wise 1 × 1 convolution.
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The above operation successfully reduces the complexity of the transformer to a linear
channel complexity, effectively reducing the computational cost.

3.3.2. Gated-BSConv Feed-Forward Network (GBFN)

To further recover the structural information, the efficient transformer employs a
Gated-BSConv Feed-forward Network (GBFN). This feed-forward network has two im-
portant components: a gating mechanism and BSConv. Similar to MBTA, we use BSConv
to learn the local information between spatially adjacent pixels, which is very effective
for learning local similarity information of images for recovery and reconstruction. The
specific structure is shown in Figure 5b. This process can be formulated as follows:

Xgate = ϕ
(

H1
BSconv(HpLN(X))

)
⊙ H2

BSconv
(

HpLN(X)
)

X̂ = Hp(Xgate)
(9)

where ϕ denotes the GELU function, LN denotes the layer normalization, ⊙ denotes
element-wise multiplication, and Hp(·) denotes a point-wise 1 × 1 convolution.

Overall, the GBFN controls the information flow through the respective hierarchical
levels in our pipeline, thereby allowing each level to focus on the fine details comple-
mentary to the other levels. In contrast to the MBTA, the GBFN is able to provide richer
contextual information.

3.4. Loss Function

Our network is optimized with a mean absolute error (MAE, also known as L1) loss
function to facilitate a fair comparison. The loss function is described as follows: given
a training set

{
Ii
HR, Ii

LR
}

that contains several pairs of LR and HR inputs, the training
objective is then to minimize the L1 loss function:

L(Θ) =
1
N

n

∑
i=1

∥Hmodel(Ii
LR)− Ii

HR∥1 (10)

where Θ denotes the parameter set of the network, and ∥·∥1 is the L1 norm. The loss
function is optimized by using Adam optimizer.

4. Experiments

In this section, we use five benchmark datasets to evaluate the performance of our
proposed method. First, we introduce the datasets used along with the evaluation metrics.
Then, the superiority of the proposed method is demonstrated in terms of both visualization
and evaluation metrics. Finally, the complexity and computational cost of the proposed
model are explored.

4.1. Experiment Setup
4.1.1. Datasets and Metrics

We used 800 images from the DIV2K dataset [42] for training. We evaluated the per-
formance of the different methods using five standard benchmark datasets from Set5 [43],
Set14 [44], BSD100 [45], Urban100 [46], and Manga109 [47]. We evaluated the mean Peak
Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) on the Y-channel. And we
downscale HR images with the scaling factors (×2, ×3, and ×4) using bicubic degrada-
tion models.

4.1.2. Training Details

Our model is trained on the RGB channel, and we enhance the training data by
randomly flipping the images 90°, 180°, 270°, and horizontally. The number of HFEBs is set
to 8, and the channel number is set to 48. The kernel size of all depth-wise convolutions
is set to 3. The patch size for each LR input is set to 48 × 48, and we randomly crop HR
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patches of size 480 × 480 from the ground truth. The batch size is 32. For all scales of the
model, the training process is divided into two stages. In the first stage, we train the model
from the beginning. In the second stage, we use a two-time warm-start strategy. In each
stage, we use the Adam optimizer [48] with β1 = 0.9, β2 = 0.999. the initial learning rate is
set to 5 × 10−4 with cosine learning rate decay. The L1 loss function is used to optimize
the model for total 1 × 106 iterations in each stage. We implement our model on a GeForce
RTX 3090 GPU using PyTorch 1.9.0; the training process takes about 40 h.

4.2. Quantitative Results
4.2.1. Comparison Results

To verify the effectiveness of our RNET, we compare it with 10 advanced efficient
super-resolution models: SRCNN [2], FSRCNN [18], VDSR [3], DRRN [30], LapSRN [31],
LAPAR-A [19], MemNet [32], IDN [17], IMDN [22], RFDN [49], and RLFN-S [50] with scale
factors of 2, 3, and 4. The quantitative performance comparison on five benchmark test
sets is shown in Table 1. Compared to other advanced methods, RNET achieves the best
performance for both PSNR and SSIM while reducing the parameters by 70 K compared
to the second-best method RLFN-S and by 150 K parameters compared to the third-best
method RFDN.

