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Abstract: The quality of verbal communication, understood as the absence of uncertainty in the
message transmitted, is a key factor in mission-critical processes. Several processes are handled
by direct voice communication between these endpoints and any miscommunication could have
an impact in success of the task. For that reason, the quality control of verbal communication is
required to ensure that the instructions issued are effectively understood and adequately executed.
In this context, it is expected that instructions from the command center are issued once, and that
the acknowledgment from the field are minimal. In the present work, the communication between
an electrical company control center and factory workers in the field was chosen for analysis. We
developed two complementary approaches by using machine learning and deep learning algorithms
to assess, in an automatic way, the quality of information transmission in the voice communications.
Preliminary results demonstrate that the automatic uncertainty detection is feasible, despite the small
number of samples available at the present time. To support further studies, a repository was created
in GitHub with the spectrogram and the tokenized words of all audios.

Keywords: uncertainty; spectral analysis; speech analysis; support vector machine (SVM)

1. Introduction

The management of electrical networks is a mission-critical process [1,2], and for
this reason, efforts must be continually made to eliminate sources or inducers of error,
particularly in the communication between the control center and the operating personnel
on the ground [3]. In general, the communication goes from the command center to the field
worker. Instructions are given to the deployed personnel, and they normally acknowledge
correct reception or understanding. Problems in this communication normally imply either
delays in the fixing of some failed device, restoring services, or in more extreme cases,
a fallen service for unnecessary extra time. In the field of electrical network management,
a control center is an organizational unit responsible for the supervision and coordination
of the real-time operation of the electrical system. Its function is to ensure the continuity of
supply, and the security of that system, its assets and the people involved in it, and keeping
the technical parameters within the defined legal ranges, as can be seen in [4].

To fulfill the objective of the control center, there is the role of operator, which is the
person in charge of monitoring and remotely commanding the electrical system through
field equipment, telecommunications, and SCADA [5]. In case there is the need to carry out
face-to-face work in the field, they are responsible for remotely instructing the necessary
maneuvers to carry out the work safely.

For these complex systems, where there is a close interplay between machines and
human beings, sources of errors are not only circumscribed to the automatized processes
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but often arise in the human-to-human level interaction (see ([6,7]) for communication
problems in electricity company management). In daily operations, voice communication is
common between a control center and personnel deployed to work on distributed elements
throughout the city. These communications are normally recorded for future reference,
if needed, and normally do not serve as an active tool for performance or service quality
robustness assessment. Close attention in the post-analysis of these audios, especially after
the occurrence of a problem/failure, tends to show a correlation between the problem
and some level of hesitancy or uncertainty in the communications in relation to it. This is
true in spite of the absence of clear indicators of doubt on any side of the line, where the
conversations could be evaluated as successful by a third party based on the content of
the speeches.

It is for this reason that there are strict communication protocols between the operator
and the field personnel so that the instructions issued are effectively understood and
adequately executed. Despite the existence of these definitions, the complexity of verbal
communication generates certain risks when there is not good understanding between
the interlocutors. This complexity is given, among others, by the work to be carried out,
the moods, the context, and the technical quality of the communication channel and its
terminal equipment. To mitigate the risk of errors in the execution of the work, training is
carried out in the aim of ensuring effective communication.

To evaluate the results in practice, random reviews are made of the recordings of these
verbal interactions. This method, while effective for individual-reviewed recordings, has
the following disadvantages:

• High cost in time, since listening to the recordings takes at least the same time as the
original communications.

• Low coverage, since it is only possible to review a smaller subset of the recordings,
thus losing the opportunity to capture a greater number of situations to improve.

In order to overcome the disadvantages of the current method, and thus increase the ef-
fectiveness of the quality control process within the company’s electrical work management,
the use of an automatic recording analysis process is proposed to:

• Review the totality of the recordings, regularly obtained at a rate of over 5000 per
month, with an average of 130 s per audio. These statistics are expected to continue to
steadily increase with time.

• Classify communications that generate a risk of error due to lack of clarity. These
errors are normally translated into the need for repeated work in the field, preventable
machine failures, or hazardous conditions for personnel.

