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Abstract: Facial beauty prediction (FBP) is a leading research subject in the field of artificial intelli-
gence (AI), in which computers make facial beauty judgments and predictions similar to those of
humans. At present, the methods are mainly based on deep neural networks. However, there still
exist some problems such as insufficient label information and overfitting. Multi-task learning uses
label information from multiple databases, which increases the utilization of label information and
enhances the feature extraction ability of the network. Attentional feature fusion (AFF) combines
semantic information and introduces an attention mechanism to reduce the risk of overfitting. In
this study, the multi-task learning of an adaptive sharing policy combined with AFF is presented
based on the adaptive sharing (AdaShare) network in FBP. First, an adaptive sharing policy is added
to multi-task learning with ResNet18 as the backbone network. Second, the AFF is introduced at
the short skip connections of the network. The proposed method improves the accuracy of FBP by
solving the problems of insufficient label information and overfitting issues. The experimental results
based on the large-scale Asia facial beauty database (LSAFBD) and SCUT-FBP5500 databases show
that the proposed method outperforms the single-database single-task baseline and can be applied
extensively in image classification and other fields.

Keywords: attentional feature fusion; facial beauty prediction; image classification; multi-task learning

1. Introduction

Facial beauty prediction (FBP) is a leading research subject in the field of artificial
intelligence (AI), in which computers make facial beauty judgments and predictions similar
to those of humans. With the development of AI, the applications of FBP are constantly
expanding, including virtual makeup, plastic surgery, portrait photography and other
fields. Research on FBP not only helps people understand and interpret beauty more
scientifically and objectively but also promotes the development of AI, which has important
significance. Currently, deep learning methods are generally used in FBP, which requires
large amounts of label information. Existing facial beauty databases have certain issues,
such as insufficient label information. Solving the aforementioned issue has become a
popular subject in the field of FBP research. At present, some progress has been made in
FBP research [1–7]. In [1], a novel personalized FBP approach based on meta-learning was
designed to apply in some small databases. In [2], a self-correcting noise labels method
was proposed. It can automatically select clean samples for learning and can make full
use of all data to reduce the negative impact of noise labels. In [3], a fusion model of
pseudolabel and cross-network was applied to solve the problems of weak generalization
ability and insufficient label information in FBP. In [4], an innovative method of broad
learning fused with transfer learning was applied in FBP, which received better performance
in prediction accuracy and training speed. In [5], an adaptive transformer with global and
local multihead self-attention was proposed for FBP, which achieved better performance
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on several datasets of different scales. In [6], a dynamic convolution vision transformer
named FBPFormer was proposed which aims to focus on both local and global facial beauty
features. Furthermore, an instance-level dynamic exponential loss function was designed
to adjust the optimization objectives of the model dynamically. In [7], a novel method
was proposed to improve the facial beauty feature extraction ability of CNNs, in which
generative adversarial networks (GAN) were used to generate facial data.

Although the research above improved the accuracy of FBP, it did not efficiently solve
the problems of insufficient label information and overfitting. Multi-task learning improves
the generalization ability of a network by training related tasks containing domain-specific
information. In the era of deep learning, multi-task learning has been transformed into
designing networks that can learn shared representations from the label information of
multiple tasks. Compared with a single-task learning network, a multi-task learning
network has greater advantages. For example, related tasks can share complementary
information or act as regularizers, thereby improving the network performance. FBP based
on multi-task learning has been extensively studied in recent years [8,9]. In [8], a neural
architecture search (NAS) was applied to FBP to automatically determine the backbone
network for multi-task learning. Moreover, a new preprocessing method was introduced
to enhance the diversity of data and a nonlocal spatial attention module was proposed
which further improved the performance of the network on the FBP task. By combining
ResneXt-50 and Inception-v3, the dual-branch network can extract more facial beauty
features and balance performance and parameter quantity [9]. Simultaneously, adaptive
and dynamic loss functions are introduced.

At present, multi-task learning networks can be generally divided into hard parameter
sharing and soft parameter sharing networks. In the hard parameter sharing network,
the parameters are divided into a shared parameter and a task-specific parameter, and a
hard parameter sharing network usually consists of several shared network layers and a
task-specific network layer. In the soft parameter sharing network, each task has a separate
feature extraction layer, with L2-norm or trace norms to constrain the parameters of the
shared feature extraction layer. However, these two kinds of multi-task learning mostly
set up the network layer statically. The method for adaptively training the network has
become one of the key issues of multi-task learning.

