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Abstract: Knowledge graphs usually have many missing links, and predicting the relationships
between entities has become a hot research topic in recent years. Knowledge graph embedding
research maps entities and relations to a low-dimensional continuous space representation to predict
links between entities. The present research shows that the key to the knowledge graph embedding
approach is the design of scoring functions. According to the scoring function, knowledge graph
embedding methods can be classified into dot product models and distance models. We find that the
triple scores obtained using the dot product model or the distance model were unbounded, which
leads to large variance. In this paper, we propose RotatE Cosine Similarity (RoCS), a method to
compute the joint cosine similarity of complex vectors as a scoring function to make the triple scores
bounded. Our approach combines the rotational properties of the complex vector embedding model
RotatE to model complex relational patterns. The experimental results demonstrate that the newly
introduced RoCS yields substantial enhancements compared to RotatE across various knowledge
graph benchmarks, improving up to 4.0% in hits at 1 (Hits@1) on WN18RR and improving up to
3.3% in Hits@1 on FB15K-237. Meanwhile, our method achieves some new state-of-the-art (SOTA),
including Hits@3 of 95.6%, Hits@10 of 96.4% on WN18, and mean reciprocal rank (MRR) of 48.9%
and Hits@1 of 44.5% on WN18RR.

Keywords: complex vectors; embedding; joint cosine similarity; knowledge graphs; scoring function;
unbounded

1. Introduction

Theknowledge graph is composed of many fact triples (head entity, relation, tail entity),
in the directed graph, the source and target nodes correspond to the head and tail entities,
respectively, while the relations are depicted as edges [1,2]. In recent years, knowledge
graphs (KGs) have found applications across a broad spectrum of real-world scenarios,
including intelligent question answering [3], personalized recommendation [4,5], natural
language processing [6], and object detection [7,8]. However, real-world knowledge graphs
including WordNet [9], Freebase [10], or Yago [11] are usually incomplete. In recent years,
predicting missing links through knowledge graph embedding (KGE) has gained substan-
tial attention as a pivotal research area in achieving knowledge graph completion [2].

KGE transforms the entities and relations within the knowledge graph into low-
dimensional continuous space representations. Each fact triple (head entity, relation, tail
entity) is represented as (h, r, t). If entities and relations are represented using d-dimensional
real vectors, h, r, t ∈ Rd. To evaluate the performance of the entity and the relation repre-
sentation, the KGE approach evaluates the credibility of the triples by designing a scoring
function. The optimization objective of KGE is geared towards ensuring that elevated
scores are assigned to positive triples, while negative triples receive lower scores. Presently,
prevailing KGE methods can be classified into dot product models and distance models
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based on the structure of the scoring function. The dot product model is used as a triple
scoring function by calculating the dot product between head entity embedding, relation
embedding, and tail entity embedding. Examples of such methods include DistMult [12],
HoLE [13], ComplEx [14], QuatE [15], which capture semantic information through pair-
wise feature interactions between potential factors. The distance model uses L1 or L2
distance as the scoring function. Among them, the translation model TransE [16] and the
complex embedding model RotatE [17] can be classified into this category. In the distance
model, the process involves either adding the head entity embedding to the relation em-
bedding or computing the Hadamard product to obtain a vector close to the tail entity
embedding. Subsequently, the distance between the two vectors is calculated. Such meth-
ods as TransH [18], TransR [19], TorusE [20] and GIE [21] utilize translation invariance to
preserve the original semantic relationships.

We observe that the scoring function’s range remains unbounded, irrespective of
whether it belongs to the dot product model or the distance model. This unrestricted range
raises the potential for increased variance. The score range of the dot product model is from
negative infinity to positive infinity, and the score range of the distance model is from 0 to
positive infinity. Given that the score range of triples is unbounded, the sensitivity of triple
scores to variations in both the embeddings of entities and relations results in substantial
model variance. To resolve this issue, a straightforward approach is to normalize [22] both
the embeddings of entities and relations. The range of triple scores is guaranteed to be
bounded by eliminating the difference in numerical values between each feature. However,
such approach is affected by the dimensionality of the embedding, and the score range
varies for embeddings of different dimensions. As a result, to obtain a fixed bounded range,
we adopt the use of cosine similarity as a scoring function. Firstly, the cosine similarity is
used as a normalization mechanism, independent of the embedding dimension, and its
score is fixed in the range of −1 to 1. Secondly, cosine similarity stands out as a widely
employed semantic similarity measure, commonly used to assess the similarity between
document vectors [23–25]. Smaller angles between similar vectors aid in distinguishing the
encoded information of various types of entity embeddings.

