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Abstract: The interference of natural factors on the sea surface often results in a blurred background
in Synthetic Aperture Radar (SAR) ship images, and the detection difficulty is further increased when
different types of ships are densely docked together in nearshore scenes. To tackle these hurdles,
this paper proposes a target detection model based on YOLOv5s, named YOLO-CLF. Initially, we
constructed a Receptive Field Enhancement Module (RFEM) to improve the model’s performance in
handling blurred background images. Subsequently, considering the situation of dense multi-size
ship images, we designed a Cross-Layer Fusion Feature Pyramid Network (CLF-FPN) to aggregate
multi-scale features, thereby enhancing detection accuracy. Finally, we introduce a Normalized
Wasserstein Distance (NWD) metric to replace the commonly used Intersection over Union (IoU)
metric, aiming to improve the detection capability of small targets. Experimental findings show that
the enhanced algorithm attains an Average Precision (AP50) of 98.2% and 90.4% on the SSDD and
HRSID datasets, respectively, which is an increase of 1.3% and 2.2% compared to the baseline model
YOLOv5s. Simultaneously, it has also achieved a significant performance advantage in comparison
to some other models.

Keywords: ship detection; SAR images; Feature Pyramid Network; NWD metric

1. Introduction

Synthetic Aperture Radar (SAR) is a remote sensing system that operates effectively
under all weather conditions and at all times; its primary function is terrestrial monitoring,
but its unique attributes have led to its extensive application in marine surveillance [1–4].
The marine economy’s progression has led to an annual surge in the number of vessels
navigating across diverse sea regions globally. Consequently, ship detection technology
plays a crucial role in modern maritime surveillance and maritime safety. SAR images
overcome the issues of optical remote sensing images, which can be affected by time and
weather conditions. They possess unique characteristics that allow them to penetrate cloud
cover and operate in darkness, offering better adaptability for sea surface scenarios [5].
Therefore, studying how to handle ship target detection under various sea surface scenarios
has significant practical significance and application value [6–8].

In traditional SAR detection tasks, the Constant False Alarm Rate (CFAR) method is
most widely used [9–11]. CFAR is a dynamic threshold technology that adaptively adjusts
the detection threshold according to the statistical characteristics of background interference
to achieve the required false alarm rate. The balance between the false alarm rate and the
detection rate is a challenge in the design of a constant false alarm rate target detection
system. A lower false alarm rate implies that the system can more accurately identify
real targets without false alarms, but it may also lead to an increase in undetected real
targets. Conversely, a higher false alarm rate may improve the detection rate but will also
increase the number of false alarms. Therefore, the performance of CFAR highly depends
on the threshold setting. Moreover, if the signal characteristics of the ship are highly similar
to the background, or when the background interference changes significantly, it may
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lead to instability in the false alarm rate. Extracting ship feature signals then becomes
extremely difficult, inevitably leading to false alarms. To reduce the false alarm rate and
improve detection accuracy, some researchers have improved the traditional CFAR method,
achieving good results [12–14].

In contrast to conventional Constant False Alarm Rate (CFAR) techniques, deep learn-
ing methodologies exhibit substantial benefits in the realm of target detection tasks [15].
Current deep learning-oriented target detection methodologies can be broadly bifurcated
into two categories: those that are based on region proposal, which are two-stage detection
algorithms, and those that are founded on regression, which are single-stage detection
algorithms. Two-stage target detection algorithms bifurcate the detection task into two
stages. Initially, they engender a collection of prospective target zones. Subsequently, these
candidate areas undergo classification to ascertain the presence of targets, followed by
regression to pinpoint the precise location of the target. Representative algorithms include
the R-CNN series [16–18]. Single-stage target detection algorithms directly apply classifiers
to the entire image, performing target classification and location regression simultaneously.
Representative algorithms include SSD [19], RetinaNet [20], YOLO [21], etc. Deep learning
detection methods have significantly improved accuracy compared to traditional methods.
Nevertheless, owing to certain intrinsic attributes of SAR ship images, the task of SAR ship
detection still faces the following challenges.

(1) SAR ship images are easily affected by natural factors on the sea surface, such as
waves and ripples, as well as terrestrial backgrounds, such as land and ports. This
interference causes ships to be difficult to separate from the background, and the
features of the ships themselves are not prominent. Figure 1a shows an undisturbed
ship target with a clear ship surface contour and distinct foreground and background.
Figure 1b shows a ship target against a blurred sea surface background, where the ship
and the background merge into one in the image, making it difficult to distinguish.