The detection of these hidden uncertainty inducers is then a good indication of a
potential problem if obtained opportunely. The proposed idea in this article is the extraction
of useful data from both the spectrum content and from the composition of the words
within the text of the audio files to allow an inference of the existence of hidden uncertainty.

In this work, two complementary methods are detailed. The first one, labeled formant
analysis, is based on extracting the relevant frequency content per sample time, the first
two formants, from the spectrogram, and determining the degree of uncertainty based
on how these formants change throughout time (see [8,9] for related works with audio
frequency contents). The second method called speech-to-text, is basically inferring the
existence of uncertainty in the order of words used in the audio, reflecting the sentiment of
the speakers, as can be seen in [10] for a close related approach.

In the first approach, the design of an uncertainty classifier is proposed, based on
the identifications of phonemes present in situations of uncertainty characterized by an
extended repetition of vocals or consonants, such as ’eeeeeeee. . . ’, or ’mmmmmmm. . . ’.
These situations are identified through the analysis of the formants, which correspond to
the frequency of the largest magnitudes for each time instant of the communication [11–13].
Speech phonemes are described by the first and second formants, which are obtained by
analyzing the spectrogram of the audio file containing the communication records. Previous
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works have used deep learning and linear predictive approaches estimating frequency
contents in speech processing, as can be seen in [14,15]. Unchanged or slightly changed
formants between consecutive time instants are indicative of unaltered frequency contents,
which in turn are a consequence of fixed sonarization.

The second approach, primarily based on detecting the hidden “sentiment” or “emo-
tion” content, in this case, associated with hesitation or doubts, uses the order in which the
words are included in the text of the audio. Related works include [16,17]. This approach is
based on a technique called speech-to-text [18,19]. In this case, it is important to consider
that a process trained for the Spanish language should be used, ideally Latin American or
Chilean, so a special opener tool was used to carry out this audio-to-text conversion. A bag
of words was then constructed from all words existing within the audio, and consequently,
a process of converting the words into numbers, called tokenization, based on a Tensorflow
API, was performed for effective numerical analysis. Similar performance metrics are
employed in this second method.

Authors have applied these approaches in previous works, showing a remarkable
capacity in terms of sensible classifications ([20,21]). A common pre-processing step is the
obtaining of what is called vector of characteristics (VC) from the raw data, which in this
case, captures the audio’s main features while reducing their high dimensionality, which
is then used to train support vector machines (SVMs) and deep neural networks (DNNs).
Through a process based on the analysis of the formants, the first approach generates the
characteristic vectors (see [22]), while the second approach base its vectors on the text
content, and then the SVM and DNN algorithms (see [23–25]) are used to obtain a classifier
for uncertainties. Several experiments, with different parameters, have been performed in
order to measure the effectiveness of the SVM through performance metrics, as can be seen
in [26]. Finally, the parameters that generate the best SVM and DNN performance for the
case under study, are identified. This allows the fulfillment of the objective of detecting
communications that have levels of uncertainty that require review by a supervisor within
a context of the continuous improvement of the overall process.

The implementation is based on machine learning and deep learning algorithms
executed in batch mode (offline), processing audio files with recordings of the dialogues
with instructions. By extracting features and using both approaches, the quality of the
interaction between the control center and the field operator will be classified. The proposed
idea is expected to be implemented in real-time in the near future. The main contributions
of this paper can be summarized as follows:

• Two different approaches, based on pattern recognition, are used to classify the audio,
including a technique called support vector machine, and deep neural networks. Both
approaches use different processing techniques, mainly based on frequency content
analysis, text composition, and natural language study.

• The use of these machine learning techniques allowed the successful classification and
differentiation of audios with uncertainty from a set of audios labeled audios.

• As a way of supporting the analysis of audios under possible uncertainties, the au-
dios used in this research, including their spectrograms, and text tokenization, are
published in GitHub ([27]), and remain accessible for further work.

The rest of the paper is structured as follows. Section 2 introduces the problem
statement, conceptualizing the problem to be solved and its relevance. Sections 3 and 4
present the two methods covered in the article and their technical details. And, Section 5
presents the results obtained from training, testing and validating both methods and their
complementary natures. Section 6 provides the conclusions.