To achieve this goal, we propose RoCS, a KGE based on joint cosine similarity. Cosine
similarity is chosen for its bounded range, dimensionality independence, and effectiveness
in capturing semantic relationships. This measure ensures numerical stability during train-
ing and adapts seamlessly to varying dimensions of embeddings. The rotation embedding
model RotatE [17] is a stronger baseline for reasoning about three important relational
patterns in knowledge graphs, i.e., symmetric/antisymmetric, inverse and composition.
RotatE uses L2 distance as the score function to score an unbounded range, while we
consider the use of cosine similarity as the score function to ensure that the score range is
bounded. However, directly calculating the cosine similarity result for two complex vectors
can be intricate, while we need a real number result to score the triplet. To address this
challenge, we present a joint cosine similarity calculation method as the complex vector
cosine similarity, as shown in Figure 1. Specific, we merge the real and imaginary aspects of
the complex vector into a novel joint vector, and subsequently compute the cosine similarity
of this joint vector. It can be found that the joint cosine similarity does not change the
range of the calculated results while reflecting the overall similarity between the two com-
plex vectors. We evaluate the performance of our method on FB15K [16], FB15K-237 [26],
WN18 [16], and WN18RR [27] datasets for the link prediction task. Experimental results
show that our method outperforms the current state-of-the-art complex vector embedding
models ComplEx [14] and RotatE [17] on all evaluation metrics for all datasets. Further-
more, the proposed method RoCS is highly competitive with the current state-of-the-art
methods [15,28,29]. We also explore various techniques for computing the cosine similarity
of complex vectors, and through experiments, we validate the superiority of our proposed
joint method over other approaches.
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Figure 1. A demonstration of the process of calculating the joint cosine similarity of the complex vectors.

In summary, the primary contributions of our work are as follows:

• We propose a joint cosine similarity method to calculate the complex vector similarity
as a scoring function.

• Our approach combines the rotational properties of the complex vector model RotatE
to reason about a variety of important relational patterns.

• We have experimentally verified that the proposed RoCS provides a significant im-
provement over RotatE and achieves results close to or even higher than the current
state-of-the-art.

2. Related Work

KGE predicts missing links by mapping symbolic representations of entities and
relations into vector or matrix representations. Most KGE methods [30] are considered to
utilize triples as learning resources, deriving the semantics of entities and relations from
graph structures. Preserving original semantic relations through scoring function design has
become a key research focus in recent years [1,2]. Based on the scoring function’s structure,
the majority of the work can be categorized into dot product models and distance models.

The dot product model takes the form of dot product operations on the head entity,
relation, and tail entity. Semantic information is captured through pairwise feature interac-
tions between potential factors. The earliest work is the RESCAL [31], which uses a matrix
to represent the relation r ∈ Rd×d and a vector to represent the entities h, t ∈ Rd. To reduce
the relation embedding parameters, DistMult [12] constrains the relation matrix to be a
diagonal matrix and uses a vector to represent the relation r ∈ Rd. Since DistMult is overly
simple and can only infer symmetric relations. HolE [13] utilizes the cyclic correlation
dot product operation to infer anti-symmetric relations. ComplEx [14] applies a complex
space to encode entities and relations, utilizing the complex conjugate property to model
anti-symmetric relations. To further facilitate feature interaction, QuatE [15] suggests the
use of quaternion spaces to represent entities and relations. In addition, there are neu-
ral network models including ConvE [27], InteractE [32], graph neural networks [33,34]
and tensor decomposition models Tucker [28], LowFER [29] can also be regarded as dot
product models.

Distance models utilize relations to translate or rotate the head entity and subsequently
calculate the distance to the tail entity as the scoring function. In the case of TransE [16],
the relationship is a translation originating from the head entity and extending to the
tail entity. Guided by the principle of translation invariance, the sum of the head entity
embedding and the relation embedding is expected to be close to the distance between
the tail entity embeddings. Consequently, TransE uses the L1 or L2 distances as a scoring
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function. Since the TransE model cannot handle N-to-N relationships, TransH [18] presents
a hyperplane representation that maps entities to relationship specifications. TransR [19]
consider simplifying the space specified by the hyperplane for relationships. The complex
embedding model RotatE [17] has been recently proposed, which uses a complex space to
represent entities and relations. RotatE utilizes Euler’s formula to represent the relationship
as a rotational operation between the head entity and the tail entity. By leveraging the
rotation property, RotatE deduces various essential relation patterns [17].