(2) Due to the coexistence of ship targets of different sizes in the same image, the ship
targets in the same dataset cover a wide range of sizes. Ship targets of varying sizes
in SAR have distinct radar reflection characteristics, leading to numerous missed
detections and false alarms in existing methods. In addition, unlike conventional
detection targets, multi-size ship targets often dock densely at portcs. As shown
in Figure 1c, ships of varying sizes dock densely together, further increasing the
detection difficulty.
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In this paper, following an examination of the evolution of contemporary deep learning
target detection algorithms and taking into account the SAR ship images, we propose the
YOLO-CLF architecture based on YOLOv5 to address the above problems. The principal
contributions of this paper can be summarized as follows:

(1) For the problem of blurred backgrounds in SAR ship images caused by interfer-
ence from natural and terrestrial factors, we propose a Receptive Field Enhancement
Module (RFEM). By utilizing the large receptive field characteristics of dilated convo-
lution, we enhance the model’s feature extraction ability for ship targets with blurred
backgrounds.

(2) We propose a Cross-Layer Fusion Feature Pyramid Network (CLF-FPN). Through
cross-channel concatenation of multiple feature layers and the use of Coordinate
Attention (CA) modules after concatenation, we achieve an improvement in multi-
scale feature fusion effects, enhancing the model’s detection performance for multi-
size targets.

(3) We introduce the NWD loss function to reduce the model’s sensitivity to small target
position deviations and improve the accuracy of bounding box regression.

This paper is divided into five sections, each playing a role in exploring the content
related to the main theme of the article. The subsequent Section 2 is dedicated to introducing
the latest advancements in ship target detection, providing a contemporary backdrop for
the ensuing discussions. Section 3 extensively explores the proposed method, intricately
detailing its design and functionality. In Section 4, experimental details and an analysis of
the experimental results are included. The final summary is encapsulated in Section 5.

2. Related Work

In this section, a review of the current mainstream SAR ship detection methods is
provided, followed by discussions on bounding box regression losses and multi-scale
feature fusion.

2.1. CNN-Based SAR Ship Detector

In recent years, a multitude of researchers have put forth a variety of Synthetic Aper-
ture Radar (SAR) ship detection algorithms, each tailored to distinct detection scenarios.
Kang et al. [22] combined traditional CFAR algorithms with deep learning, using faster
R-CNN as the protection window for CFAR. As a result, smaller and structurally ambigu-
ous targets are often falsely reported. To address this issue, the authors proposed utilizing
the CFAR algorithm for target detection. This method aims to reduce misclassification
of smaller, structurally ambiguous targets by determining the detection threshold based
on pixel intensities within the target and background regions. However, combining these
two methods requires a considerable amount of experimentation and tuning to achieve
optimal performance. Zhang et al. [23] proposed a detection network that includes a novel
Spatial Cross-Scale Attention (SCSA) module. This innovative module utilizes features
from each scale of the backbone’s output to calculate the network’s spatial focal points,
aiming to eliminate interference from noise and complex land backgrounds. This method
addresses challenges posed by complex backgrounds in near-shore scenes containing ship
targets and densely arranged ships. However, the module occupies a large number of
parameters, and its impact on computational resources is significant and cannot be ignored.
Pan et al. [24] designed a ship anomaly detection method for feature learning using a
SuperPixel (SP) processing unit. This method performs multi-feature extraction on SP
units, enhancing information discrimination capabilities and improving the clutter feature
learning (COFL) strategy for efficient classification of ships and clutter. However, the
method still lacks detection performance for small-sized, weakly scattering ship targets.
Hou et al. [25] developed a fully automated program dedicated to the automatic matching
and annotation of samples, leading to the establishment of a high-resolution FUSAR-Ship
dataset specifically tailored for ship detection and recognition. Additionally, Aao et al. [26]
devised a multi-scale CFAR detector aimed at detecting candidate targets andefficiently
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filtering potential targets. Subsequently, the utilization of feature ellipses in conjunction
with the maximum likelihood method for identification effectively eliminated non-ship ob-
jects. This sophisticated ship detection algorithm demonstrates adaptability across diverse
and complex environmental conditions. Currently, anchor-based methods still have some
drawbacks, such as difficulty in assigning anchor boxes for each target when overlaps exist
between targets. To address this issue, Zhu et al. [27] introduced an enhanced anchor-free
detector based on the FCOS + ATSS network. This paper embeds an improved residual
module (IRM) and deformable convolutions (Dconv) into the feature extraction network
(FEN) to enhance accuracy. Additionally, it proposes a novel joint representation of classifi-
cation scores and localization quality, coupled with a redesigned detection process to refine
localization performance. Cui et al. [28] introduced a method of spatial random group
enhanced attention in CenterNet to extract stronger semantic features while suppressing
certain noise, aiming to reduce false positives caused by nearshore and inland interferences.
The anchor-free detector does not require predefining a set of prior boxes, which makes the
model more flexible and not limited by the quantity and shape of anchor boxes. However,
this can also result in some difficulties in detecting occluded or overlapped regions.

