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Abstract: Self-supervised learning (SSL) is an effective way of learning rich and transferable speech
representations from unlabeled data to benefit downstream tasks. However, effectively incorporating
a pre-trained SSL model into an automatic speech recognition (ASR) system remains challenging. In
this paper, we propose a network architecture with light-weight adapters to adapt a pre-trained SSL
model for an end-to-end (E2E) ASR. An adapter is introduced in each SSL network layer and trained
on the downstream ASR task, while the parameters of the pre-trained SSL network layers remain
unchanged. By carrying over all pre-trained parameters, we avoid the catastrophic forgetting problem.
At the same time, we allow the network to quickly adapt to ASR task with light-weight adapters. The
experiments using LibriSpeech and Wall Street Journal (WSJ) datasets show that (1) the proposed
adapter-based fine-tuning consistently outperforms full-fledged training in low-resource scenarios,
with up to 17.5%/12.2% relative word error rate (WER) reduction on the 10 min LibriSpeech split;
(2) the adapter-based adaptation also shows competitive performance in high-resource scenarios,
which further validates the effectiveness of the adapters.

Keywords: self-supervised learning; automatic speech recognition; domain adaptation

1. Introduction

In recent years, end-to-end (E2E) automatic speech recognition (ASR) has garnered
extensive attention [1,2]. It replaces the traditional hybrid ASR pipeline, which typically
consists of several independent components, with a single, unified deep neural network
(DNN), and directly transcribes speech into text transcription without the need for predefined
alignment and a phonetic lexicon [3–5]. E2E ASR models represent a novel modeling process,
reducing the complexity inherent in the traditional ASR pipeline. However, despite their
advantages, these models typically require a large amount of labeled speech data to achieve
acceptable performance. This poses a considerable challenge, especially for low-resource
languages, where such extensive transcribed speech data are not readily available.

Self-supervised learning (SSL) has proven its efficacy in capturing rich and transferable
representations from unannotated speech data, thereby significantly benefiting downstream
speech-related tasks [6–8]. This approach has been proven particularly effective for the
pre-training of E2E ASR models on large amounts of untranscribed speech data, which
are subsequently fine-tuned on parallel labeled speech data for target applications [9–12].
SSL leverages unsupervised pre-training strategy that allows it to learn high-level semantic
information from unlabeled data. The speech representations derived in this manner
are typically more robust and versatile than those acquired through supervised learning
methods, which can be biased towards the training data [13].
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There have been many successful self-supervised methods for learning speech rep-
resentations, such as Autoregressive Predictive Coding (APC) [10,14], wav2vec [6,15],
Problem-agnostic Speech Encoder (PASE) [16,17], Speech SimCLR [18], Speech XL-Net [19],
TERA [20], WavLM [21], and data2vec [8], to name a few.

Through self-supervised pre-training, these pre-trained speech models (PSMs) could
be applied to downstream tasks through adaptation, typically including feature-based
speech representation transfer and fine-tuning. When PSMs are re-used as features extrac-
tors, they generate rich and high-level speech representations that capture complex patterns
and structures in the speech, thereby reducing the complexity of downstream models and
ultimately boosting the downstream performance. On the other hand, the fine-tuning based
approaches involve copying the weights from PSMs and initializing part of the downstream
models for the subsequent supervised training. Usually, the pre-trained parameters of PSMs
provide particularly effective initialization for the encoders of ASR models [9,11,12,22,23],
and outperform the feature-based transfer method. In this way, PSMs have achieved great
success for E2E ASR, especially in low-resource speech datasets [24,25].