Nevertheless, whether using the dot product model or distance model, the triple
scores remain unbounded. Substantial score disparities between positive and negative
samples amplify variance and diminish the model’s generalization capability. In contrast
to prior approaches, we propose the method of computing the joint cosine similarity
of complex vectors as a scoring function to constrain the bounded triple scoring range.
Moreover, we propose a KGE method utilizing joint cosine similarity. Our work combines
the RotaE rotation property of the complex vector embedding model to model a variety of
different relational patterns. Table 1 summarizes our approach with other related work.
The normalization effect of cosine similarity can reduce the variance and prevent gradient
vanishing [35]. Moreover, cosine similarity finds extensive application in natural language
processing for assessing the similarity of words, sentences, and document vectors [23–25].
The angle between similar vectors should be smaller, which can also help to distinguish
different types of entities. In short, the main motivations behind these models include
(1) using cosine similarity can make the triple scores bounded and reduce the variance,
(2) distinguishing the embedding information of various entity types, and (3) reflecting the
difference in direction between vectors.

Table 1. Comparison of our approach with several representative knowledge graph embedding
models in the representation space, score range.

Models Scoring Function Representation Space Score Range

TransE [16] −∥h + r − t∥1/2 h, r, t ∈ Rd Unbounded
DistMult [12] ⟨h, r, t⟩ h, r, t ∈ Rd Unbounded
ComplEx [14] Re(⟨h, r, t̄⟩) h, r, t ∈ Cd Unbounded
ConvE [27] f (vec( f ([h; r] ∗ ω))W)t h, r, t ∈ Rd′ Unbounded
RotatE [17] −∥h ◦ r − t∥ h, r, t ∈ Cd Unbounded
QuatE [15] h ⊗ r◁ · t h, r, t ∈ Hd Unbounded

LowFER [29]
(

Sk diag
(
UTh

)
VTr

)T
t h, r, t ∈ Rn×d Unbounded

RoCS (ours) cosjoint(h ◦ r, t) h, r, t ∈ Cd Bounded

3. RoCS

In this section, we introduce the RoCS method. Initially, we present the novel concept
of joint cosine similarity for complex vectors, followed by the introduction of the scoring
function derived from this joint cosine similarity. Subsequently, we outline the training
methodology and conclude with a detailed discussion of the proposed approach.

3.1. Joint Cosine Similarity of Complex Vectors

Given two complex vectors x, y ∈ Cd, the definition of cosine similarity is given by
the dot product and the vector length. As per the cosine similarity definition, the formula
for complex vector cosine similarity calculation is as follows:

cos(x, y) =
x · y
|x||y| =

∑d
i=1 xiyi√

∑d
i=1 xi x̄i

√
∑d

i=1 yi ȳi

, (1)

where xi, yi ∈ C denotes each elementary component of the complex vector x, y and x̄i
denotes the conjugate complex number of x. Since each complex number includes both real
and imaginary components, the dot product part of Equation (1) is calculated as follows,
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x · y = ∑d
i=1(Re(xi)Re(yi)− Im(xi) Im(yi))

+j(Re(xi) Im(yi) + Im(xi)Re(yi)),
(2)

where j2 = −1 denotes the complex number sign.
The dot product between the complex vectors results in a complex number. Since

the score of the triplet requires a real number to evaluate the training. Thus, if the above
complex vector cosine similarity formula is used directly to calculate the triplet score will
not work. To overcome this shortcoming, ComplEx [14] proposes calculating the complex
dot product without considering the imaginary part of the score. Although considering
only the real part of the score results can achieve positive performance. However, it is
inaccurate to consider only the real part scores because having the same real part scores
does not necessarily mean having the same imaginary part scores.

In contrast to previous work, we introduce a joint cosine similarity calculation method
so that both the real part and the imaginary part scores results are considered. First, the
complex vector’s real and imaginary components are treated as a combined pair of vectors.
Then, the combined vector cosine similarity is calculated. Figure 1 illustrates the joint
cosine similarity calculation process. The formula for calculating the joint cosine similarity
of complex vectors is as follows,

cosjoint(x, y) = cos(joint(x), joint(y))

= Re(x)·Re(y)+Im(x)·Im(y)
|x|·|y|

= ∑d
i=1 Re(xi)Re(yi)+∑d

i=1 Im(xi) Im(yi)√
∑d

i=1 xi x̄l

√
∑d

i=1 yi ȳi

,

(3)

where joint(x) represents the joint of the real part vector of x with the imaginary part
vector. Our method preserves the original real and imaginary components by converting
a d-dimensional complex vector into a 2d-dimensional real vector before calculating the
cosine similarity. Therefore, it can more accurately reflect the degree of similarity of
complex vectors.