2.2. The Loss of Bounding Box Regression

IoU is the most commonly used metric for measuring the similarity between bounding
boxes. However, IoU fails to function if two bounding boxes do not intersect. CIOU [29]
addresses the limitations of IoU by considering properties such as the distance between the
centers of true and predicted bounding boxes, and the overlapping area. SIoU [30] aids in
the rapid convergence of the network by considering the vector angle between true and
predicted bounding boxes. Qin et al. [31] enhanced SAR near-shore ship target detection
accuracy by introducing a factor related to angles, computed through weighted correlations
of aspect ratios and center distances, describing the rotation of ship targets. Xu et al. [32]
proposed TDIoU loss specifically designed for rotational bounding box regression in multi-
angle SAR ship target detection. However, slight deviations in bounding boxes significantly
alter the IoU for small targets. Our motivation lies in utilizing superior evaluation metrics
to address convergence challenges in bounding box regression for small objects.

2.3. Multi-Scale Feature Fusion

Due to the lack of feature detail information in small-scale ship targets, there are often
missed detections and false alarms. Therefore, designing detection algorithms that adapt
to multi-scale targets has been a hot research direction in recent years. Since Lin et al. [33]
proposed the Feature Pyramid Network (FPN), it has been the mainstream method for
solving multi-scale problems, and many researchers have improved upon it. NAS-FPN [34]
utilizes neural architecture search algorithms to automatically discover feature pyramid
connections suitable for specific tasks. However, the neural architecture search process
requires significant computational resources and time. Bi-FPN [35] introduces bidirectional
network connections and feature fusion strategies, enabling information propagation
within the network both bottom-up and top-down. This bidirectional structure enhances
information flow and feature reuse within the network, but its performance might heavily
rely on the characteristics of the training dataset and task. Due to longer paths between high-
resolution and low-resolution features, semantics can be weakened during propagation,
which is disadvantageous for the detection of SAR ships with specific scales and shapes. Sun
et al. [36] introduced the proposed Bi-directional Feature Fusion Module (Bi-DFFM) into
the YOLO framework. The introduced module adeptly consolidates features across various
scales by employing a bidirectional mechanism that fosters information interaction from
both top-down and bottom-up perspectives. This strategic approach significantly enhances
the capability to discern ships of diverse scales. Zhou et al. [37] proposed a method that
synergistically leverages the advantages of both Doppler features, capable of capturing
motion-related information, and spatial features, which encompass crucial background
and positional characteristics essential for accurate ship detection. This approach aims to
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address challenges in ship detection, such as multi-scale transformations of ships within
images and image blurring caused by motion. When constructing a feature pyramid,
feature information may become blurred or lost, necessitating appropriate improvements
tailored to the specific task at hand. In summary, the introduction of FPN brings more
possibilities to the field of target detection. In our design, the improvement of FPN further
enhances the detection performance of multi-scale targets.