Despite significant progress, few studies have investigated how to effectively adapt
a pre-trained self-supervised speech model; that is, the general speech representations,
towards a specific ASR task. Simply initializing the ASR encoder with the PSMs parameters
and then fine-tuning can lead to a catastrophic forgetting problem [26] and sub-optimal
performance. More importantly, fine-tuning of over-parameterized models on a small
amount of adaptation data, i.e., a low-resource dataset, is ineffective [27]. Last but not
least, fine-tuning the entire model is not parameter efficient, considering the enormous
amount of parameters in PSMs [6,20]. For example, the base wav2vec2.0 model contains
12 transformer layers and the large wav2vec2.0 model contains 24 transformer layers. Fine-
tuning all these layers can be computationally expensive and inefficient. In the field of
natural language processing (NLP), adapters [28,29] have been introduced as an alternative
lightweight fine-tuning strategy, consisting of a small set of newly initialized weights at
every layer of the transformer. These weights are trained during the fine-tuning process,
while the pre-trained parameters remain fixed. This strategy allows for efficient parameter
sharing and achieves competitive performance in many text-related tasks. Despite their
success in NLP, there has been limited investigation into the applicability of adapters for
speech-related tasks.

To mitigate the aforementioned challenges and fill the gap, in this study, we propose a
novel approach that will allow E2E ASR models to effectively benefit from SSL pre-trained
models. Specifically, our method introduces a light-weight neural network module, termed
adapter, which serves as a new component inserted into each transformer encoder layer
of the pre-trained model to achieve efficient adaptation to the ASR task. During the fine-
tuning process, we keep the parameters of the pre-trained model frozen and only update
the adapter module. The proposed modeling process is referred to as fine-tuning with
adapters or FTA. It seeks to obtain the following two primary benefits. (1) By introducing
the adapter module, the parameters of the pre-trained model can be disentangled from
the task-specific ASR adapters. This leads to a high degree of parameter sharing while
simultaneously avoiding the issue of catastrophic forgetting. (2) Due to the light-weight
nature of the adapter module, the adaptation process can effectively and efficiently leverage
a smaller amount of adaptation data. Regarding the model efficiency, we consider our
work related to the quantum tensor approach for speech processing [30], in which the
low-complexity hybrid tensor networks are designed for speech enhancement and spoken
command recognition tasks, and teacher–student transfer learning methods for speech
recognition [31]. The authors of [30] design a low-rank tensor-train deep neural network
with fewer model parameters for practical application, while our proposed method aims to
efficiently adapt the existing SSL pre-trained models for the downstream ASR task.

We evaluate the proposed FTA modeling process on Libri-light [32], LibriSpeech [33]
and Wall Street Journal (WSJ) [34] datasets. Our experimental results show that, compared
with the standard full fine-tuning approach, FTA reduces the word error rate (WER) by up
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to 17.5%/12.2% on the 10 min subset of LibriSpeech when decoding without a language
model (LM) in a low-resource scenario. Furthermore, in high-resource scenarios, our
proposed method also delivers competitive results, while introducing only a minimal
number of additional trainable parameters.

The rest of the paper is structured as follows. Section 2 introduces related works and
background knowledge. In Section 3, we formulate the fine-tuning with adapters (FTA)
modeling process in detail. In Section 4, we outline our experimental setup, followed by a
comprehensive discussion and analysis of our experimental results in Section 5. Lastly, we
conclude this paper in Section 6.

2. Related Work
2.1. Pre-Trained Speech Models

Pre-trained speech models (PSMs) aim to learn robust and contextually rich speech
representations from extensive large unlabeled speech corpora through self-supervised
learning [6,8–10,14,20,35,36]. They have significantly enhanced the performance of various
speech-related tasks; typical examples are speech recognition [11,12], speaker recogni-
tion [37,38], and speech translation [39,40]. Among these methodologies, wav2vec2.0 [6] is
one of the most prevalent pre-training approaches. Its pre-training objective is composed
of contrastive loss [35] and diversity loss. The principle of contrastive learning has been
widely applied to a variety of other tasks, including speaker recognition [41], image [35,42]
and text [43] representation learning.