Adaptive training can be divided into three key methods. First, the optimal backbone
network is adaptively obtained according to different tasks through the NAS. Auto-multi-
task learning (AutoMTL) proposed an automatic and efficient multi-task learning network
framework for vision tasks, which takes a backbone network and a set of tasks to be learned
as input and automatically generates a high-precision multi-task learning model [10]. Al-
though NAS can automatically generate a high-precision multi-task learning network, it
requires high computing equipment and a long calculation time. Second, in the process of
parameter backpropagation for network optimization, adaptive task weights are learned
based on the importance of different tasks. A Bayesian task weight learner is used to adjust
the task weights and back-propagate the joint loss of different tasks [11]. The adaptive
weight learning method based on the verification loss trend can measure the importance
of different tasks and adjust the weights of different tasks [12]. In [13], a new training
algorithm was proposed to utilize the similarity between tasks to learn the task relationship
coefficients and neural network parameters. Although the optimization algorithm con-
sumed fewer resources, the improvement in the network performance was limited. Finally,
the network layer parameters that can be shared across tasks are determined. In adaptive
sharing (AdaShare) networks, researchers have investigated sharing policies between tasks
to achieve the highest accuracy and improve resource efficiency [14]. However, in an
AdaShare network, the atrous spatial pyramid pooling (ASPP) method loses local informa-
tion when extracting multiscale information from images. Attentional feature fusion (AFF)
combines local and global information with semantic information at different levels [15].

There were differences in the distributions of the means and variances in the dif-
ferent databases. Shared batch normalization (BN) layers tend to exhibit poor network
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performance. A dataset-aware block (DAB) was applied to capture the homogeneous
convolutional representations and heterogeneous statistics across different datasets, where
the dataset alternation training (DAT) mechanism was utilized to facilitate the optimization
process [16]. Reference [17] proposed a different training mechanism. Each batch of training
data consisted of data randomly selected from all the datasets for batch loss calculation.

The chief contributions of this study are summarized as follows:

• We extend the AdaShare network, introduce DAB to solve the issue of distribution
differences between different databases in multi-task learning on FBP and apply the
network in various databases.

• We propose multi-task learning of an adaptive sharing policy combined with AFF
to solve the issue of insufficient label information and overfitting for FBP, in which
the receptive field is expanded, and more semantic information is obtained from
the images.

• The experimental results show that multi-task learning of the adaptive sharing policy
combined with AFF outperforms the baseline model and the other method on FBP.

2. Methods
2.1. Network Model

A schematic diagram of the network model structure is shown in Figure 1, including
the pre-trained network module, multi-task learning of the adaptive sharing policy com-
bined with the AFF and classification module. The pre-training network module transfers
the parameters to multi-task learning of the adaptive sharing policy combined with the AFF
module through the ResNet18 [18] network trained by the ImageNet datasets. Multi-task
learning of adaptive sharing policy combined with the AFF module contains multi-task
learning of adaptive sharing policy with ResNet18 as the backbone network plus the AFF
introduced at the short-skip connection. It primarily performs sharing policy learning,
image feature extraction, and fusion. The classification module includes an average pooling
layer, a fully connected layer, a Dropout [19] layer and a softmax classifier. Database1 and
database2 are two different databases, task1 and task2 are two different tasks. First, the
parameters of the pretrained network module are transferred to the multi-task learning
of the adaptive sharing policy combined with the AFF module. Second, the images from
database1 and database2 are simultaneously entered into the multi-task learning of the
adaptive sharing policy combined with the AFF module. Meanwhile, the sharing policies
and image features of task1 and task2 are learned from the module. Finally, the features
are entered into the classification module, in which the categories of task1 and task2 are
the outputs.

2.2. Multi-Task Learning of Adaptive Sharing Policy Combined with AFF Module

The multi-task learning of the adaptive sharing policy combined with the AFF module
was extended with ResNet18 as the backbone network; its schematic is shown in Figure 2.
Among them, the multi-task learning of the adaptive sharing policy combined with the AFF
module contains four-layer blocks, and each layer block is composed of four BasicBlock
structures. First, the images from database1 and database2 are entered into the network
simultaneously. In the convolution, ReLU, and max-pooling layers, the network parameters
of the two tasks are shared. Second, the image features must pass through four-layer blocks.
The BasicBlock structure of each layer block includes an adaptive sharing policy and AFF. A
schematic of the layered block structure is shown in Figure 3, and the BasicBlock structure is
shown in Figure 4. Finally, the features produced by layer4 are entered into the classification
module and the classification results of task1 and task2 are produced.
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In Figure 3, x1,i, x′1,i, out1,i, policy1,i are the variables of task1 in the i − th(2 < i < 17)
layer network. Among them, x1,i, x′1,i are feature maps with a resolution of m × n and
a channel number of l, that is x1,i, x′1,i ∈ Rm×n×l . policy1,i represents the sharing policy
of task1 on the i − th layer network. In Figure 3, the specific process can be described
as follows:

First, x1,i is changed into x′1,i through the BasicBlock structure. At the same time, x1,i
concatenates x′1,i and its result is multiplied by policy1,i. Finally, out1,i is obtained. out1,i
can be expressed as follows:

out1,i = [x′1,i x1,i]·policy1,i =
x′1,i·0 + x1,i·1, when policy1,i =

[
0
1

]
x′1,i·1 + x1,i·0, when policy1,i =

[
1
0

] (1)

where policy1,i = [0 1]T indicates that the sharing policy of task1 in the i − th layer network
is skipped. policy1,i = [1 0]T indicates that the sharing policy of task1 in the i − th layer
network is implemented. The multi-task learning of adaptive sharing policy aims to learn
the sharing policy and network weights from the loss function through backpropagation.
But each policy1,i is discrete and non-differentiable so the gradient of the entire network
cannot be backpropagated. Therefore, the Gumbel Softmax [20] function is applied to solve
this non-differentiable problem to complete backpropagation and update the parameters.
x2,i, x′2,i, x′′

2,i, out2,i, policy2,i represent the variables of task2 in the i-th layer network,
which are the same as the variables of task1 in the network. The details of the adaptive
sharing policy are expressed in Algorithm 1.

Algorithm 1 Facial beauty prediction via adaptive sharing policy

Input: sample set x
Output: output set out
1: n is the number of layers in the backbone;
2: m is the number of blocks in each layer;
3: policy is the adaptive policy of the current layer;
4: φ indicates the BasicBlock structure;
5: ϕ indicates the concatenation and multiplication;
6: for i, i ≤ n do
7: for j, j ≤ m do
8: Calculate x′ = φ(x)
9: Calculate out = ϕ(x, x′, policy)
10: end
11: end
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To improve the convergence speed of the network, a multi-stage training method is
adopted during the training phase. Initially, the multi-task learning network shares all the
parameters. As the number of training epochs increases, the deep network adopts a shared
policy for training. In a deep convolutional network, the BN layer can be understood as a
simplified whitening operation on the input value of each layer of the deep network. This
whitening operation is significantly affected by the distribution of the databases. Therefore,
to apply the label information of multiple databases and to solve the issue of distribution
differences caused by different databases, DAB is introduced, which implies that different
tasks will use different BN layers. Figure 4 shows a schematic of the improved BasicBlock
structure proposed in this study, where input1 and input2 represent the Image features of
database1 and database2 in Figure 2, and the tasks of each database use different BN layers.
The AFF aims to extract features that are more relevant to the current task and fuse channel
features at different scales.

2.3. Attentional Feature Fusion

The AFF module was introduced to fuse the semantic information of different network
layers and generate the fusion weights for the mapping and residuals of the network [15].
Figure 5 shows a schematic of the AFF structure, where b, r ∈ RC×H×W and C is the
channels, H is the height, and W is the width. In ResNet [18], b is the mapping and r is the
residual. Based on the multiscale channel attention module (MS-CAM), the AFF can be
expressed as follows:

z = c′ ⊗ b ⊕ (1 − c′)⊗ r (2)

where z ∈ RC×H×W is the fusion feature of the i − th layer network, the ⊗ operation is the
multiplication of each element, the ⊕ operation is the sum of each element, and c′ = MS(c),
c = b ⊕ r, and 1 − c′ is obtained from c′ by passing it through the Diff operation. The
output c′ after the MS-CAM structure is a real number between 0 and 1, and 1 − c′ is also a
real number between 0 and 1. Therefore, the network can improve the feature extraction
ability by learning the fusion weight of the mapping and residual, thereby improving the
accuracy of the target task. Figure 6 shows a schematic of the MS-CAM structure.
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In AFF, MS-CAM fuses local and global features in the attention mechanism, which not
only assigns different weights to each channel but also gathers multi-scale feature context
information. Thus, it improves the network’s ability to extract the target task features. By
aggregating multiscale contextual information along the channel dimension, MS-CAM can
simultaneously emphasize global and local information [15]. Therefore, the MS-CAM was
utilized as a multiscale feature extractor. The local information extractor can be computed
as follows:

L(c) = B(PWConv2(δ(B(PWConv1(c))))) (3)

where PWConv1 indicates that the channels of the input feature c ∈ RC×H×W are reduced
to the original 1/r by the point convolution of 1 × 1, B indicates the BN layer, δ indicates
the ReLU activation layer, PWConv2 indicates that the channels are restored to the original
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input channel by the point convolution of 1 × 1, and r is the channel-scaling ratio. The
global information extractor can be represented as follows:

G(c) = B(PWConv2(δ(B(PWConv1(A(c)))))) (4)

where A(c) denotes the global average pooling layer. The final output c′ can be calculated
as follows:

c′ = c ⊗ σ(L(c)⊕ G(c)) (5)

where σ is the Sigmoid activation function. Therefore, a network with AFF not only fuses
different semantic information but also introduces an attention mechanism that improves
the feature extraction ability of the network, reduces the risk of overfitting, and improves
the accuracy of the target task.
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tio. The global information extractor can be represented as follows: 
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Figure 6. Schematic diagram of MS-CAM structure.