3. Methods

Considering the characteristics of SAR ship images, this paper improves upon YOLOv5s
and proposes a target detection method based on the Receptive Field Enhancement Mod-
ule (RFEM) and Cross-layer Fusion Feature Pyramid Network (CLF-FPN)—YOLO-CLF.
Figure 2 shows the algorithm structure of this paper, which is mainly composed of a
backbone, neck, and head. We embed the Receptive Field Enhancement Module in the
backbone. Next, we improve the structure of FPN and propose CLF-FPN for the head.
Finally, we introduce the NWD loss function. This integration allows the model to have a
larger receptive field and stronger multi-scale feature fusion capability. These contents will
be detailed in the remaining part of this section.
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3.1. Receptive Field Enhancement Module

In the process of feature extraction within convolutional neural networks, individual
layers are characterized by a predetermined receptive field size. This fixed receptive field
size presents limitations for effectively capturing objects across various scales. The static
nature of these fields hinders the network’s capability to discern and accurately identify
objects that exhibit diverse size characteristics within an image, especially for targets in
SAR images that have blurred target edges, insufficient texture information, and large-scale
changes. It is difficult for the model to detect such targets.
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Inspired by the module proposed by Xiao et al. [38], this paper proposes the Receptive
Field Enhancement Module (RFEM). RFEM amalgamates the traits of dilated convolution
and employs branches of dilated convolution with varying dilation rates. This enhances
the model’s comprehension of contextual message information, thereby augmenting the
model’s detection efficacy. Dilated convolution has a wider receptive field and can perceive
more contextual information. However, dilated convolution also has problems. A single
dilation rate will cause some pixels to be omitted during the calculation.

An illustration of the RFEM module’s network structure can be found in Figure 3. The
RFEM module employs three sets of dilated convolutions with dilation rates of 3, 5, and 7
respectively to perform convolution operations on the input feature map. Varied dilation
rates result in different degrees of receptive field enlargement, catering to diverse scales of
feature learning and application. This approach prevents the oversight of individual pixels
during computation by avoiding a singular dilation rate. Leveraging higher dilation rates
in dilated convolutions aids neural networks in effectively capturing relationships between
distant pixels, thereby enhancing the detection and identification of object boundaries,
textures, and intricate details. The process unfolds in a sequence where each branch initially
applies a 1 × 1 convolutional kernel to efficiently reduce the channel number within the
feature map. Subsequently, dilated convolutions are performed independently within
each branch before concatenating the resulting feature maps. Finally, a shortcut structure
is incorporated to mitigate potential information loss during the convolutional process,
ensuring the preservation of crucial data integrity.
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For the fusion method of the three branch feature maps, attention fusion and adaptive
fusion can also be used, as shown in Figure 4. Figure 4a is the previously mentioned
concatenation fusion, which involves combining feature maps from different branches.
Figure 4b shows attention fusion. This approach employs attention mechanisms to amplify
beneficial feature channels while attenuating those that are deemed unproductive, retaining
key feature information and playing a role in feature screening and enhancement. Figure 4c
is adaptive fusion, which uses convolution and Softmax to map the dimension-reduced
feature map to the weights corresponding to the three branches. In Section 4.4.1 of this
paper, we compared the three fusion methods and chose the concatenation fusion method,
which has better results with a simple structure.
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3.2. Cross-Layer Fusion Feature Pyramid Network

In neural networks, shallow features have higher resolution and more detailed infor-
mation, such as edges and textures. Deep features have lower resolution and rich semantic
information, such as shape and model. By fusing shallow features and deep features, the
model’s feature expression ability can be enhanced, thereby improving the model’s perfor-
mance. FPN can fuse feature maps from different levels together, allowing the model to
pay attention to different scale information in the image at the same time. PAN [39] first
proposed the concept of feature bidirectional fusion, improving feature reuse. Since then,
many researchers have gone further and tried more complex bidirectional fusion networks,
such as AFPN [40] and ASFF [41]. In order to enhance the model’s ability to integrate both
shallow and deep information, we propose the Cross-layer Fusion Feature Pyramid Network
(CLF-FPN), which is capable of incorporating multi-scale information. This network builds
upon the original feature pyramid network of YOLOv5. Figure 5a illustrates the FPN of
YOLOv5, while Figure 5b presents the overall network structure of CLF-FPN.
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CLF-FPN establishes additional connections between feature layers, enabling low-
resolution feature maps to receive feature information from higher-resolution feature
maps, and vice versa. Through these cross-layer connections, low-resolution feature maps
with stronger semantic information and high-resolution feature maps with more detailed
information can complement each other, thereby providing a more comprehensive feature
representation for the model.