In wav2vec2.0, which is described in Figure 1, the self-supervised loss utilized for
pre-training can be interpreted as a contrastive predictive coding (CPC) [35] loss. The
task involves predicting masked encoder features [44] (e.g., BERT) rather than predicting
near-future encoder features given previous ones. Specifically, given an input raw audio
sequence x , the convolutional encoder f : X → Z, first transforms x into latent speech
features z at a 20 ms stride with a receptive field 30 ms. These latent features z, which
are masked with a certain proportion, are then processed by a Transformer-based context
network g : Z → C. This process results in contextualized representations c, which encap-
sulate information from the whole sequence. Those masked latent speech representations
are subsequently quantized into qt using the quantization module q : Z → Q to provide the
labels for the masked time step t in the contrastive loss. The contrastive loss is formulated
as follows:

Lm = −log
exp(sim(ct, qt)/k)

∑q̃∼Qt exp(sim(ct, q̃)/k)
(1)

where sim(a, b) = aTb/∥a∥∥b∥ represents the cosine similarity between context representa-
tions and discrete latent speech representations, Qt denotes a collection of K + 1 discrete
candidate representations q̃ ∈ Qt, which is composed of qt and K distractors.

Besides contrastive learning-based pre-training methods, there is an another emerging
branch of speech pre-training technique that focuses on reconstruction losses. Among these
techniques, the Autoregressive Predictive Coding (APC) method stands out as a notable
example, taking inspiration from language models (LMs) commonly used in text processing.
The APC model can be viewed as a speech-specific counterpart to an LM, as it employs an
autoregressive model to forecast future speech frames based on the temporal information
of previous acoustic sequences, similar to recurrent LMs [45]. In [14], an auxiliary objective
is further introduced to extend the APC objective to perform the multi-target pre-training.
This auxiliary objective works as a regularization term to enhance the generalization of
the task of the future frame prediction. Moreover, inspired by techniques like the masked
language model (MLM) introduced in BERT [44] and the permutation language model
(PLM) introduced in XLNet [46], some works [11,12] have explored the use of BERT-style
mask-predict approaches to pre-train ASR speech encoders. These methods adjust natural
language processing (NLP) techniques, which are designed for discrete word tokens, to
accommodate continuous audio data. Despite yielding remarkable results for a range of
speech-related tasks, these models usually require large-scale training datasets, making
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them both time-consuming and resource-intensive. In contrast, the focus of this paper is on
leveraging publicly available pre-trained speech models (e.g., wav2vec2.0) for E2E ASR,
aiming to improve ASR performance by utilizing existing pre-trained models and reducing
the need for extensive additional training.

CNN

Transformer Encoder Layer

q q q q q

Latent representations

Raw waveform

Quantized representations

Context representations

Contrastive Loss

CTC Loss

x N

Decoder Projection

CE Loss

Encoder 

Pre-training stage

Initialize

ASR fine-tuning stage

Figure 1. (Left:) the architecture of wav2vec2.0 model and its pre-training objective. The model
contains a multi-layer convolutional feature encoder and a transformer encoder for learning contex-
tualized speech representations. (Right): the method of adapting pre-trained wav2vec2.0 into E2E
ASR, including CTC-based and encoder–decoder-based frameworks.

2.2. PSMs in End-to-End Speech Recognition

Several prior studies show that E2E ASR systems benefit from effective feature repre-
sentations derived from PSMs. In [10,20], PSMs are first pre-trained and then used as feature
extractors to replace surface features, such as Mel-Frequency Cepstral Coefficients (MFCC)
and filter-bank features, for ASR systems. In [11,12], a BERT-style masked reconstruction
strategy is used to pre-train a transformer-based ASR encoder model by leveraging a large
amount of unannotated speech data, which are then fine-tuned with a randomly initialized
decoder on labeled speech data with cross-entropy loss. In [6,15,47], the ASR encoder is
first pre-trained using a contrastive loss and fine-tuned with a CTC loss.

To adapt PSMs towards the ASR tasks, most studies simply fine-tune the whole PSMs
with some domain data. To fully benefit from PSMs, how to efficiently and effectively
incorporate PSM into an E2E ASR system must be determined. First, fine-tuning PSMs
requires careful hyper-parameters tuning; for example, the learning rate can be sensitive
and unstable, especially in low-resource datasets. In addition, PSMs are usually very large;
a full-fledged fine-tuning of every parameter requires a large dataset.

Motivated by the related work, we propose introducing adapters to improve the
fine-tuning process. The idea of light-weight adapters has been successfully applied in
fine-tuning pre-trained vision models [48–50] and pre-trained language models [28,29,51].
In this paper, we further extend the idea of adapters and explore their application to adapt
PSMs within an E2E ASR framework.