Table 1. Quantitative comparison with other SISR models. The best and second-best performances
are in red and blue, respectively.

Method Scale Parameters Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [2] 24 K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [18] 12 K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [3] 666 K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750

DRRN [30] 298 K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
LapSRN [31] 251 K 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
MemNet [32] 678 K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

IDN [17] 553 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
IMDN [22] 694 K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
RFDN [49] 534 K 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

RLFN-S [50] 454 K 38.05/0.9607 33.68/0.9172 32.19/0.8997 32.17/0.9286 -/-
RNET (Ours)

×2

385 K 38.10/0.9612 33.69/0.9190 32.23/0.9009 32.31/0.9289 39.01/0.9778

Bicubic - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [2] 8 K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [18] 13 K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [3] 666 K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

DRRN [30] 298 K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
MemNet [32] 678 K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

IDN [17] 553 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
LAPAR-A [19] 544 K 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/.09441

IMDN [22] 703 K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
RFDN [49] 541 K 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449

RLFN-S [50] - -/- -/- -/- -/- -/-
RNET (Ours)

×3

400 K 34.56/0.9284 30.43/0.8438 29.17/0.8080 28.36/0.8550 33.85/0.9463

Bicubic - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [2] 8 K 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [18] 13 K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [3] 666 K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

DRRN [30] 298 K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
LapSRN [31] 813 K 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
MemNet [32] 678 K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

IDN [17] 553 K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
IMDN [22] 715 K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN [49] 550 K 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

RLFN-S [50] 470 K 32.23/0.8961 28.61/0.7818 27.58/0.7359 26.15/0.7866 -/-
RNET (Ours)

×4

401 K 32.39/0.8976 28.68/0.7837 27.65/0.7403 26.24/0.7894 30.67/0.9102
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4.2.2. Visual Results

To further demonstrate the superiority of our proposed RNET, we display the visual re-
sults compared with five advanced methods: SRCNN [2], IDN [17], IMDN [22], RFDN [49],
and RLFN-S [50], as shown in Figure 6. The test results show that most methods cannot
reconstruct the grid image clearly; by contrast, our RNET is able to obtain sharper results.
Taking the top image in Figure 6 as an example, most methods of comparison output
heavy aliasing. Earlier methods such as SRCNN [2], IDN [17], and IMDN [22] lose most
of the structure due to limited network depth and feature extraction capability. Recent
methods RFDN [49] and RLFN-S [50], on the other hand, are able to recover most of the
outlines but not the texture details of the image. Compared with that, our method can
reconstruct more details and obtain higher visual quality. This can be attributed to the
global information extraction capability of the transformer.

Figure 6. Visual comparison of RNET with other methods at ×4 SR. From the figure, we can see that
our method can generate more details of the image.
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4.2.3. LAM Results

To observe the range of pixels utilized in SR reconstruction, we resort to a diagnostic
tool called Local Attribution Maps (LAMs) [51], which is an attribution method specifically
designed for SR. Using the LAM approach, we can identify which pixels contribute the
most to the reconstruction of the selected regions. The Diffusion Index (DI) illustrates the
range of relevant and utilized pixels, with a higher DI indicating a broader range of used
pixels. We compare our model with BSRN [52] and RLFN-S [50], and the LAM results are
shown in Figure 7. Thanks to the transformer module, RNET exhibits the widest range
of pixels inferred for SR images and achieves the highest DI value. The experimental
results are highly consistent with our expectations and, from an interpretability perspective,
substantiate that our proposed RNET leverages the long dependencies offered by the
transformer, enabling it to utilize more pixels and thus attain better performance.

Figure 7. LAM results of our RNET, BSRN, and RLFN-S. We can see that our RNET performs SR
reconstruction based on a wider range of pixels.