2. Problem Statement

The real-time operation of an electrical system qualifies within critical mission pro-
cesses. For this reason, any error or misunderstanding can generate serious undesired
consequences, both in the continuity and quality of the supply, as well as in the state of
the assets, the health of the workers, and finally, have an impact on the population and
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the reputation of the company. That is why the inducers of undesired events must be
minimized, with verbal communication between the operator and field personnel being
one of the most sensitive aspects, given the direct interaction between two people, as can
be seen in Figure 1.
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Figure 1. Communication between central control (supervisor) and field (operator).

From a preventive and anticipatory perspective, it is of interest to identify real com-
munications that generate the risk of error in the execution of manual operations in the
field in order to carry out the interventions and feedback that allow eliminating these risks
of misunderstandings or confusing or erroneous instructions. The direct benefit translates
into a reduction in time and an increase in the efficiency and effectiveness of the review
of audio files since the designed classifier must eliminate those conversations without
uncertainty or with a low probability of uncertainty, selecting and sorting those audios that
have greater detected uncertainty.

The objective of this work is to identify the audio recordings that are most likely to
contain communications with uncertainty. Therefore, the problem to be solved is stated as
how to identify the uncertainty of a verbal communication recorded in an audio file, so
then tackled by the two proposed complementary approaches:

• Formant analysis: The implementation of the first method is carried out through a com-
plex process based on the identification of phonemes and their formants that represent
uncertainty in communication, for example, ‘huuuuuh’, ‘eeeeeeh’, ‘mmmmmmm’.
Formants correspond to the strongest frequencies present in an audio signal. Formants
are obtained by means of analysis in the frequency domain through a spectrogram
that represents the intensity of the signal for each frequency within its bandwidth and
for each discrete time instant of the recorded signal. In Spanish, the phonemes are
determined by the frequency and magnitude of the first two formants, as can be seen
in [12,28]. Thus, there are the so-called letters of formants (LoF), which allow us to
identify the use of vowels. See Figure 2 for the LoF for vowels in Spanish.

• Speech-to-text analysis: The implementation of the second method is performed through
a speech-to-text process. The identification of words or sets of words that represent
uncertainty in communication, by defining a bag of words and their order within,
that should not be used or repeated in the context of critical mission instructions.
For example: ‘No’, ‘I do not know’, ‘Wait’, ‘I’m going to find out’, ‘I do not understand
you’, ‘Are you sure?’ or others. See Table 1 with sentence samples of some audios
labeled as “with uncertainty” and “without uncertainty” by an expert, signaling on
one hand a level of hesitancy and vacillation, or clear certainty on the other. In this
case, it is important to consider that a process trained for the Spanish language should
be used, ideally Latin American or Chilean. Once the written text has been obtained,
the use of words or phrases contained in a list of words that generate uncertainty
is identified.
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Figure 2. LoF for vowels in Spanish [12].

Table 1. Sample sentences from audios that do or do not reflect the existence of uncertainty.

Audio Sentence (Spanish/English) Uncertainty

5 “. . . ah, listo, te entiendo, te entiendo. . . ” no“. . . oh, done, I understand you, I understand you. . . ”

62 “. . . correcto, sí, correcto, ya. . . ” no“. . . correct, yes, correct, OK. . . ”

73 “. . . ya, ah ya, perfecto. . . ” no“. . . OK, oh OK, perfect. . . ”

13 “. . . no te aseguro. . . ” yes“. . . I do not assure you. . . ”

22 “. . . no sé, OK, vamos a averiguar. . . ” yes“. . . I do not know, OK, we’ll find out. . . ”

28 “. . . a ver, esperame. . . ” yes“. . . let us see, wait for me. . . ”

During training, both methods considered in this work were evaluated through the
following machine learning metrics for classification problems (see [29] for similar ap-
plication). These metrics are based on TP, true positives, namely audios tagged with
uncertainty and correctly classified; TN, true negatives, audios tagged without uncertainty
and correctly classified; FP, false positives, audios tagged with uncertainty but incorrectly
classified; and FN, false negatives, audios without uncertainty and incorrectly classified:

• Precision: The ratio of audios correctly classified with uncertainty over all audios
was classified with uncertainty. A precision of 100% means that all audios classi-
fied as “with uncertainty” are actually “with uncertainty”. Precision is also known
as reliability.