CLF-FPN performs convolution on feature maps at different levels, adds additional
feature fusion branches, and uses Coordinate Attention (CA) [42] after concatenation with
the original branch. Coordinate attention incorporates locational data into channel attention,
aggregating features along two spatial trajectories. One of these trajectories is designed
to capture dependencies that span over long distances. In contrast, the other trajectory
is engineered to retain precise locational information, simply and quickly enhancing the
extraction ability of long-distance relationships. Its structure is shown in Figure 6.
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In Coordinate Attention, the input feature map is divided along its height and width
directions to perform global average pooling. As indicated by Equations (1) and (2),
where C represents the number of channels, H stands for height, and W denotes width,
pooling operations are separately conducted along the height and width directions for
the input feature map of dimensions C × H × W. This process generates feature maps of
dimensions C × H × 1 and C × 1 × W, respectively. This segmentation pooling strategy
aids in independently extracting fine-grained positional information along the vertical and
horizontal axes, allowing the network to focus on and process specific spatial cues in each
direction separately.

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)
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Afterward, the feature maps in the height and width directions are concatenated,
and after batch normalization and non-linear activation functions, global information is
obtained and separated. Finally, after convolution and Sigmoid, the output of Coordinate
Attention yc is represented as:

yc(i, j) = xc(i, j)·gh
c (i)·g

w
c (j) (3)

where xc represents the input, and gh
c and gw

c represent the attention weights of the input
feature map in the height and width directions.

By placing Coordinate Attention after the concatenation of the two branches, more
channels can be extracted for attention. Cross-layer fusion can combine information
from different-level feature maps, allowing the model to use local information and global
information at the same time. These feature information can complement each other and
play a key role in feature enhancement and context feature transmission.

3.3. Normalized Wasserstein Distance

The Intersection over Union (IoU) metric, a widely used quantitative measure, com-
putes the ratio of the intersection to the union of the predicted and actual bounding boxes.
This metric serves as an effective gauge of the extent of overlap between the predicted and
actual bounding boxes, thereby providing a measure of the accuracy of the prediction. The
formulas for IoU and IoU loss are as follows:

IoU =
| B ∩ Bgt |
| B ∪ Bgt |

(4)

IoU loss = 1 − IoU (5)

In this context, B and Bgt represent the coordinates of the center points and the width
and height of the predicted and actual bounding boxes, respectively.

However, for small targets in SAR ship images, which have fewer pixels, slight
positional deviations can cause significant changes in the IoU index, greatly reducing
detection accuracy. As can be seen in Figure 7, for instance, an 18 × 6 pixel target A
experiences an IoU value of 0.69 with a blue predicted bounding box’s positional deviation,
resulting in an IoU loss of 0.31. whereas a target B occupying only 5 × 2 pixels shows a
reduced IoU value of 0.11 under the same predicted bounding box deviation, leading to an
IoU loss of 0.89. This indicates that smaller targets, affected by minor positional deviations
in their predicted bounding boxes, undergo a substantial increase in IoU loss, potentially
causing instances of missed detection.
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In order to enhance the detection performance of small targets, this paper introduces the
Normalized Wasserstein Distance (NWD) [43] to measure the similarity between the predicted
and actual bounding boxes. NWD abandons the commonly used IoU metric and initially

models the bounding box R =
[
cx, cy, w

2 , h
2

]T
as a two-dimensional Gaussian distribution:

µ =

[
cx
cy

]
, Σ =

[
w2

4 0
0 h2

4

]
(6)

Here, (c x, cy
)

represents the coordinates of the center point, while w and h denote
the width and height, respectively. The bounding box is modeled as a two-dimensional
Gaussian distribution N(µ, Σ). After modeling, the Normalized Wasserstein Distance is

used to calculate the distribution distance between bounding box A =
[
cxa, cya, wa

2 , ha
2

]T

and bounding box B =
[
cxb, cyb, wb

2 ·hb
2

]T
. The calculation formula is as follows:

W2
2(N a, Nb) =∥

([
cxa, cya,

wa

2
,

ha

2

]T
,
[

cxb, cyb,
wb
2
·hb

2

]T
)
∥2

2 (7)

However, this formula measures distance and cannot be directly used to measure sim-
ilarity distance (i.e., a value between 0 and 1 for IoU). Therefore, it needs to be normalized
using an exponential operation to obtain the NWD metric:

NWD(Na, Nb) = exp

−

√
W2

2(Na, Nb)

c

 (8)

In this formula, C is a constant closely related to the dataset. Compared to IoU, NWD
compensates for its sensitivity to small-scale targets, making it more suitable for detecting
small objects.