4.2.4. Computational Cost and Model Complexity Analysis

To fully investigate the efficiency of each model and demonstrate the advantages of
our RNET in terms of complexity, we provide a detailed comparison of each model in
Table 2, where FLOPs and Activations are the computational results when using the ×4
model with a 1280 × 720 image as input, and runtime and memory are the average results
obtained by inference on the BSDS100 dataset tested 10 times using an RTX3070-8G GPU
(Taipei, China). To make the results more intuitive, we also add the classical single-image
super-resolution networks VDSR [3] and DRRN [30] as references. It can be seen that our
proposed RNET has the second-fewest (401 K) number of parameters, the fewest (20.4 G)
FLOPs, and the third-fewest Activations (0.17 G) thanks to our use of BSConv, which
can efficiently extract effective features while mitigating the computation. Meanwhile,
because our proposed RNET uses the transformer structure, it slightly lags behind other
convolutional-neural-network-based methods in terms of inference speed and memory
usage, but thanks to our use of local residual connections and the improved self-attention
module, this gap is not very large and is perfectly acceptable. We visualize the trade-off
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between the number of parameters, FLOPs, and performance of each model in Figure 8.
We can see from the figure that our RNET achieves a good balance between computational
complexity and performance.

Table 2. The results of model efficiency and computational cost.

Method Parameters Activations FLOPs Runtime Memory

VDSR [3] 666 K 2.38 G 612.6 G 0.037 s 340 MB
LapSRN [31] 813 K 0.58 G 149.4 G 0.020 s 360 MB
DRRN [30] 298 K 24.89 G 6796.9 G 0.556 s 827 MB
IMDN [22] 715 K 0.15 G 40.9 G 0.015 s 228 MB

RLFN-S [50] 470 K 0.12 G 25.6 G 0.018 s 170 MB
RNET (Ours) 401 K 0.17 G 20.4 G 0.022 s 230 MB

Figure 8. A comparison of performance and model complexity on Set5 dataset; the upscale factor is ×4.

4.2.5. Comparison with Other Transformer-Based Methods

Currently, there are two mainstream approaches to solve the problem of high com-
putation brought by vision transformers: one is to use a sliding window, also known as a
swin transformer, such as SwinIR [11]; the other approach is to improve the self-attention
part—for example, ESRT [53] uses the splitting factor approach to reduce the computational
burden brought by the self-attention. The RNET proposed in this paper uses cross-channel
self-attention to achieve the same purpose. We provide a detailed comparison of these
three approaches in Table 3. It can be seen that our RNET has better performance than
ESRT on the Set5 dataset and achieves similar performance to SwinIR while having the
least number of parameters and FLOPs.

Table 3. Detailed comparison with other transformer-based methods.

Method Parameters FLOPs Set5
PSNR/SSIM

Set14
PSNR/SSIM

SwinIR [11] 897 K 49.6 G 32.44/0.8976 28.77/0.7858
ESRT [53] 751 K 67.7 G 32.19/0.8947 28.69/0.7833

RNET (Ours) 401 K 20.4 G 32.39/0.8976 28.68/0.7837

4.3. Ablation Study

In this subsection, we design a series of ablation experiments to analyze the effec-
tiveness of our proposed network. We first investigate the effects of different network
depths and widths on the experimental results. Then, we demonstrate the effectiveness
of the ET module and explore the placement of the module. We also compare different
activation functions.
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4.3.1. The Depth and Width of the Network

The experimental results are shown in Table 4, where depth indicates the number of
HFEBs used and width indicates the number of feature channels. From the experimental
results, it can be seen that increasing both depth and width can enhance the model ability.
And experiments show that network width influences results more than depth. When d
increased from 6 to 8, the indicator of Urban100 increased by 0.21 db, but when d increased
from 8 to 10, the indicator only increased by 0.05 db, while at the same time, the parameters
increased to 479 K. And when w increased from 32 to 48, the indicator on Urban100
increased by 0.43 dB, but from 48 to 56, the indicator only showed a slight increase or
even a decrease. But the parameters reach 513 K. From Table 4, when d = 10 and w = 56,
the PSNR on all five benchmark test sets are improved, but the parameters of the network
reach 638 K. In order to better balance the performance of the network with the parameters,
we finally set the depth and width of the network to 8 and 48, respectively.