Precision =
TP

TP + FP
(1)

• Recall: The ratio of audios correctly classified with uncertainty over all audios with
uncertainty. This is also known as the true positive rate (TPR). A recall of 100% means
that all audios “with uncertainty” are correctly classified as “with uncertainty”.

Recall =
TP

TP + FN
(2)

• Accuracy: The ratio of audios correctly classified over all existing audios.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)
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• F1 score: The harmonic average of precision and recall.

F1 = 2
Precision × Recall
Precision + Recall

(4)

3. Formant Analysis Approach

Although the use of the LoF allows us to identify the use of vowels in Spanish, in this
case, it does not consider the use of consonants that are usually used to cover up uncertainty.
For example, it is using ’mmmmmm’ while searching for an answer.

Given the above disadvantage, rather than searching for vowels using the Formant
Chart, we will seek to identify audio sections that have similar contiguous formants since
this represents the use of the same phoneme. This strategy is based on the fact that it is
not of great interest to identify which phoneme is used but rather to identify a phoneme
used during a certain window of time. Once exceeded in duration, a sign of uncertainty
in verbal communication can be assumed. The implementation process of this strategy,
depicted in the block diagram of Figure 3, is as follows:

• Extract the data from the audio file consisting of the digital samples and the sampling
frequency.

• Calculate the spectrogram of the sample set, where design parameters could be the
size and shape of the moving window for the discrete Fourier transforms.

• For each time instant, extract the first and second formants of the respective squared
spectrum. These correspond to the two highest amplitudes, indicating the frequencies
and amplitudes.

• A threshold noise comparison is performed to eliminate formants with amplitudes
low enough that could be corrupted by noise.

• The level of uncertainty is extracted by adding up the time intervals where the fre-
quencies of the filtered formants do not change, creating three categories with varying
degrees of uncertainty.

• For each file, a vector of characteristics (VC) is put together, including the three levels
of uncertainties and the fraction they cover over the entire signal.

• The VCs are used to train an SVM, considering that audio files are previously manually
evaluated and tagged as with or without uncertainty.

Extracción de Características

Flie
*.wav

Spectrogram Formant_1(f)

Formant_2(f)

Noise
Filter

Noise
Filter

Formant_1(f) 
Uncertainty

Formant_2(f) 
Uncertainty

YFeature Extraction
CriteriaFeature Vector

1

SVM Classifier

Figure 3. Formant analysis uncertainty classifier process.
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3.1. VC Creation

From the formant detection process, the following formant matrix, MF, is extracted:

MF =


1 f 1

1 m1
1 f 2

1 m2
1

2 f 1
2 m1

2 f 2
2 m2

2
...

...
...

...
N f 1

N m1
N f 2

N m2
N

 (5)

with the first column containing the sample index (N samples), the second and third
columns containing the frequency and normalized magnitude of the first formant, respec-
tively, and the fourth and fifth containing those related to the second formant. As explained,
it is interesting to detect audio sections where the phoneme remains nearly constant. This
means that audio windows meet the following condition for i = 1, 2

| f i
n+1 − f i

n| < fmax (6)

which is associated with a level of uncertainty. The parameter fmax is the maximum
frequency deviation, a tolerance parameter used to detect very similar frequencies, but not
necessarily identical, given the slight tonal variations of the voice for the same syllable.
The formant’s magnitude is not considered to affect the analysis, given that its value is not
below a noise threshold.

By using a reference audio file, which contains the five vowels, it is empirically deter-
mined that a suitable value that allows one to distinguish similar contiguous phonemes is
fmax = 50 Hz. Smaller values generate a model with low sensitivity, while larger values
tend to classify unrelated phonemes as uncertain. The 50 Hz chosen in this study corre-
sponds to the voice of a male adult. But this value should vary according to the gender,
age, and the characteristics of each person’s voice.