3.2. Scoring Function Based on Joint Cosine Similarity

In this part, we introduce the RoCS scoring function, which is founded on the concept
of joint cosine similarity. We combine the rotational properties of the complex vector
embedding model RotatE [17] to model a variety of important relational patterns. RotatE
uses a complex vector to represent the head entity h, the relation r, and the tail entity t,
i.e., h, r, t ∈ Cd. RotatE shares similarities with TransE [16], the process involves rotating the
head entity’s embedding through the relational embedding and subsequently computing
the distance to the tail entity as a scoring function. For each element within the embedding
vector, the rotation model expects ti = hiri, where hi, ri, ti ∈ C, |ri| = 1. With Euler’s
formula, we can obtain ejθt,i = ejθh,i ejθr,i , i.e., θt,i = θh,i + θr,i, where j denotes the complex
symbol and θ denotes the corresponding complex space phase. It can be found that the
rotation model rotates the head entity by Euler angles.

Given that the distance model anticipates the head entity embedding to be in closer
proximity to the tail entity following translation or rotation through the relational embed-
ding. RotatE expects the distance between the two complex vectors to be minimized. We
believe that there are several problems. First, the higher triple score and smaller distances
conflict with each other, which makes the rotation mode have to solve the problem by
multiplying the scores by a negative numbers transformation. Second, the range of the
triple score is calculated using distance as the score function is unbounded. The significant
contrast in scores between positive and negative samples amplifies variance and diminishes
the model’s generalization capability. Third, the distance model is easily influenced by
the embedded dimensionality. The enlargement of the embedding dimension leads to an
expanded range in triple scores, which is detrimental to effective model training. For these
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reasons, We suggest employing joint cosine similarity as the scoring function, computed
as follows,

S(h, r, t) = cosjoint(h ◦ r, t), (4)

where ◦ is the Hadamard (or element-wise) product and joint(t) denotes the joint vector
for computing t, as shown in Figure 1.

The cosine similarity, as a normalization method, calculates the score range from
−1 to 1. This ensures that the score of the triples is bounded and reduces the variance.
Simultaneously, regardless of whether the embedding dimension increases or decreases, it
does not impact the alteration of the score range, providing advantages for model training.
Furthermore, the transformation of the distance model is addressed by utilizing cosine
similarity as a scoring function, where a higher score signifies greater similarity. In addition,
our proposed joint cosine similarity calculation method considers both real and imaginary
components, and the scores are more accurate. While the rotation model RotatE reflects the
same degree of the complex vectors by distance, our model RoCS reflects the similarity of
the two complex vectors by the phase difference. Figure 2 shows the difference between
our method RoCS and the rotation model RotatE.

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x 3Im ( )x 4Im ( )x2Im ( )x1Im ( )x

3R e( )x 4R e( )x2R e( )x1R e( )x 3R e( )x 4R e( )x2R e( )x1R e( )x

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x

3R e( )x 4R e( )x2R e( )x1R e( )x

3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y

3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x 3Im ( )x 4Im ( )x2Im ( )x1Im ( )x3R e( )x 4R e( )x2R e( )x1R e( )x 3R e( )x 4R e( )x2R e( )x1R e( )x

3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y
3Re( )y 4Re( )y2Re( )y1Re( )y 3Im( )y 4Im( )y2Im( )y1Im( )y

joint

jo
in

t
jo

in
t

jo
in

t

jo
in

t
jo

in
t

jo
in

t
jo

in
t

jo
in

t
jo

in
t

jo
in

t

jo
in

t
jo

in
t

jo
in

t

cos( joint( ), joint( ))x y

x y

Re( )x Im( )x Re( )y Im( )y

joint( )x joint( )y

jo
in

t

jo
in

t

cos( joint( ), joint( ))x y

x y

Re( )x Im( )x Re( )y Im( )y

joint( )x joint( )y

h

t
2|| ||h r t− −

h r

cos( joint( ), joint( ))h r t

h

r

t

h r

r

(a)

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x 3Im ( )x 4Im ( )x2Im ( )x1Im ( )x