Table 4. Ablation studies of different depths and widths of the network, where d indicates the number
of HFEBs used, and w indicates the number of feature channels.

Method Parameters Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

d = 6 w = 32 139 K 37.94/0.9607 33.44/0.9168 32.10/0.8994 31.72/0.9239 38.47/0.9767
d = 6 w = 48 291 K 38.04/0.9610 33.60/0.9184 32.18/0.9005 32.10/0.9270 38.78/0.9775
d = 6 w = 56 387 K 38.07/0.9611 33.63/0.9187 32.21/0.9008 32.20/0.9280 38.93/0.9777
d = 8 w = 32 183 K 37.92/0.9607 33.50/0.9172 32.13/0.8997 31.88/0.9251 38.65/0.9771
d = 8 w = 48 385 K 38.10/0.9612 33.69/0.9190 32.23/0.9009 32.31/0.9289 39.01/0.9778
d = 8 w = 56 513 K 38.11/0.9612 33.65/0.9187 32.23/0.9009 32.30/0.9293 38.99/0.9778
d = 10 w = 32 228 K 38.01/0.9609 33.51/0.9173 32.16/0.9001 32.03/0.9265 38.73/0.9773
d = 10 w = 48 479 K 38.10/0.9612 33.70/0.9188 32.24/0.9011 32.36/0.9295 39.00/0.9779
d = 10 w = 56 638 K 38.12/0.9613 33.74/0.9195 32.25/0.9014 32.47/0.9305 39.12/0.9779

4.3.2. Ablation Study of Efficient Transformer (ET) Block

We performed ablation experiments to separately verify the impact of different con-
volutions in our proposed ET module and the effectiveness of the ET module. Within the
two key components of the ET module, MBTA and GBFN, we replaced BSConv with
traditional Depth-Wise Convolution (DWConv). The experimental results are shown in
Table 5. Using BSConv in the ET module introduces an insignificant increase in parameters,
but it improves the model’s performance on all five benchmark test sets. Therefore, we
employed BSConv for channel feature extraction in the final ET module.

Subsequently, to verify the effectiveness of the ET module, we placed the ET module
at Position 1 (P1 in Figure 9) or Position 2 (P2 in Figure 9) or removed the ET module
altogether. The experimental results are shown in Table 5. After removing the ET module,
the network’s performance significantly decreased on all five benchmark datasets. When
the ET module was placed at Position 2, there was a slight decline in the results on these
datasets. These results demonstrate that the ET module at Position 1 can effectively enhance
the capacity of the HFEB model. Consequently, in the final model, we positioned the ET
module at Position 1.

Figure 9. The structure of HFEB and possible positions of ET in HFEB.
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Table 5. Quantitative comparison of the position of ET block and different convolutions used in ET.

Ablation Variant Parameters Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

HFEB
ET in P1 385 K 38.10/0.9612 33.69/0.9190 32.23/0.9009 32.31/0.9289 39.01/0.9778
ET in P2 380 K 38.06/0.9612 33.66/0.9187 32.22/0.9008 32.29/0.9289 38.96/0.9778

without ET 135 K 37.75/0.9601 33.22/0.9152 32.01/0.8983 31.39/0.9209 38.01/0.9756

ET BSConv 385 K 38.10/0.9612 33.69/0.9190 32.23/0.9009 32.31/0.9289 39.01/0.9778
DWConv 384 K 38.06/0.9601 33.63/0.9189 32.22/0.9003 32.23/0.9273 38.86/0.9766

4.3.3. Different Activation Function in HFEB

We designed an ablation experiment to explore the effectiveness of the activation
function in HFEB. The results in Table 6 show that different activation functions significantly
affect the performance of the model. Among these activation functions, LeakyRelu obtains a
significant performance gain, especially on the Urban100 and Manga109 datasets. Therefore,
we chose LeakyReLU as the activation function in our model.