4. Experiments
4.1. Dataset

The effectiveness of the proposed model are evaluated using two datasets: SSDD [44]
and HRSID [45]. The SSDD dataset comprises 1160 Synthetic Aperture Radar (SAR) images
from three different SAR satellites, containing 2587 ship targets. The resolution of these images
ranges from 1 to 15 m. The dataset includes small, medium, and large ship targets in oceanic
and nearshore areas, accounting for 60.2%, 36.8%, and 3% of the total targets, respectively.

The HRSID dataset includes 5604 SAR ship images with a resolution ranging from
0.5 to 3 m, containing a total of 16,951 ship targets. The proportions of small, medium, and
large ships in this dataset are 54.5%, 43.5%, and 2%, respectively.

The SAR images in both datasets exhibit various characteristics, including different sea
conditions, polarization modes, resolutions, complex scenes, and ship sizes. The datasets were
arbitrarily partitioned into training, validation, and testing subsets, adhering to a proportion
of 7:1:2, respectively. Table 1 presents comprehensive details of two datasets, where the
polarization describes the orientation of radar waves during their propagation and reception
concerning the Earth’s surface. HH represents a dual horizontal polarization configuration,
indicating the transmission and reception of horizontally polarized waves. HV signifies
transmission with horizontal polarization received as vertical polarization, while VV denotes
the mutual transmission and reception of vertically polarized waves. Conversely, VH refers to
transmission with vertical polarization received as horizontal polarization. These polarization
configurations offer distinct information about surface features.
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Table 1. Detailed information on SSDD and HRSID.

Datasets Image
Number

Ship Number Resolution
(m) Polarization

Image Size

Height Width

SSDD 1160 2587 1–15 HH, HV, VV, VH 190~526 214~668
HRSID 5604 16,951 0.5, 1, 3 HH, HV, VV 800 800

4.2. Experimental Setup and Parameters

The experiments were conducted on a platform based on Pytorch 2.0.0 and CUDA
11.8, using an AMD EPYC 9654 processor with a clock speed of 2.4 G, an RTX4090 graphics
card with 24 G of memory, and 60 G of system memory. The operating system used was
Ubuntu 20.04.5 LTS.

For the experimental parameters, a consistent batch size of 16 was employed, and the
model underwent training for an aggregate of 300 epochs. The optimization process was
facilitated by the Stochastic Gradient Descent (SGD) optimizer, with an inaugural learning
rate pegged at 0.01. The learning rate decay followed a cosine annealing schedule, tapering
down to a final learning rate of 0.0001. Additionally, we set the weight decay factor to 0.0005.

4.3. Evaluation Metrics

The efficacy of the detection was assessed using several metrics, including precision (P),
recall (R), average precision (AP), F1 score, and frames per second (FPS). The computation
of precision and recall adheres to the following formulas:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where TP (true positives) is the number of correct detections, FP (false positives) is the
number of false alarms where the negative class is predicted as the positive class, and FN
(false negatives) is the number of missed detections where the positive class is predicted as
the negative class.

The formula for calculating AP is as follows:

AP =
∫ 1

0
P(R)dR (11)

AP50 refers to the detection precision with an IoU threshold of 50%. AP50:95 refers to
the average AP calculated with IoU values ranging from 50% to 95%, with a step size of
5%. In general, precision and recall are likely to be negatively correlated. The F1 score, as
the harmonic mean of precision and recall, measures both metrics comprehensively. The
formula is as follows:

F1 =
2PR

P + R
(12)

The FPS metric is indicative of the quantity of images that the model is capable of
detecting within a span of one second. A higher FPS value is synonymous with a faster
detection speed for the model.

4.4. Module Effectiveness Analysis

To verify the effectiveness of the modules proposed in this paper, an analysis was
conducted on the SSDD dataset.

4.4.1. Verification of RFEM

We compared different feature fusion methods within the RFEM module to explore
better fusion methods. We conducted five repeated experiments, and the mean and stan-
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dard deviation results are shown in Table 2. It is evident that the concatenation fusion
method performs the best in RFEM, with an increase of 0.5% in AP50 and 1.3% in AP50:75.

Table 2. Comparison of different fusion methods for sensory wild enhancement modules.