2.4. Loss Function

In this study, cross-entropy was adopted as the loss function for task1 and task2, which
can be defined as follows:

L =
N

∑
i=1

yi∗ log(pi) (6)

where N is the number of categories in task1 or task2, yi is the label value of the i − th
category of the image, and pi is the probability value of the image being predicted as the
i − th category. The total task loss function can be formalized as follows:

Ltask = λ1L1 + λ2L2 (7)

where L1 and L2 represent the loss function value of task1 and task2, respectively; λ1 and
λ2 represent the weight coefficient of task1 and task2, respectively. In multi-task learning,
the weight ratio λ1 : λ2 of different tasks affects the accuracy of the target task.
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3. Experiments and Analysis
3.1. Experimental Databases
3.1.1. LSAFBD Database

The authors established the LSAFBD database with 20,000 labeled facial images (in-
cluding 10,000 male and 10,000 female facial images) and 80,000 unlabeled facial images,
with a resolution of 144 × 144. It is divided into five categories, including “0”, “1”, “2”, “3”
and “4”, which correspond to five attractiveness levels of facial beauty, with “0” being the
lowest level and “4” being the highest level. This study primarily focused on experiments
with 10,000 labeled female facial images from the LSAFBD database. The distribution
of facial beauty labels in the LSAFBD database and some image samples in the LSAFBD
database are shown in Figures 7 and 8, respectively.
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Figure 8. Facial images with different properties of LSAFBD.

3.1.2. SCUT-FBP5500 Database

The SCUT-FBP5500 database was established by the South China University of Tech-
nology and contains a total of 5,500 facial images with a resolution of 350 × 350. Each
facial image contained various label information, including gender (male or female), race
(Asian or White), and facial beauty. The facial beauty level of the SCUT-FBP5500 database
is divided into five levels, namely “0”, “1”, “2”, “3” and “4”, which correspond to the five
attractiveness levels of facial beauty, with “0” as the lowest grade, and “4” as the highest
grade. The facial beauty grade of each image was given by 60 volunteers; therefore, this
study takes the grade with the largest number of volunteers as the facial beauty grade of the
image. The distribution of the facial beauty labels in the SCUT-FBP5500 database and some
image samples of the SCUT-FBP5500 database are shown in Figures 9 and 10, respectively.
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3.2. Experimental Environment

Table 1 describes the experimental environment. In Figure 3, the variables x1,i, x′1,i,
and x′′

1,i have a resolution of 56 × 56, the number of channels is 64, the task weight ratio
λ1 : λ2 of the training phase is 1:0.6, the data batch size is 32, the initial learning rate is
0.001, and the optimizer is AdamW [21]. In this study, the accuracy (ACC) and F1 score
were applied as the performance evaluation metric.

Table 1. Experimental environment configuration.

Environment Parameters

Deep learning framework Pytorch1.12.1
Operating system Ubuntu20.04

Memory 64 G
Resolution m × n 56 × 56

Channels l 64
Task weight ratio λ1 : λ2 1:0.6

Learning rate 0.001
Batch size 32
Optimizer AdamW

The experimental setting in Figure 1, is shown in Table 2. Database1 and database2
represent the LSAFBD database and SCUT-FBP5500 database, respectively. Task1 and task2
represent the facial beauty prediction (FBP) and gender recognition (GR), respectively.



Electronics 2024, 13, 179 10 of 17

Table 2. Explanation of the experimental setting.

Experiment Settings Explanation

Database1 LSAFBD
Database2 SCUT-FBP5500

Task1 FBP
Task2 GR

3.3. Comparison Experiment between the Proposed Method and the Baseline
3.3.1. Experiments Based on Different Databases

The experimental results of the proposed method and the baseline based on the
LSAFBD database are shown in Tables 3–5. The ratio of the training, verification and testing
set was 6:2:2, and the experiments included the training and testing phases. In the training
phase, the facial beauty-labeled data from the LSAFBD database and gender-labeled data
from the SCUT-FBP5500 database are used as an input of the network for the proposed
method. In the testing phase, the proposed method was based on the testing set of the
LSAFBD database for FBP. The baseline based on transfer learning was a single-database,
single-task method with ResNet18 as the backbone network. In the training phase, the
facial beauty-labeled data from the LSAFBD database are used as an input of the network of
baseline. During the testing phase, the baseline was based on the testing set of the LSAFBD
database for FBP.

Table 3. Experimental results based on LSAFBD (ACC(%), F1 score(%)).