3R e( )x 4R e( )x2R e( )x1R e( )x 3R e( )x 4R e( )x2R e( )x1R e( )x

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x

3R e( )x 4R e( )x2R e( )x1R e( )x

3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y

3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y

3Im ( )x 4Im ( )x2Im ( )x1Im ( )x 3Im ( )x 4Im ( )x2Im ( )x1Im ( )x3R e( )x 4R e( )x2R e( )x1R e( )x 3R e( )x 4R e( )x2R e( )x1R e( )x

3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Re( )y 4Re( )y2Re( )y1Re( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y 3Im( )y 4Im( )y2Im( )y1Im( )y
3Re( )y 4Re( )y2Re( )y1Re( )y 3Im( )y 4Im( )y2Im( )y1Im( )y

joint

jo
in

t
jo

in
t

jo
in

t

jo
in

t
jo

in
t

jo
in

t
jo

in
t

jo
in

t
jo

in
t

jo
in

t

jo
in

t
jo

in
t

jo
in

t

cos( joint( ), joint( ))x y

x y

Re( )x Im( )x Re( )y Im( )y

joint( )x joint( )y

jo
in

t

jo
in

t

cos( joint( ), joint( ))x y

x y

Re( )x Im( )x Re( )y Im( )y

joint( )x joint( )y

h

t
2|| ||h r t− −

h r

cos( joint( ), joint( ))h r t

h

r

t

h r

r

(b)
Figure 2. The rotation model calculates the distance between vectors as the score function (left
((a) RotatE)), while our approach RoCS uses joint cosine similarity as the score function (right
((b) RoCS)).

3.3. Training

Knowledge graph embedding training steps mainly include generating negative
samples and designing loss functions. There are uniform sampling, Bernoulli sampling,
and self-adversarial negative sampling [17] for generating negative samples. For a fair
comparison with the RotatE rotation model, we employ the self-adversarial negative
sampling method to generate negative samples. Higher sampling weights are assigned to
negative samples with elevated scores, ensuring that these generated negatives contribute
more substantial training information. The sampling probability for negative samples in
the self-adversarial negative sampling is defined as follows,

p
(

h′j, r, t′j | {(hi, ri, ti)}
)
=

exp αS
(

h′j, r, t′j
)

∑i exp αS
(
h′i, r, t′i

) , (5)

where α is the sampling hyperparameter.
Loss function design is generally related to the scoring function. The logistic regression

loss function [12,14] is typically chosen for the dot product model, and the rank loss [16,19]
is typically chosen for the distance model selection [1]. Since the rotation model uses a
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self-adversarial negative sampling loss function [17], our method also uses the same loss
function for a fair comparison. Therefore, the loss function of RoCS is calculated as follows,

L = − log(σ(γ − µS(h, r, t)))−
n

∑
i=1

p
(
h′i, r, t′i

)
log

(
σ
(
µS

(
h′i, r, t′i

)
− γ

))
, (6)

where γ is the fixed margin hyperparameter, µ is the score function scaling hyperparameter.
To extend the scoring range of the triplet, We introduce a scaling hyperparameter µ to fine-
tune the scoring function, and experimental results demonstrate this helps model training.

3.4. Discussion

In this section, we will first discuss the ability of our method to infer three impor-
tant patterns of the relations. Then we will discuss the connection of our method with
existing methods.

3.4.1. Infer Patterns of the Relations

Knowledge graphs have various relationship patterns, among which the three most
common relationship patterns are symmetric/antisymmetric, inverse, and combinatorial.
Hence, for precise prediction of missing links in the knowledge graph, the designed score
function requires inferring the above three relationship patterns. RotatE [17] expects the
tail entity to be equivalent to the head entity after relational rotation, i.e., t = h ◦ r. All the
above relational patterns can be inferred using the rotation property. Specifically, if r is a
symmetric relation then r ◦ r = 1, and if r is an antisymmetric relation then r ◦ r ̸= 1. If
r1 and r2 are inverse relations, then it is sufficient to satisfy r1 = r−1

2 . If r1 is a combined
relationship of r2, r3, then r1 = r2 ◦ r3. The rotation model uses distance as the score
function, while our method uses cosine similarity. Since using cosine similarity does not
change the rotation property, our method can also infer all the above relationship patterns.