Fusion Method AP50 (%) AP50:95 (%) F1 (%)

Baseline 96.9 ± 0.4 60.8 ± 0.6 94.7 ± 0.2
Attentional Fusion 96.9 ± 0.3 61.1 ± 0.5 94.5 ± 0.3
Adaptive Fusion 97.1 ± 0.2 62.1 ± 0.4 94.9 ± 0.3

Concatenation Fusion 97.4 ± 0.3 62.1 ± 0.5 95.1 ± 0.2
Bold font indicates the optimal values of each metric.

In an endeavor to further scrutinize the extraction efficacy of the network post- in-
corporation of the RFEM module, we elected to conduct a heatmap experiment utilizing
images characterized by complex and ambiguous backgrounds. The outcomes of this ex-
periment are depicted in Figure 8. In comparison to the baseline model, the network, upon
the addition of the RFEM module, exhibits an enhanced ability to distinguish crowded
multi-scale targets. This suggests a superior capability to handle intricate scenarios.
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4.4.2. Verification of NWD

In the experiments, we observed the convergence of four loss functions: CIOU [29],
SIOU [30], WIOU [46], and NWD, as shown in Figure 9. Through these experiments, we
found that NWD converges faster and achieves the lowest loss value. This validates the
rationale behind choosing NWD for this study.
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4.5. Ablation Experiment

To delve deeper into the efficacy of the diverse modules of the algorithm proposed
in this paper, an ablation study was executed on the SSDD dataset. The outcomes of this
study are presented in Table 3, where the presence of a check mark (“

√
”) signifies the

incorporation of the module in the baseline model.

Table 3. Ablation experiments of this paper’s algorithm on the SSDD dataset.

ID RFEM CLF NWD P (%) R (%) AP50 (%) AP50:95 (%) F1 (%)

1 94.1 95.8 96.9 60.8 94.7
2

√
94.5 95.5 97.4 62.1 95.1

3
√

94.7 95.7 97.1 62.5 95.2
4

√
94.1 97.0 97.2 61.9 95.5

5
√ √

95.4 95.2 97.9 62.8 95.3
6

√ √ √
95.0 96.7 98.2 63.1 95.6

The ‘
√

’ symbol indicates the use of this module in the model, while bold type represents the optimal value for
each metric.

From the experimental data, it can be observed that compared to the baseline model,
the second and third groups, which respectively added the RFEM and CLF-FPN modules,
showed improvements in accuracy and AP. However, there was a decrease in recall to
varying degrees. In the fifth group, where both modules were added simultaneously, the
situation was more pronounced. The AP indicator improved significantly, but the F1 score,
which comprehensively measures accuracy and recall, had limited improvement. This is
because there is a certain trade-off between accuracy and recall, especially in the current
situation where the accuracy and recall of the baseline model are both high. Therefore, we
introduced the NWD loss function to balance this situation. As can be seen, the sixth group,
which included all modules, had the highest AP and F1 scores. Compared to the baseline
model, AP50 and AP50:95 increased by 1.3% and 2.3%, respectively, and F1 increased by
0.9%. This demonstrates that YOLO-CLF achieved a balance in all evaluation indicators.
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We also conducted an ablation study on the HRSID dataset, which is more challenging
than the SSDD dataset and has a larger room for improvement in detection results. The
accuracy and recall have not yet reached the trade-off situation as before. The results are
shown in Table 4.

Table 4. Ablation experiments of this paper’s algorithm on the HRSID dataset.

ID RFEM CLF NWD P (%) R (%) AP50 (%) AP50:95 (%) F1 (%)

1 89.5 80.7 88.2 59.6 84.5
2

√
90.2 81.3 88.7 60.4 85.5

3
√

91.2 81.9 89.4 61.5 86.3
4

√
90.6 83.5 88.9 61.2 86.9

5
√ √

91.4 83.1 89.8 62.1 87.1
6

√ √ √
91.8 83.7 90.4 62.7 87.8

The ‘
√

’ symbol indicates the use of this module in the model, while bold type represents the optimal value for
each metric.