Batch
Size Task

Method Baseline without AFF Baseline with AFF Ours without AFF Ours with AFF

ACC F1 Score ACC F1 Score ACC F1 Score ACC F1 Score

32 FBP 58.01 56.51 59.52 57.70 59.12 57.72 61.37 59.72
16 FBP 58.02 56.53 59.77 57.76 59.02 57.62 61.12 59.53

Note: The bold is the optimal value.

Table 4. Experimental results of the proposed method based on LSAFBD (ACC(%), time (s), difference
of ACC(%)).

Batch
Size

Task

Method Ours without AFF Ours with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32 FBP 2976.04 63.42 59.12 4.30% 3867.85 63.49 61.37 2.12%
16 FBP 3555.86 63.12 59.02 4.10% 4587.81 63.31 61.12 2.19%

Note: The bold is the optimal value.

Table 5. Experimental results of the baseline based on LSAFBD (ACC(%), time (s), difference of
ACC(%)).

Batch
Size

Task

Method Baseline without AFF Baseline with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32 FBP 637.23 65.03 58.01 7.02% 853.19 61.61 59.52 2.09%

16 FBP 800.91 65.28 58.02 7.26% 1154.07 61.72 59.77 1.95%

It can be observed from Table 3 that with AFF, the accuracy of the FBP in the proposed
method was 61.37%, which was 1.85% higher than the baseline accuracy of 59.52% and
the F1 score of the FBP in the proposed method was 59.72%, which was 2.02% higher than
the baseline F1 score of 57.70. Without AFF when the batch size was 32, the accuracy of
the FBP in the proposed method was 59.12%, which was 1.11% higher than the baseline
accuracy of 58.01% and the F1 score of the FBP in the proposed method was 57.72%, which
was 1.21% higher than the baseline F1 score of 56.51%. The experimental results showed
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that the proposed multi-task learning of the adaptive sharing policy outperformed the
baseline. In the current method, the accuracy of FBP with AFF was 61.37%, which was
2.25% higher than that without AFF (59.12%) and the F1 score of FBP with AFF was 59.72%,
which was 2.00% higher than that without AFF (57.72%). At baseline, the accuracy of FBP
with AFF was 59.52%, which was 1.51% higher than the accuracy of 58.01% and the F1
score of FBP with AFF was 57.70%, which was 1.19% higher than the F1 score of 56.51%.
The experimental results showed that AFF can improve the network’s ability to extract
facial beauty features, thereby improving the accuracy of FBP. When the batch size was 16,
the proposed method also achieved better performance than the baseline.

It can be observed from Table 4 to Table 5 that when the batch size was 32, the difference
between the training accuracy and testing accuracy of the proposed method with AFF was
2.12%, which is 2.18% lower than that of the proposed method without AFF of 4.30%. The
difference between the training accuracy and testing accuracy of the baseline with AFF
was 2.09%, which was 4.93% lower than that of the baseline without AFF of 7.02%. The
experimental results showed that the AFF truly reduces the risk of overfitting and improves
the feature extraction capability of the network. The improvement also can be seen when
the batch size was 16.

Table 6 shows the experimental results of the proposed method and the baseline
method based on the SCUT-FBP5500 database, respectively. In the training phase, the
facial beauty-labeled and gender-labeled data from the training set are used as an input of
the network of the proposed method simultaneously. In the testing phase, the proposed
method was based on a testing set for FBP and GR. In the training phase, the facial beauty-
labeled data and gender-labeled data from the training set are used as an input of the
network of baseline, respectively. In the testing phase, the baseline implemented FBP and
GR, respectively, based on the testing set.

Table 6. Experimental results based on SCUT-FBP5500 (ACC(%), F1 score(%)).