3.4.2. Connection with Existing Methods

Our method can be naturally extended to all distance models. Since both translational
and rotational models use relations to translate or rotate the head entity, expecting the
rotated head entity to be equivalent to the tail entity, i.e., expecting t = h + r or t = h ◦ r.
Therefore, it is straightforward to use joint cosine similarity instead of distance as the
scoring function. After normalizing the entity embedding and relational embedding
vectors, the rotation model RotatE [17] is approximately equivalent [36] to our method
as follows,

∥hnor ◦ rnor − tnor∥2 ≈
√

2
(
1 − cosjoint(hnor ◦ rnor, tnor)

)
, (7)

where hnor, rnor, tnor ∈ Cd, xnor denotes the normalization of the vector x normalization
result, i.e., xnor = x

∥x∥2
. It is noticed that our method RoCS is approximately equivalent

to the normalized RotatE model score function after normalization. When using the real
number space to represent entities and relations, the joint cosine similarity is calculated in
an exactly equivalent way to the cosine similarity [36]. Therefore, the following equivalence
exists between RoCS and the scoring function of the translational model TransE [16] when
only the real part is considered,

∥hnor + rnor − tnor∥2 =
√

2(1 − cos(hnor + rnor, tnor) , (8)

where hnor, rnor, tnor ∈ Rd. In summary, RoCS can be naturally extended to the distance
model. We evaluates the similarity based on direction, while the distance model evaluates
vector similarity based on distance, as shown in Figure 2.
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4. Experiment

In this section, we outline our experimental setup and report the corresponding results.
We begin by detailing the experimental configuration. Next, we evaluate the efficacy of
our approach compared to the baseline rotation model. Subsequently, we present the
results of our method in comparison to state-of-the-art approaches. Finally, we analyze
the performance of our model utilizing both the dot product and distance models in the
complex space. Additionally, we conduct ablation studies by comparing different methods
of computing complex vector cosine similarity.

4.1. Experimental Setup
4.1.1. Datasets

We selected four standard datasets for the link prediction task including FB15k [16],
FB15k-237 [26], WN18 [16], and WN18RR [27] to evaluate our proposed method. FB15K
is a subset of the real-world knowledge graph Freebase [10], containing 14,951 entities
and 1345 relations. FB15k-237 is a subset of FB15K after removing the inverse relations,
containing 14,541 entities with 237 relations. WN18 is a subset of WN18 [9], a knowledge
graph constructed by vocabulary, containing 40,943 entities and 18 relations. WN18RR is a
subset of WN18, with inverse relations removed, containing 40,943 entities and 11 relations.
Among them, FB15k-237 and WN18RR primarily exhibit symmetric/anti-symmetric and
combinatorial relationship patterns. The principal relationship patterns in FB15K and
WN18 involve symmetry/anti-symmetry and inverse patterns. The statistical information
of these knowledge graphs is summarized in Table 2.

Table 2. Statistics of datasets.

Dataset #Entity #Relation #Train #Valid #Test

FB15K 14,951 1345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5000 5000
WN18RR 40,943 11 86,835 3034 3134

4.1.2. Evaluation Criterion

We use the score function designed by Equation (4) to score the test triple (h, r, t) with
all candidate triples, and calculate the test triple ranking based on the scoring results. All
candidate triples are generated by substituting either the head entity or the tail entity of
the test triple, i.e., (h, r, t′) or (h′, r, t). We follow filters setting [16] that all candidate triples
are excluded from appearing in the training set, validation set, and test set. Similar to the
previous work [28,29], we choose MRR, Hits@k (k ∈ {1, 3, 10}) as the ranking evaluation
metric. MRR represents the average inverse ranking of the test triples, while Hits@k
indicates the proportion of test triples within the top k rankings.

4.1.3. Baselines

We select some representative baselines from the dot product model and the distance
model respectively for comparison. For the dot product model we report DistMult [12],
ComplEx [14], ConvE [27], SimplE [37], QuatE [15], TuckER [28] and LowFER [29]. For the
distance model we report TransE [16], TorusE [20] and RotatE [17]. Among them, QuatE,
TuckER, and LowFER are reported as the latest SOTA models.

4.1.4. Experimental Details

We implement our proposed model based on the Pytorch [38] deep learning framework
and train it on an NVIDIA Tesla P100 GPU. We use Adam [39] as the trainer and Equation (6)
defines the loss function. We use grid search to determine the hyperparameters, selecting
the optimal ones based on evaluating MRR metrics on the validation set. The hyperparame-
ter search range is as follows: fixed margin γ ∈ {1, 3, 6, 10, 12, 15, 20, 30}, and scaling hyper-
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parameter µ ∈ {1, 5, 10, 15, 20, 25, 30 , 50}. In addition, the embedding dimension we set the
following d ∈ {100, 200, 500, 1000}, and learning rate lr ∈ {0.001, 0.0001, 0.00003, 0.00001}.
The initial parameter settings follow the rotation model settings [17].