The advantage of the calculation of a spectrogram over a regular spectrum of the
entire voice signal, is its time–frequency nature, especially adequate for non-stationary
signals. A series of spectra are obtained by calculating the short-time Fourier transforms
for short overlapping time intervals of the signal. This captures how the frequency content
changes with time, as opposed to a single spectrum for the entire signal, where there is no
easy way to differentiate any time change. As an illustration of the underlying assumption,
the spectrogram of an audio file is calculated, as shown in Figure 4. The first and second
formants are shown in Figure 5.

Figure 4. Spectrogram of an audio file.
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Figure 5. First and second formants of an audio file.

The formants are filtered by comparing their intensity to a threshold, in this case,
10%, discarding everything below it. These parameters were tuned by experimentation.
Figure 6 shows a section of the filtered formants, between the fourth and seventh seconds,
where both formants have a nearly constant frequency (with deviations less than fmax),
which is reflective of a fixed phoneme and an associated level of uncertainty, considering
a minimum level of their magnitudes. The algorithm then extracts the time length of the
sections of the audio with this condition and generates the vector of characteristics.
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Figure 6. Filtered formants showing the possible existence of uncertainty.

This vector is defined by the total duration of the sections of similar phonemes, as an
uncertainty interpretation, using the following criteria:
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• T1: cumulative time of similar filtered frequencies whose uninterrupted duration is
contained between 200 and 300 ms.

• T2: cumulative time of similar filtered frequencies whose uninterrupted duration is
contained between 300 and 500 ms.

• T3: cumulative time of similar filtered frequencies whose duration is greater than
500 ms.

• δT : percentage of time with uncertainty (T1 + T2 + T3) with respect to the total
duration of the audio T.

The VC is then defined by

VC =


T1
T2
T3
%T

 =


∑

nT1
n=1 tn

1

∑
nT2
n=1 tn

2

∑
nT3
n=1 tn

3
(T1+T2+T3)

T

 (7)

with nTi the number of occurrences of Ti, and tn
i the uninterrupted time of each occur-

rence, for i = 1, 2, 3. The VC extracted for the current audio, with T = 112.52 s, was
VC =

[
4.92 7.27 13.26 22.62

]T .

3.2. SVM Training

To perform the classification of audio into “with uncertainty” and “without uncer-
tainty”, the supervised machine learning approach support vector machine (SVM) is
selected. The machine is fed a set of training VCs, and their corresponding binary labels
(with or without uncertainty), previously determined. During the training, a model is
generated which, after completion, is used to classify unlabeled new videos. This mapping
creates a hyperplane that maximizes the separation of the two categories.

Given a normalized training set of m points

(VC1, y1), . . . , (VCm, ym) (8)

with yi = {−1, 1}, for no uncertainty and uncertainty, respectively, the tag associated
to VCi and audio i, the training step delivers the hyperplanes splitting the entire vector
space into two sets: the ones either above the higher hyperplane being classified as with
no uncertainty, or below the lower hyperplane, classified as with uncertainty. Another
important information delivered by this method, although not used in the present work, is
not only the segmentation of the data points into one or the other condition, but also the
distance from the hyperplanes can give some insights into the degree of membership. For
the training, a linear Kernel function was used, and a cost of penalty factor (box constraint).

4. Speech-to-Text Analysis Approach

The use of certain words, their frequencies, and their location within the audio are
expected to carry or reflect some degree of uncertainty. Converting these words into
numbers is then used to train a deep neural network as well as an SVM.

4.1. Analysis Based on DNN

This method is based on the training of a multilayer perceptron (MPL) deep neural
network to classify the uncertainty. The preprocessing of the raw data is different from
the first method. Here, the audio is converted into text by a process called speech-to-text.
Whisper, developed by openAI [30], was used to carry out this audio-to-text transformation
process. This system is trained with a variety of languages, one of which is Spanish,
which is the one used, given the audio Spanish languages, achieving a very high rate of
transcription success. Once the written text has been obtained, a list of words is built with
an identification number associated with each one. This process, called a tokenizer, is
explained below.
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The resulting numeric vectors, each one associated with a particular audio file, are
ready to be fed into the DNN for training. As in the previous method, the tagged informa-
tion, with or without uncertainty, is also used as the target. Figure 7 shows a block diagram
with the basic steps during training.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
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⋮
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Figure 7. Speech-to-text analysis uncertainty DNN classifier process.