Batch
Size Task

Method Baseline without AFF Baseline with AFF Ours without AFF Ours with AFF

ACC F1 Score ACC F1 Score ACC F1 Score ACC F1 Score

32
FBP 73.41 70.64 74.50 71.72 74.23 72.02 75.41 73.82

GR 98.27 98.26 98.55 98.55 96.52 96.52 97.09 97.09

16
FBP 73.67 70.13 74.61 71.91 73.95 71.91 75.13 73.27

GR 98.45 98.45 98.73 98.73 96.43 96.40 96.89 96.88

It can be observed from Table 6 that with AFF, the FBP accuracy of the proposed
method was 75.41%, which was 0.91% higher than the baseline accuracy of 74.50% and the
F1 score was 73.82%, which was 1.1% higher than the baseline F1 score of 71.72%. Without
AFF when the batch size was 32, the accuracy of the FBP in the proposed method was
74.23%, which was 0.82% higher than the baseline accuracy of 73.41% and the F1 score was
72.02%, which was 1.38% higher than the baseline F1 score of 70.64. The experimental results
showed that the proposed multi-task learning of the adaptive sharing policy outperformed
the baseline. In the current method, the accuracy of FBP with AFF was 75.41%, which was
1.18% higher than the accuracy of 74.23% without AFF and the F1 score of FBP with AFF
was 73.82%, which was 1.8% higher than the F1 score of 72.02% without AFF. The accuracy
of the GR with AFF was 97.09%, which was 0.57% higher than the accuracy of 96.52% and
the F1 score of the GR with AFF was 97.09%, which was 0.57% higher than the F1 score of
96.52%. At baseline, the accuracy of FBP with AFF was 74.50%, which was 1.09% higher
than the accuracy of 73.41% without AFF, and the F1 score of FBP with AFF was 71.72%,
which was 1.08% higher than the F1 score of 70.64. The accuracy of GR with AFF was
98.55%, which was 0.28% higher than the accuracy of 98.27% without AFF and the F1 score
of GR with AFF was 98.55%, which was 0.29% higher than the F1 score of 98.26%. The
experimental results showed that AFF can improve the network’s ability to extract facial
beauty and gender features, thereby improving the accuracy of FBP in both the proposed
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method and the baseline. When the batch size was 16, the proposed method also achieved
better performance than the baseline.

It can be observed from Table 7 to Table 8 that when the batch size was 32, the difference
between FBP training accuracy and FBP testing accuracy of the proposed method with
AFF was 1.43%, which was 2.02% lower than that of the proposed method without AFF
of 3.45%. The difference between FBP training accuracy and FBP testing accuracy of the
baseline with AFF was 0.61%, which was 6.45% lower than that of the baseline without AFF
of 7.06%. The experimental results showed that the AFF truly reduces the risk of overfitting
and improves the feature extraction capability of the network. The improvement also can
be seen when the batch size was 16.

Table 7. Experimental results of the proposed method based on SCUT-FBP5500 (ACC(%), time (s),
difference of ACC(%)).

Batch
Size

Task

Method Ours without AFF Ours with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32
FBP

1587.81
77.68 74.23 3.45

2073.85
76.84 75.41 1.43

GR 97.36 96.52 0.84 97.63 97.09 0.54

16
FBP

1894.58
77.49 73.95 3.54

3076.09
76.44 75.13 1.31

GR 97.13 96.43 0.70 97.50 96.89 0.61

Table 8. Experimental results of the baseline based on SCUT-FBP5500 (ACC(%), time (s), difference of
ACC(%)).

Batch
Size

Task

Method Baseline without AFF Baseline with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32
FBP 372.69 80.47 73.41 7.06 482.48 75.11 74.50 0.61

GR 362.23 98.49 98.27 0.22 484.57 98.64 98.55 0.09

16
FBP 442.85 79.49 73.67 5.82 653.17 75.24 74.61 0.63

GR 443.31 98.61 98.45 0.16 619.89 98.86 98.73 0.13

From the experimental results, it is observed that in FBP multi-task learning of the
adaptive sharing policy combined with AFF achieved the best results on the two different
databases. The proposed method not only effectively utilizes GR to improve the network’s
ability to extract facial beauty features, but also reduces the risk of overfitting through
attention feature fusion, thereby improving the accuracy of FBP. From the experimental
results in Table 6, it can be observed that the accuracy of the proposed method is lower
than that of the baseline method in terms of the GR. This is because the proposed method
improves the accuracy of FBP through GR. Therefore, when the task weight ratio λ1 : λ2
was 1:0.6, the network learned more facial beauty features, resulting in a lower extraction
ability for gender features than the baseline. From Tables 4, 5, 7 and 8, it can be observed
that the proposed method requires more time for training. This is because the proposed
method has a more complex network and more data to calculate.

3.3.2. Experiments with Different Weight Ratios Based on Different Databases

To study the effect of the weight ratio λ1 : λ2 on different tasks in FBP, the weight
ratios of the three groups of FBP and GR were explored. The experimental results for
different weight ratios based on the LSAFBD database are shown in Table 9. At a weight
ratio of 1:0.6, FBP achieved an accuracy of 61.37%, surpassing the 58.91% by 2.46% at a
weight ratio of 1:0.7, and exceeding the 58.62% by 2.75% at a weight ratio of 1:0.5. At a
weight ratio of 1:0.6, FBP achieved an F1 score of 59.72%, surpassing the 56.94% by 2.78%
at a weight ratio of 1:0.7, and exceeding the 56.70% by 3.02% at a weight ratio of 1:0.5. The
experimental results showed that different weight ratios have a significant influence on the
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FBP. When the weight ratio was 1:0.6, the proposed method achieved the best performance
on the LSAFBD database.

Table 9. Different weight ratios of the experimental results based on LSAFBD (ACC(%), F1 score(%)).