3. Adaptation with Light-Weight Adapters
3.1. Transformer Encoder

The main architecture of wav2vec2.0 [6] is the Transformer encoder [52], as shown in
Figure 2, which is composed of multi-head attention (MHA), feed-forward layers, layer
normalization [53], and residual connections [54]. The MHA module is a crucial component
of the encoder, which enables the model to understand the connections between queries,
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keys, and values across various representation subspaces positions. The basic unit of the
MHA module is the self-attention module, which is computed using the following equation:

SelfAtt(Q, K, V) = Softmax(
QKT
√

dk
) (2)

where Q ∈ Rtq×dq , K ∈ Rtk×dk , and V ∈ Rtv×dv denotes queries, keys and values, re-
spectively. t∗ are the element numbers in different inputs and d∗ are the corresponding
element dimensions.

 Multi-Head  

 
Attention 

 Feed-Forward  Network

 Add & Layer Norm

 Add & Layer Norm

Encoder Layer 
Figure 2. The architecture of transformer encoder layer.

To introduce variations in the attention scores, the mechanism of self-attention can be
extended to the MHA version. In the MHA module, multiple sets of queries, keys, and
values are generated through linear projections of the input. These projections allow the
model to capture different aspects or perspectives of the input data.

MHA(Q, K, V) = Concat(h1, · · · , hH)Wo

hi = SelfAtt(QWq
i , KWk

i , VWv
i )

The queries, keys, and values are converted into subspaces through parameter matrices
Wq

i , Wk
i , Wv

i , where i is the index of a head. Then, the self-attention is calculated based on
the transformed inputs. Finally, the outputs are concatenated together and multiplied with
Wo. hi is one attention head; H is the number of heads.

The position-wise feed-forward neural network (FFN) transforms the output of the
attention at each position with a ReLU activation:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

where x is a vector at one position, W1, W2, b1, b2 are learnable parameters.
The Transformer encoder lacks recurrence and a convolutional layer; therefore, the

positional encoding is applied to provide the model with knowledge about the relative
positions of the input acoustic sequence. Specifically, the input frames are first projected
into the model’s dimension and subsequently added with the positional encoding. Rather
than using fixed positional embeddings that encode absolute positions, a convolutional
layer, akin to those in [22,55], is utilized to provide relatively positional embedding. The
convolution’s output is then added to the inputs followed by the layer normalization.
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3.2. Light-Weight Adapters

To efficiently and effectively transfer the learned knowledge of the pre-trained wav2vec2.0
to E2E ASR models, we introduce light-weight adapters and insert them into each wav2vec2.0
encoder layer. During downstream ASR training, only the parameters of the adapters are
updated, while the parameters of wav2vec2.0 model are kept frozen, allowing more flexible
architectural modifications to adapt the pre-trained model for the specific downstream task.
Therefore, the adapter-based adaptation could mitigate the issue of forgetting. Furthermore,
unlike standard fine-tuning, which introduces an entirety new model for the downstream task,
the adapter-based adaptation yields a compact model with only a few trainable parameters.

The architecture of a adapter is shown in Figure 3. It consists of a stack of down- and
up-scale neural networks that perform dimensionality transformation. The adapter maps
the input vector h from dimension d to a lower dimension m, and then re-maps it back to
dimension d. The hidden size m of the adapter allows for flexible control over the capacity
and efficiency of the adapter layers. To ensure the adapter module approximates an identity
function when the projection layers’ parameters are close to zero, a residual connection is
employed within the adapter network. This connection enables the adapter to preserve the
original information by bypassing the projection layers. Formally, given an input hidden
vector h, the output vector h′ is computed as follows:

h′ = f2(ReLU f1(h)) + h (4)

in which f1(·) and f2(·) are the down- and up-projection layers. As discussed in Section 3.1,
the information learned by the pre-trained model is mainly preserved in multi-head at-
tention and feed-forward modules. Therefore, two adapters are inserted for each encoder
layer of wav2vec2.0 model. Specifically, one adapter is placed after the multi-head attention
layer and another follows the feed-forward layer. During adaptation, only the parame-
ters of these adapters, along with the normalization layers and the final projection layer
(CTC-based ASR) or the decoder (encoder–decoder-based ASR), are updated.