The network is built using the Keras Sequential model [31], due to its simplicity
in building it by stacking different types of layers, and for the high dimension of the
input data.

4.1.1. Tokenizer

This process, based on a subfield of linguistics called natural language processing,
consists of converting words into a corresponding unique number as an identifier. A bag of
words is built by assigning these numbers to each word without repeating them. Once the
dictionary is built, the texts are just converted into numeric vectors VNi

DNN , i = {1 . . . m},
as sketched in Figure 8. This was achieved using Tensorflow API [32]. These vectors will
be further reduced in dimensionality by the embedding stage, at the entrance of the DNN.
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Figure 8. Tokenizer process for two arbitrary texts (original audios were processed in Spanish).

Two main concerns are given as follows. Due to the variable nature of the data, all
the vectors are resized by adding null numbers (zeros in this case), and matching their
sizes, called zero padding. The second concern is that the corresponding bag of words to
be adjustable by incorporating new words was not seen during the training.

4.1.2. DNN Training

This part of the process corresponds to standard DNN training, where its weights and
biases are numerically searched in an iterative way, by back-propagating the estimation error.
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The DNN model is based on a Keras Sequential model as shown in Figure 9. Its
layers, number of neurons each, activation functions, number of epochs, and embedding
dimensions were obtained by fine-tuning and optimizing its inference power. Together with
the dense layers, dropout and regularizer L2 layers were added to its high sensitivity to
balance within the data, avoiding over-fitting. For training, the following hyper-parameters
were used: at the input layer, an embedding dimension of 150; at both dense layers,
60 neurons, and regularizers of 0.01; and dropout factors of 0.2. The total number of epochs
was 150.

Figure 9. Keras sequential model.

4.2. Analysis Based on SVM

Data gathered from the speech-to-text approach were also used with an SVM. In this
case, the characteristic vectors to be injected into the SVM classifier include the relevant
repetition frequency of each word within the totality of the audio, frequencies that have
surpassed a tuned threshold. First filtering is the discarding of words from the bag of
words, with three letters or less, in an attempt to clean the data from words with functions
more related to connecting ideas or sentences, like most prepositions. Further looking
to concentrate the most important features contained within the repetition frequencies,
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and reducing the overall data dimensions, these numeric vectors are subjected to a tech-
nique called non-negative matrix factorization [33]. These new numeric vectors, VNi

SVM,
i = {1 . . . m}, are then fed into the SVM engine. This is sketched in Figure 10. Similarly,
as in Section 3.2, for the training, a linear Kernel function was employed, with a cost of
penalty factor.
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Figure 10. Frequency vector creation from two arbitrary texts (original audios were processed
in Spanish).

4.2.1. Data Filtering by Relevant Repetition Frequency

Here, the already computed bag of words as well as the tokenization for the ANN are
used. The difference is that, instead of resizing them by the embedding method, the data
are mapped into their repetition frequencies. The cumulative repetition frequency per word
within all audios is calculated. A threshold is then defined to select those frequencies above
it, and their associated words potentially carry an inherent sentiment to be associated with
the level of uncertainty.

4.2.2. Non-Negative Matrix Factorization and K-Fold Cross Validation

This technique, also called non-negative matrix approximation (NNMF) (see [34] for
more details), performs linear algebra multivariate analysis, wherein a matrix is factorized
into two matrices, all elements begin as non-negative and undergo reducing dimensionality,
which helps one work with the high volumes of data.

The data are randomly partitioned into equal sized subsets. Out of the subsets,
a unique subset is kept from the training process, but used later for testing. This process is
repeated the same number of times as the partition, interchanging the subset chosen for
testing, so that all are considered. The results are then averaged (see [35]).