Batch Size
Task

λ1:λ2 1:0.7 1:0.6 1:0.5

ACC F1 Score ACC F1 Score ACC F1 Score

32 FBP 58.91 56.94 61.37 59.72 58.62 56.70

16 FBP 58.88 56.86 61.12 59.53 58.53 56.37

Note: The bold is the optimal value.

The experimental results for different weight ratios based on the SCUT-FBP5500
database of the proposed method are shown in Table 10. When the weight ratio was 1:0.6,
the accuracy of the FBP was 75.41%, which was 1.76% higher than 73.65% when the weight
ratio was 1:0.7, and 1.83% higher than 73.58% when the weight ratio was 1:0.5. When
the weight ratio was 1:0.7, the accuracy of the GR was 97.18%, which was 0.09% higher
than 97.09% when the weight ratio was 1:0.6, and 0.73% higher than 96.45% when the
weight ratio was 1:0.5. When the weight ratio was 1:0.6, the F1 score of the FBP was 73.82,
which was 2.40% higher than 71.42 when the weight ratio was 1:0.7, and 2.42% higher than
71.40% when the weight ratio was 1:0.5. When the weight ratio was 1:0.7, the F1 score
of the GR was 97.18%, which was 0.09% higher than 97.09% when the weight ratio was
1:0.6, and 0.77% higher than 96.41% when the weight ratio was 1:0.5. The experimental
results showed that different weight ratios have a significant influence on the FBP. When
the weight ratio was 1:0.6, the proposed method achieved the best performance on the
SCUT-FBP5500 database.

Table 10. Different weight ratios of the experimental results based on SCUT-FBP5500 (ACC(%), F1 score(%)).

Batch Size
Task

λ1:λ2 1:0.7 1:0.6 1:0.5

ACC F1 Score ACC F1 Score ACC F1 Score

32
FBP 73.65 71.42 75.41 73.82 73.58 71.40

GR 97.18 97.18 97.09 97.09 96.45 96.44

16
FBP 73.27 71.67 75.13 73.27 73.41 70.67

GR 97.15 97.14 96.89 96.88 96.35 96.31

From the experimental results, it is observed that when the weight ratio is 1:0.6, the FBP
accuracy of the proposed method based on two different databases reaches the highest value
in the existing experiments. When the weight ratio was 1:0.7, the gender features learned
by the network increased and the facial beauty features decreased, resulting in a slight
improvement in the accuracy of the FBP compared with the single-task network. When
the weight ratio was 1:0.5, the gender features learned by the network were insufficient,
and compared with the single-task network, it could only slightly improve the accuracy of
the FBP.

3.4. Comparison Experiments between the Proposed Method and Other Models

In this section, the proposed method is compared with other models based on the
LSAFBD database and SCUT-FBP5500 databases. The experimental results for the proposed
method and other models are shown in Table 11. Based on the LSAFBD database, during
the training phase, the facial beauty-labeled data from the LSAFBD database and the
gender-labeled data from the SCUT-FBP5500 database are used as an input of the network
of the proposed method simultaneously. In the testing phase, the proposed method was
based on the testing set of the LSAFBD database for FBP. In the training phase, the facial
beauty-labeled data from the LSAFBD database are used as an input of the other models. In
the testing phase, the other models were based on the testing set of the LSAFBD database
for the FBP.
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Table 11. Experimental results compared with other models (ACC(%)).

Method

Task LSAFBD SCUT-FBP5500

FBP FBP

GoogleNet [22] 56.06 72.77

MobileNetV2 [23] 50.70 72.13

MobileNetV3 [24] 52.35 72.31

ShuffleNetV2 [25] 59.97 75.14

DenseNet [26] 59.32 73.95

EfficientNet [27] 59.02 75.04

RegNet [28] 59.02 74.68

ConvNeXt [29] 60.67 75.32

Proposed method 61.37 75.41
Note: The bold is the optimal value.

Based on the SCUT-FBP5500 database, in the training phase, facial beauty labeled data
and gender labeled data of the SCUT-FBP5500 database are used as an input of the network
of the proposed method simultaneously. During the testing phase, the proposed method
was based on the testing set of the SCUT-FBP5500 database for FBP. In the training phase,
the facial beauty-labeled data from the SCUT-FBP5500 database are used as an input for
the other models. During the testing phase, the other models were based on the testing set
of the SCUT-FBP5500 database for FBP.