Table 6. Ablation study using different activation functions in HFEB.

Activate
Function Parameters Set5

PSNR/SSIM
Set14

PSNR/SSIM
BSD100

PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

PSNR/SSIM

GELU 385 K 38.08/0.9611 33.66/0.9184 32.21/0.9008 32.24/0.9287 38.94/0.9777
ReLU 385 K 38.08/0.9612 33.69/0.9189 32.21/0.9008 32.23/0.9285 38.90/0.9777

LeakyReLU 385 K 38.10/0.9612 33.69/0.9190 32.23/0.9009 32.31/0.9289 39.01/0.9778

4.3.4. Effectiveness of ESA and CCA Blocks

In order to verify the effectiveness of the ESA and CCA modules, we sequentially
removed these two modules from the HFEB network proposed in this paper, re-trained the
×4 scale model, then tested the network on each of the five benchmark datasets. And the
experimental results are shown in Table 7. The experiments show that after removing
the two attention modules, the performance of our network on all the five benchmark
datasets shows some degradation. At the same time, we find that both the ESA and CCA
modules hardly increase the complexity of the whole model—only increasing the number
of parameters by about 2%—and result in a PSNR gain of about 0.1 db on each dataset.
Thus, the ESA with CCA module used in this paper is able to give the model a performance
boost at a small cost.

Table 7. Ablation studies of the effectiveness of ESA and CCA blocks, where ✓ indicates the block is
used, and ✗ indicates the block is not used.

ESA CCA Parameters Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

✗ ✗ 393 K 32.29/0.8964 28.61/0.7823 27.59/0.7388 26.14/0.7863 30.47/0.9081
✗ ✓ 397 K 32.31/0.8967 28.62/0.7823 27.60/0.7388 26.16/0.7863 30.58/0.9094
✓ ✗ 397 K 32.32/0.8970 28.65/0.7829 27.61/0.7393 26.18/0.7873 30.64/0.9099
✓ ✓ 401 K 32.39/0.8976 28.68/0.7837 27.65/0.7403 26.24/0.7894 30.67/0.9102

5. Conclusions

In this paper, we propose a novel Residual Network with Efficient Transformer (RNET)
for lightweight single-image super-resolution. RNET achieves a good balance between
performance and model parameters. Specifically, we adopt a local residual connection
structure as the backbone network for deep feature extraction modules. Compared to
the widely used knowledge distillation structure, this structure significantly enhances
inference speed. Concurrently, we utilize BSConv to replace traditional convolutional
operations, which greatly reduces the number of required parameters. To fully exploit
global information while avoiding excessive computational redundancy, we introduce an
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efficient transformer module that comprises channel-wise self-attention mechanisms and
an efficient gated feed-forward module. Experimental results demonstrate that our method
can effectively utilize a broader range of pixel information, as verified by the evaluation
results from LAM. To further enhance the model’s representative capacity and accuracy, we
also integrate a hybrid channel and spatial attention module. Extensive experiments show
that our method achieves the best performance across five commonly used benchmark
test sets. Concurrently, images reconstructed using our method exhibit the best visual
results and richest details. Of particular note, RNET possesses only 400 K parameters
and 20 G FLOPs: successfully achieving outstanding balance between performance and
model complexity. Moreover, when processing single-image inference, RNET takes less
than 30 milliseconds and occupies only 230 MB of memory. These characteristics hold
significant value for promoting the practical application of single-image super-resolution
techniques. In the future, we will further optimize the self-attention module to reduce
memory usage. And we will expand the model so that it can be applied to more-challenging
tasks, such as classical image super-resolution and real-world image super-resolution.
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