 Multi-Head  

 
Attention 

 Feed-Forward Network

 Adapter

 Adapter

 Add & Layer Norm

 Add & Layer Norm

...
Feed-Forward Layer

Feed-Forward Layer

...

...
+

Adapter

Encoder Layer 

Figure 3. The structure of the proposed adapter module and its combination with the wav2vec2.0
Transformer encoder layer.
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The proposed adapter-based adaptation differs from two common adaptation methods,
e.g., feature-based transfer learning and full fine-tuning, in the following ways. Given a pre-
trained model with parameters w, represented as φw(x), feature-based transfer involves
composing φw with a newly introduced function ϕu, then obtaining ϕu(φw). During
training, only parameters of the task-specific model, u, will be updated, while parameters
of the pre-trained model remain fixed. On the other hand, fine-tuning tries to initialize
the task-specific model with pre-trained parameters and then adjust them. For adapter-
based adaptation, it defines a new function, ψw,v, where w is directly copied from the
pre-trained model and remains fixed during tuning. Typically, the adapter parameters, v
are much less than w, yielding light-weight adaptation and fast convergence, especially in
low-resource settings.

4. Experiments
4.1. Datasets

To verify the effectiveness of the proposed FTA method, we conduct the experiments
using three standard datasets: Libri-light [32], LibriSpeech [33] and Wall Street Journal
(WSJ) [34], including low-resource and high-resource scenarios. We use the limited-resource
training sets (10 min, 1 h, 10 h) of Libri-light for our low-resource experiments. WSJ and
LibriSpeech are considered for high-resource experiments.

4.2. Experimental Setup

We mainly use the publicly released pre-trained base wav2vec2.0 model
(https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt, accessed on 24 Octo-
ber 2020) for our experiments, which is pre-trained on 960 h of the full LibriSpeech dataset.
This base model comprises 12 transformer encoder layers, 12 self-attention heads, attention
dimension 768, and a total of 95 M parameters. The structure of our proposed adapter is a
simple two-layer feed-forward layer network with a residual connection. All the code and
experiments are performed in fairseq toolkit. All our experimental results are obtained without
LM decoding.

In CTC-based E2E ASR, the pre-trained wav2vec2.0 is fine-tuned by adding a randomly
initialized linear layer on top of the transformer encoder, which maps the output into C
classes, corresponding to the vocabulary. In encoder–decoder-based E2E ASR, pre-trained
wav2vec2.0 are fine-tuned with a randomly initialized decoder. For the decoder, the number
of layer is 6, the number of head of MHA is 8, the attention dimension is 768, and the
dimension of the intermediate feed-forward network is 3072. These specifications were
mainly chosen based on preliminary experiments and previous successful implementations
in related works [6,56]. For both E2E ASR systems, we utilize 29 tokens for character
targets, alongside a token that denotes word boundaries. SpecAugment is a simple data
augmentation technique used in speech recognition that manipulates the spectrogram of
the speech data. It involves time warping, frequency masking, and time masking to create
variations in the data, thereby enhancing the model’s ability to generalize. We employ
the same SpecAugment method in [6], where the mask is applied along the time and
channel dimensions during fine-tuning on LibriSpeech and Libri-light, which could delay
the overfitting problem and improve the final word error rates (WER) for a fair comparison.
For WSJ, no data augmentation method is used in all experiments.

We follow the default setup in [6], in which wav2vec2.0 is fine-tuned for 80 k steps
on the 100 h subset, 20 k steps on the 10 h subset, 13 k steps on the 1 h subset and 10 min
subset. For WSJ, the number of fine-tuning steps is 50 k. The learning rate increases
linearly for the initial 10% of the steps, stays constant for the next 40% of the steps, and
then decreases exponentially for the remaining 50% of the steps using Adam algorithm
in standard full fine-tuning. For adapter-based adaptation, we use the Adam optimizer

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
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with β1 = 0.9, β2 = 0.98, and ϵ = 10−9 and adjust the learning rate throughout the training
process, following the formula below:

lr = d−0.5
model · min(step−0.5, step · warmup−1.5) (5)

where the warm-up step is set to 5000.