5. Experimental Results

To train the algorithms, there is a set of 190 tagged audio recordings, including
31 labeled as “with uncertainty” and 159 labeled as “without uncertainty”. With that
universe of labeled recordings, and given the unbalanced number of audios with and
without uncertainties, different proportions of files of each class are tested to assess the
effect of this imbalance. These proportions are shown in Table 2.

To obtain statistically more representative results, 100 runs were performed for each
of the combinations shown in Table 2, selecting the subset without uncertainty randomly
out of the 159. The results were averaged per each category. Mean values are presented.
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Table 2. Five different proportions of “with uncertainty” audios of the total dataset.

With Uncertainty Without Uncertainty Percentage

31 159 ≈16% (31 out of 190)
31 66 ≈32% (31 out of 97)
31 33 ≈48% (31 out of 64)
31 18 ≈64% (31 out of 49)
31 8 ≈80% (31 out of 39)

Given the imbalanced nature of the available data, different proportions of audio were
tested in order to obtain some insight into the effect of this feature. In theory, and this was
detected from the results, better results were obtained when the proportions were more
equivalent. This was the case in both methods.

Tests were designed including all 31 audios with uncertainty, and a varying number
of audios without uncertainty (see Table 2), corresponding to the percentages: 16%, 32%,
48%, 64%, and 80%, with the 16% corresponding to the case where all 159 audios without
uncertainty were used. For each of these cases, up to 100 runs were executed by randomly
shuffling the audios without uncertainty to be included. The resulting metrics, namely
precision P, recall R, accuracy A, and F1, per each case, were averaged.

For each case, validation was performed after training. Out of the total number of
audios, this is the 31 with uncertainty plus the particular number used that were without
uncertainty; a randomly selected partition was made to set aside a fraction for the actual
training, and the remaining fraction for validation. This is, after finishing the training,
the algorithm which was presented with new data, that were not used during the training
but belonged to the current case.

For each of the cases shown in Table 2, and each of the 100 runs, the following partitions
were set to divide audios for training and for validation: 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90%, where the percentage indicates the number of audios selected for
validation out of the total.

5.1. Formant Analysis Results

According to the runs resulting from the variation of previously indicated parameters,
the performance curves of the precision, recall, accuracy, and F1 for the formant analysis
method are shown in Figure 11. From the analysis of the performance curves of all metrics,
the following can be observed:

• For the cases with low proportions of “with uncertainty” (16% and 32%), the perfor-
mance is in general very low.

• For the cases with intermediate proportions (48% and 64%), the performances are
better and more stable for different validation ranges in comparison with the other
ones.

• The proportion with 80% seems to be the best result for the formant analysis method.
Table 3 details the metric performance for 80%.

Table 3. Formant analysis metrics for 80% proportion (see Table 2).

Validation (%) Precision Recall Accuracy F1

10 1.0000 0.9300 0.9300 0.9550
20 0.8680 0.9083 0.7986 0.8812
30 0.8276 0.9189 0.7745 0.8672
40 0.8153 0.9017 0.7553 0.8521
50 0.8154 0.9060 0.7611 0.8547
60 0.8333 0.8641 0.7474 0.8430
70 0.8300 0.8666 0.7496 0.8430
80 0.8181 0.8233 0.7126 0.8134
90 0.8173 0.4229 0.4766 0.7820



Electronics 2024, 13, 141 14 of 19

10 20 30 40 50 60 70 80 90

Validation range [%]

0

10

20

30

40

50

60

70

80

90

100

M
e
tr

ic
s
 [
%

]

Precision

Recall

Acurracy

F1

10 20 30 40 50 60 70 80 90

Validation range [%]

0

10

20

30

40

50

60

70

80

90

100

M
e
tr

ic
s
 [
%

]

Precision

Recall

Acurracy

F1

10 20 30 40 50 60 70 80 90

Validation range [%]

0

10

20

30

40

50

60

70

80

90

100

M
e
tr

ic
s
 [
%

]

Precision

Recall

Acurracy

F1

(a) (b) (c)

10 20 30 40 50 60 70 80 90

Validation range [%]

0

10

20

30

40

50

60

70

80

90

100

M
e
tr

ic
s
 [
%

]

Precision

Recall

Acurracy

F1

10 20 30 40 50 60 70 80 90

Validation range [%]

0

10

20

30

40

50

60

70

80

90

100

M
e
tr

ic
s
 [
%

]

Precision

Recall

Acurracy

F1

(d) (e)

Figure 11. Formant analysis metrics for proportions shown in Table 2: (a) 16%; (b) 32%; (c) 48%;
(d) 64%; (e) 80%.