4.2. Compare RotatE

We first evaluated the performance of our RoCS method alongside the original rotation
model RotatE [17]. Figure 3 illustrates the performance of our method RoCS with RotatE
on the FB15K, FB15K-237, WN18, and WN18RR datasets. Figure 3a shows that our method
improves 1.9% in MRR, 2.5% in Hits@1, 2.6% in Hits@3, and 1.0% in Hits@10 compared to
RotatE on the FB15K dataset. Figure 3b shows that our method improves 2.4% in MRR,
3.3% in Hits@1, 2.1% in Hits@3, and 1.7% in Hits@10 compared to RotatE on the FB15K-237
dataset. Figure 3c shows that our method improves -0.2% in MRR, -0.1% in Hits@1, 0.4% in
Hits@3, and 0.5% in Hits@10 compared to RotatE on the WN18 dataset. Figure 3d shows
that our method improves 2.7% in MRR, 4.0% in Hits@1, 2.8% in Hits@3, and 0.5% in
Hits@10 compared to RotatE on the WN18RR dataset. Overall, our method RoCS shows a
significant improvement compared to RotatE. It shows that using joint cosine similarity
as a scoring function to constrain the bounded triple scores can reduce the variance and
improve the model generalization.
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Figure 3. Comparison of the link prediction results of our method RoCS with the original rotation
model RotatE [17] on FB15K, FB15K-237, WN18 and WN18RR. (a) FB15K; (b) FB15K-237; (c) WN18;
(d) WN18RR.

4.3. Comparison with Current SOTA Models

The main results of the link predictions are shown in Tables 3 and 4. Table 3 indicates
that our RoCS method achieves new benchmarks, achieving a SOTA performance, including
Hits@3 of 95.6%, Hits@10 of 96.4% on WN18, and MRR of 48.9%, Hits@1 of 44.5% on
WN18RR. Table 4 illustrates that our method RoCS is highly competitive in the FB15K
dataset, with MRR, Hits@1, and Hits@3 only below the SOTA model LowFER [29]. And,
our method also achieved a top 3 ranking on WN18RR. In short, neither SOTA models
TuckER [28], LowFER nor QuatE [15] models can achieve excellent performance in all
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datasets. TuckER and LowFER perform poorly in the WN18RR dataset, and QuatE models
achieve lower performance in FB15K MRR, Hits@1, and Hits@3, while our method RoCS
achieves competitive results in all datasets. This indicates that our approach is highly
competitive with the current leading knowledge graph embedding models.

Table 3. Link predictions in WN18 and WN18RR results.State-of-the-art (SOTA) results are shown in
bold, and top 3 ranking results are underlined. QuatE [15] reports QuatE3 results, and LowFER [29]
reports LowFER-k∗ results.

Models
WN18 WN8RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [16] 49.5 11.3 88.8 94.3 22.6 - - 50.1
DistMult [12] 79.7 - - 94.6 43.0 39.0 44.0 49.0
ComplEx [14] 94.3 93.5 94.6 95.6 46.0 39.0 43.0 48.0
ConvE [27] 94.2 93.9 94.4 94.7 - - - -
SimplE [37] 94.7 94.3 95.0 95.4 - - - -
TorusE [20] 94.1 93.6 94.5 94.7 44.0 41.0 46.0 51.0
RotatE [17] 94.9 94.4 95.2 95.9 47.6 42.8 49.2 57.1
QuatE [15] 95.0 94.5 95.4 95.9 48.8 43.8 50.8 58.2
TuckER [28] 95.3 94.9 95.5 95.8 47.0 44.3 48.2 52.6
LowFER [29] 95.0 94.6 95.2 95.8 46.5 43.4 47.9 52.6

RoCS (ours) 94.7 94.0 95.6 96.4 48.9 44.5 50.6 57.4

Table 4. Link predictions are shown in FB15K and FB15K-237 results.