5. Results and Discussion
5.1. Main Results

In Table 1, we investigate the effectiveness of the proposed FTA method in low-
resource settings, in which the 10 min, 1 h, and 10 h splits of Libri-light are used. The
hidden size of the adapter here is 256, the pre-trained model is wav2vec2.0 base model,
and we perform experiments using the CTC-based E2E ASR framework. Here, we mainly
report the results of experiments conducted specifically under the CTC-based E2E ASR
framework.

We also present the results of Continuous BERT and Discrete BERT [22] here; they
are also first pre-trained on the full 960 h LibriSpeech dataset and then fine-tuned using
these low-resource settings. As we do not have access to their pre-trained models, we
did not apply our proposed FTA for these two models. The results of DeCoAR2.0 [57]
and WavLM [21] are also provided; however, it should be noted that both of them are full
fine-tuned models for ASR.

From the table, we observe that the proposed FTA method is very effective in low-
resource scenarios. For the 10 min split, the proposed FTA achieves 17.5%/12.2% relative
WER reduction (38.7% vs. 46.9% on test-clean set, and 50.9% vs. 44.7% on the test-other
set). During a 1h split, FTA obtains 21.6%/11.6% relative WER reduction (19.2% vs. 24.5%
for the test-clean set, and 26.7% vs. 30.2% for the test-other set). These results suggest that
FTA clearly outperforms the whole-model fine-tuning on the low-resource dataset.

Table 1. WER (%) results on the test sets of LibriSpeech when the model is fine-tuned on the 10 min,
1 hour, 10 h subsets of Libri-light and the clean 100h subset of LibriSpeech. The hidden size of the
adapter is 256.

Method Fine-Tuning Data Test-Clean Test-Other

Continuous BERT + LM [22]
10 min 49.5 66.3
1 h 22.4 44.0
10 h 14.1 34.3

Continuous BERT + LM [22]
10 min 16.3 25.2
1 h 9.0 17.6
10 h 5.9 14.1

DeCoAR 2.0 + LM [57]
1 h 13.8 29.1
10 h 5.4 11.3
100 h 5.0 12.1

WavLM [21]
1 h 24.5 29.2
10 h 9.8 16.0
100 h 5.7 12.0

Whole model fine-tuning [6]

10 min 46.9 50.9
1 h 24.5 30.2
10 h 9.4 16.6
100 h 6.1 13.3

Proposed FTA

10 min 38.7 44.7
1 h 19.2 26.7
10 h 9.4 17.0
100 h 5.4 13.5
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5.2. Ablation Study

Another finding from Table 1 is that, as the quantity of training data increases, the
benefit of adapters diminishes. We conjecture that the whole model fine-tuning has a
more severe overfitting problem in low-resource settings, since it has much more tunable
parameters than FTA. The size of the adapter, which is the only adapter-specific hyperpa-
rameter, offers a straightforward way to balance the performance against the parameter
efficiency. Smaller adapters imply fewer parameters, but this might potentially compromise
the performance. In order to investigate this trade-off, we experiment with varying the
size of adapter on the 100 h split of LibriSpeech. In Table 2, we show the effect of adapter
hidden size, where we find that increasing size leads to marginal performance gains.

In Table 2, we also include other reported results for comparison, including noisy
student training [58] and joint training of CPC-CTC [59] here, where the 100 h split subset
of LibriSpeech are used as labeled data; the rest are used as unlabeled data. We observe that
the proposed FTA is as competitive as whole model fine-tuning, indicating the effectiveness
of the adapter in a high-resource setting. In addition, the proposed FTA is more parameter-
efficient, with only 14 M tunable parameters when the adapter size is 256, while whole
model fine-tuning involves 95 M parameters.

Table 2. WER (%) on the LibriSpeech test sets with different adapter hidden sizes. The model is
trained on the clean 100 h subset of LibriSpeech.