As discernible from Table 4, in the first group of baseline models, the original YOLOv5s
yielded an AP50 and AP50:95 of 88.2% and 59.6%, respectively, with an F1 score of 84.5%.
Upon the incorporation of various modules in the second, third, and fourth groups, all
evaluation metrics experienced varying degrees of enhancement. Notably, the CLF-FPN
module outperformed the others, with an increase of 1.2% and 1.9% in AP50 and AP50:95,
respectively. In the fifth group, based on the third group, the simultaneous introduction
of the CLF-FPN and RFEM modules into the model led to a further increase of 0.4% and
0.6% in AP50 and AP50:95, respectively. In the seventh group, YOLO-CLF, compared to the
original algorithm, the model’s AP50 and AP50:95 each increased by 2.2% and 3.1%, and
the F1 score increased by 3.3%.

Furthermore, we conducted a visual comparison of the detection performance of the
original YOLOv5s and the improved YOLO-CLF under different scenarios, the results of
which are illustrated in Figure 10. In the figure, false detection targets are represented by
blue ellipses, while missed detection targets are represented by yellow ellipses. The analysis
reveals that under ordinary scenarios, the original model exhibits excellent detection
performance. However, when ship targets are interfered with by other factors, making it
difficult to distinguish between the foreground and background, or when ships of different
scales are docked together, YOLO-CLF demonstrates a lower number of false and missed
detections compared to the baseline model. Even in scenarios where small-scale ship targets
are densely arranged, although there are a few instances of missed and false detections,
there is a significant improvement compared to the baseline model.

4.6. Comparative Experiment

To objectively assess the performance of the improved algorithm, we compared YOLO-
CLF with other prevalent algorithms under identical conditions. We conducted five re-
peated experiments to minimize experimental variability, and the mean and standard
deviation results of the comparative experiments are presented in Table 5. The results
derived from the analysis indicate that Libra R-CNN, as a two-stage detection algorithm,
holds an edge in detection accuracy when compared to single-stage algorithms such as
SSD and FCOS. However, its detection accuracy is marginally subpar when juxtaposed
with some of the more superior single-stage algorithms. Centernet++, as an anchor-free
detection algorithm, has good overall performance, but it is still weaker than our algo-
rithm. Due to the increase in model parameters, while YOLO-CLF exhibits a marginally
slower detection speed compared to the original model, it still significantly surpasses the
benchmark for real-time detection. The F1 indicator on the HRSID dataset is slightly lower
than YOLOv7x, but we have a great advantage in detection speed. Ultimately, the model
we proposed achieved a balance between speed and accuracy compared to other popular
detection algorithms.
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Table 5. Algorithm comparison experiments.

Method
SSDD HRSID

AP50 (%) F1 (%) FPS AP50 (%) F1 (%) FPS

SSD512 85.7 ± 0.4 83.4 ± 0.4 31.3 ± 4.6 85.1 ± 0.5 82.2 ± 0.4 27.3 ± 3.3
FCOS [47] 87.0 ± 0.3 83.8 ± 0.2 22.5 ± 3.9 79.7 ± 0.4 75.5 ± 0.3 20.6 ± 1.8

Libra R-CNN [48] 89.6 ± 0.5 85.6 ± 0.4 8.4 ± 1.2 87.9 ± 0.4 83.1 ± 0.4 7.3 ± 0.9
Centernet++ [49] 92.7 ± 0.3 91.9 ± 0.4 42.1 ± 4.1 86.8 ± 0.3 83.5 ± 0.3 37.9 ± 4.3

YOLOv5s 96.9 ± 0.4 94.7 ± 0.2 96.8 ± 10.3 88.2 ± 0.4 84.5 ± 0.3 79.2 ± 8.0
YOLOv7x [50] 97.4 ± 0.1 95.2 ± 0.3 49.1 ± 5.6 90.3 ± 0.2 88.1 ± 0.2 42.9 ± 4.1

YOLO-CLF 98.2 ± 0.3 95.6 ± 0.2 81.4 ± 8.7 90.4 ± 0.3 87.8 ± 0.3 68.0 ± 7.3
Bold font indicates the optimal values of each metric.

5. Conclusions

This paper addresses the issues of complex backgrounds, dense distribution, and
diverse scales of SAR ship targets by proposing the YOLO-CLF detection algorithm. We
designed the RFEM module and the CLF-FPN structure to enhance detection performance.
Empirical evidence demonstrates that, compared to other algorithms, YOLO-CLF achieves
the best overall performance. However, there are still shortcomings in the algorithm we
proposed. For instance, the complexity of the model has increased due to the addition of
multiple structures. In future research, we plan to explore methods such as pruning and
knowledge distillation to deploy the model on lightweight platforms.
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