Models
FB15K FB15K-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [16] 46.3 29.7 57.8 74.9 29.4 - - 46.5
DistMult [12] 65.4 54.6 73.3 72.8 24.1 15.5 26.3 41.9
ComplEx [14] 69.2 59.9 75.9 84.0 32.5 23.7 25.6 50.1
ConvE [27] 74.5 67.0 80.1 87.3 - - - -
SimplE [37] 72.7 66.0 77.3 83.8 - - - -
TorusE [20] 73.3 67.4 77.1 83.2 24.7 15.8 27.5 42.8
RotatE [17] 79.7 74.6 83.0 88.4 33.8 24.1 37.5 53.3
QuatE [15] 78.2 71.1 83.5 90.0 34.8 24.8 38.2 55.0
TuckER [28] 79.5 74.1 83.3 89.2 35.8 26.6 39.3 54.4
LowFER [29] 82.4 78.2 85.2 89.7 35.9 26.6 39.6 54.4

RoCS (ours) 81.2 76.5 84.3 89.3 34.6 24.9 38.3 54.2

4.4. Comparing Complex Vector Embeddings

To further investigate the effectiveness of cosine similarity as a score function, we
investigated using the same representation space to compare our method with the dot
product model ComplEx [14], and the distance model RotatE [17]. For a fair comparison,
we additionally train the ComplEx model utilizing a self-adversarial negative sampling
loss function [17]. As shown in Table 5, RoCS is significantly outperformed by ComplEx
and RotatE. This indicates that using the joint cosine similarity as a scoring function
for the complex vector embedding model is better than the dot product model and the
distance model.
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Table 5. A comparison of the complex vector embedding models ComplEx, RotatE and RoCS (ours),
where ComplEx also uses a self-adversarial negative sampling loss function for fair comparison.

Models
WN18 WN8RR FB15K FB15K-237

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

ComplExadv 89.2 95.4 47.0 55.7 78.0 89.0 32.1 50.9
RotatE 94.9 95.9 47.6 57.1 79.7 88.4 33.8 53.3
RoCS(ours) 94.7 96.4 48.9 57.4 81.2 89.3 34.6 54.2

4.5. Ablation Study

In Section 3.2, we propose to use the joint cosine similarity as a scoring function to
improve the model’s performance. To verify the validity of the joint cosine similarity, we
compare it with other methods for calculating the cosine similarity of complex vectors. The
first method is similar to ComplEx [14], which considers only the real part of the scoring
function and is formulated as follows,

S1(h, r, t) = Re(cos(h ◦ r, t)), (9)

where h, r, t ∈ Cd, Re denotes the real part. The second approach combines the cosine
similarity of real vectors and the cosine similarity of imaginary vectors separately. The cal-
culation is as follows,

S2(h, r, t) = cos(Re(h ◦ r), Re(t)) + cos(Im(h ◦ r), Im(t)), (10)

where Im denotes the imaginary part.
We compare the way of calculating complex vector cosine similarity in Equation (9)

and Equation (10) to prove that our proposed joint cosine similarity is effective. As shown
in Table 6, our proposed method for calculating the joint cosine similarity of complex
vectors achieves the best results. The first method is not accurate enough for triplet scoring
because the imaginary part of the triplet score is discarded. The second method ignores the
connection between the real and imaginary parts, and thus also obtains poorer results. In
contrast, our method achieves excellent performance in both cases. Therefore, this proves
that our calculation method can give a more accurate scoring result by considering both
the real part and the imaginary part.

Table 6. The results of using Equation (9) (RoReCS), Equation (10) (RoAddCS) as score functions on
WN18, WN18RR, FB15K, FB15K-237.

Models
WN18 WN8RR FB15K FB15K-237

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

RoReCS 63.7 90.7 36.7 44.5 49.1 65.9 23.1 33.4
RoAddCS 92.1 95.2 46.0 52.1 68.5 79.0 28.0 44.9
RoCS 94.7 96.4 48.9 57.4 81.2 89.3 34.6 54.2

5. Conclusions and Future Work

In this paper, we first propose a method to compute the joint cosine similarity of
complex vectors. Then, a knowledge graph embedding model based on joint cosine
similarity is proposed, named RoCS. Specifically, the proposed RoCS uses joint cosine
similarity as a scoring function to constrain the triple score range to be bounded, thus
reducing the variance of the model and improving model performance. Meanwhile, our
method combines the rotational properties of the RotatE can reason about a variety of
important relational patterns. Our experimental results indicate a significant improvement
over the original RotatE model, achieving performance levels that closely rival or even
surpass the latest advancements in the field. In the future, we plan to further consider
extending the joint cosine similarity to other representation learning problems.
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