In Table 1, GoogleNet [22] improved the utilization of computing resources inside
the network through the inception structure. MobileNetV2 [23] introduced a residual
structure that ascended and descended the dimensions to enhance the propagation of
gradients and significantly reduce the memory footprint required during inference. Mo-
bileNetV3 [24] added a lightweight attention model Squeeze Excitation (SE) structure based
on MobileNetV2. ShuffleNetV2[25] proposed that the ratio of the input feature matrix
channel to the output matrix channel should be equal to or close to one. The input to
each network layer in DenseNet [26] is a concatenation of all previous network outputs.
EfficientNet [27] was proposed to keep the channels of features, depth of the network
model, and image resolution small, which can create a competitive and computationally
efficient CNN model. RegNet [28] aims to determine the optimal search space. Using the
search space, a series of design criteria for the model can be obtained and extended to
other scenarios. In ConvNeXt [29], better CNN structures and parameter settings were
determined through numerous experiments.

Based on the LSAFBD database, the FBP accuracy of the proposed method was 61.37%,
which was 5.31% higher than 56.06% on GoogleNet, 11.3% higher than 50.70% on Mo-
bileNetV2, 9.02% higher than 52.35% on MobileNetV3, 1.4% higher than 59.97% on Shuf-
fleNetV2, 2.05% higher than 59.32% on DenseNet, 2.35% higher than 59.02% on EfficientNet,
2.35% higher than 59.02% on RegNet, and 0.7% higher than 60.67% on ConvNeXt. The ex-
perimental results showed that the proposed method can effectively utilize GR to improve
the accuracy of FBP, which is better than other single-task network models.

Based on the SCUT-FBP5500 database, the FBP accuracy of the proposed method was
75.41%, which was 2.64% higher than 72.77% on GoogleNet, 3.28% higher than 72.13%
on MobileNetV2, 3.1% higher than 72.31% on MobileNetV3, 0.27% higher than 75.14%
on ShuffleNetV2, 1.46% higher than 73.95% on DenseNet, 0.37% higher than 75.04% on
EfficientNet, 0.73% higher than 74.68% on RegNet, and 0.09% higher than 75.32% on
ConvNeXt. The experimental results showed that the proposed method can effectively
apply GR to improve the accuracy of FBP, which is superior to other models.

3.5. Comparison Experiments between the Proposed Method and Other Methods

To further validate the effectiveness of the proposed method, we also compared the
proposed method with other methods based on the LSAFBD and SCUT-FBP5500. The
results are listed in Table 12. In [2], a self-correcting noise labels method was proposed,
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which can make full use of all data to reduce the negative impact of noise labels. In [3], a
fusion model of pseudolabel and cross-stitch network was applied to solve the problems
of weak generalization ability and insufficient label information in FBP. In [4], a network
named E-BLS fusing EffeicientNet and a broad learning system was applied in FBP. In [5],
a tiny network named TransBLS-T fusing transformer and broad learning system was
proposed to improve FBP. The performance of the proposed method surpasses that of
the other method. Based on the LSAFBD database, the method by way of self-correcting
noise labels achieves poor results. This is because the method is based on single-task deep
neural networks (DNNs) and does not utilize label information from multiple databases.
The experimental results of the cross-network based on multi-task learning illustrate the
superiority of multi-task learning. The methods by way of E-BLS and TransBLS-T are
better than those of DNNs based on the LSAFBD database, which is attributed to the
attention mechanism of the transformer. The proposed method in this paper combines the
advantages of multi-task learning and attention feature fusion to achieve the best results.

Table 12. Experimental results compared with other methods (ACC(%)).

Method

Task LSAFBD SCUT-FBP5500

FBP FBP

Noise Labels [2] 60.80 75.30

Cross Network [3] 61.29 -

E-BLS [4] 60.82 73.13

TransBLS-T [5] 61.27 75.23

Proposed method 61.37 75.41
Note: The bold is the optimal value.

In summary, multi-task learning of the adaptive sharing policy combined with AFF
utilizes the label information of two different databases, solves the problem of insufficient
label information on the single-task network for FBP, and improves the network’s ability to
extract facial beauty features. Simultaneously, the network combines AFF to reduce the
risk of overfitting, thereby improving the accuracy of the FBP.

4. Conclusions

To address the issue of insufficient label information and easy overfitting in FBP, multi-
task learning of an adaptive sharing policy combined with AFF based on the AdaShare
network is proposed. Among them, multi-task learning of the adaptive sharing policy
utilizes the label information of two different databases to improve the accuracy of FBP
by solving the insufficient label information issue. The AFF reduces the risk of overfitting
and improves the feature extraction capability of the network by adding a feature fusion
and attention mechanism at the short skip connections of ResNet. The experimental
results based on the LSAFBD database and SCUT-FBP5500 databases showed that the
multi-task learning of the adaptive sharing policy combined with AFF outperforms the
single-task baseline method. Future studies will be focused on label information from
multiple databases, how to set the weight ratio of different tasks adaptively, how to balance
the category of databases, and on continuously optimizing the current method to obtain
greater improvement.
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