Method/WER # Params Test-Clean Test-Other

Noisy student + LM [58] - 4.2 8.6

Joint CPC-CTC [59] - 6.2 13.9

Whole model fine-tuning [6] 95 M 6.1 13.3

Proposed FTA
Adapter256 14 M 5.4 13.5
Adapter128 9 M 6.3 13.7
Adapter64 7 M 6.4 14.1

5.3. Transfer to Encoder–Decoder-Based E2E ASR

The above experiments are based on CTC-based E2E ASR, in which a randomly
initialized linear projection is added on top of the pre-trained wav2vec2.0. To appreciate
the adaptation ability of the adapters, we use the adapters to incorporate the pre-trained
wav2vec2.0 into encoder–decoder-based E2E ASR, in which, instead, a randomly initialized
transformer decoder is combined with the pre-trained encoder. During tuning, only the
adapters in the encoder module and the decoder module are updated. To explore this,
we perform the experiments on the WSJ dataset and the recognition results are shown in
Table 3. We also present the results of the state-of-the-art transformer, which is trained only
on WSJ data using the ESPnet toolkit [60]. It should be noted that all our results are without
LM decoding.

The results suggest that the adapters work well in encoder–decoder E2E ASR by
simply incorporating the pre-trained ASR encoder. The FTA method achieves almost the
same recognition results with the whole model fine-tuning. In the whole model fine-tuning
settings, we also experiment with only fine-tuning the top eight, top six, and top four
layers of the pre-trained wav2vec2.0 encoder and the decoder. Obviously, the performance
decreases dramatically when fewer layers are fine-tuned. In contrast, when we only tune
the adapters of the top eight, top six, and top four layers of the wav2vec2.0 encoder and
the decoder, the performance is well maintained, confirming the adaptation ability of the
proposed adapters. This also suggests that pruning some adapters layers will not severely
hurt the performance; hence, we will perform adapter layer selection in our future work to
further reduce parameters. In addition, we observe the same phenomena that increasing
the hidden size will lead to marginal performance gains, except too-small hidden size 64.
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Table 3. WER (%) on WSJ with different hidden adapter sizes. The wav2vec2.0 base model is used as
the pre-trained speech model, which is fine-tuned for encoder–decoder-based E2E ASR. Adapterk−256

means that adapters of the top k encoder layers and the decoder are trained.

Method/WER test_dev93 test_eval92

Transformer (ESPnet) [60] 18.6 14.8
+ LM [60] 8.8 5.6

Whole model fine-tuning
top 12 layers (full) 7.7 6.4
top 8 layers 9.2 8.4
top 6 layers 10.0 8.8
top 4 layers 15.0 13.2

Proposed FTA
Adapter512 7.7 6.1
Adapter256 7.6 6.5
Adapter128 8.0 6.5
Adapter64 8.2 7.1

Adapter8−256 7.9 6.2
Adapter6−256 7.9 6.4
Adapter4−256 10.7 9.2

6. Conclusions

In this study, we introduced the light-weight adapters, a simple and intuitive adapta-
tion technique in concept, for adapting pre-trained self-supervised learning models for E2E
ASR systems. Our experiments demonstrated the effectiveness and parameter efficiency of
the adapters. Specifically, we found that the proposed FTA tends to outperform the full
fine-tuning on low-resource settings, achieving a relative WER reduction of 17.5%/12.2%
on the 10 min LibriSpeech split. In high-resource settings, the FTA achieves comparable
recognition performance but with a significant reduction in parameter usage. Furthermore,
we explored the trade-off between parameters of adapters and the resulting recognition
performance, suggesting that a carefully designed adapter could provide further improve-
ments in ASR performance while maintaining parameter efficiency. In future work, we plan
to further explore the potential applications of this adaptation technique. One interesting
direction is the integration of pre-trained speech models and pre-trained language models
within the E2E ASR framework. We believe this approach could potentially lead to a
more comprehensive and efficient ASR system. Additionally, we will also explore how
the light-weight adapters can be combined with other methods to further enhance the
performance. This could include exploring how the adapters can be used in conjunction
with other types of model adaptation techniques.
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