5.2. Speech-to-Text Results

The results of the application of SVM and DNN techniques, described below, can be
seen as complementary.

5.2.1. Based on DNN

The results of this method for the same metrics precision, recall, accuracy, and F1 are
shown in Figure 12. The following can be deduced:

• When there is an imbalance in the data in the training sets (16% and 32% of data ‘with
uncertainty’), good results are not obtained, since there is an over-fitting of the model
to the majority group, in this case corresponding to the data ’without uncertainty’.

• For balanced training sets (48% and 60% of data ‘with uncertainty’), significantly higher
results are achieved, with 90% and 98%, respectively. Still, it is impossible because the
test set is so low (10% validation). This case is expected to be fully representative.

• When the validation percentage is between 20% and 40% in balanced training sets (48%
and 60%), the best results are obtained, namely 97% and 88% in the best cases, respectively.

• For the percentages mentioned in the previous point, an average of all the iterations
was not performed, but the results that obtained a high percentage of recall as well as
a high percentage of total success were extracted since it is not appropriate to have a
high percentage of recall and close to 50% in the model because it would be in front of
a highly over-fitted model.

• Although a large percentage is achieved in the case of 60%, the hyperparameters of
the neural network had to be constantly adjusted to avoid over-fitting the data.

• Models with a balanced training set suffer as the percentage of validation data in-
creases since this means that fewer data are used for training, and in this context, one
works with a limited dataset for the class ’with uncertainty’, so the model is negatively
affected the fewer data are used.

• The 80% proportion is having the optimal results for the speech-to-text DNN analysis
method. Table 4 details the metric performance for this.
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Figure 12. Speech-to-text DNN analysis metrics: (a) 16%; (b) 32%; (c) 48%; (d) 64%; and (e) 80%.

Table 4. DNN metrics for 80% proportion (see Table 2).

Validation (%) Precision Recall Accuracy F1

10 0.8014 0.9933 0.7450 0.8533
20 0.8055 0.9966 0.7487 0.8560
30 0.8073 0.9988 0.7500 0.8569
40 0.8079 0.9991 0.7506 0.8573
50 0.8355 0.9886 0.7900 0.8809
60 0.8369 0.9966 0.7882 0.8806
70 0.8257 0.9857 0.7785 0.8730
80 0.8276 0.9954 0.7770 0.8737

5.2.2. Based on SVM

This analysis is based on the repetition frequency of words in each text. Figure 13
shows the frequencies for both sets of audios together (from word 250 to word 450, out
of the total of words out of 4000) associated with the subset of words in the bag of words.
A threshold of 20 repetitions has been set to reduce the more relevant words based on
their prevalence.

As before, data are analyzed based on Table 2, and then a non-negative matrix factor-
ization (NNMF, [36]) is applied with 15 salient features. Each output is then 10-folded for
classification. Similarly, the performance curves of precision, recall, accuracy, and F1 for
the speech-to-text DNN analysis method are shown in Figure 14. The following points can
be stated:

• In a similar pattern, the performance is generally very low, for low proportions of
“with uncertainty” audios (16% and 32%).

• The performance is relatively improved for intermediate cases (48% and 64%), as a
function of validation ranges.

• As a confirmation of previous results, the 80% proportion gives better results overall.
Table 5 details the metric performance for 80%.
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Figure 13. Repetition frequency of words in each audio text.
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Figure 14. Speech-to-text SVM analysis metrics: (a) 16%; (b) 32%; (c) 48%; (d) 64%; and (e) 80%.

Table 5. SVM for frequencies, based on non-negative matrix factorization metrics for 80% proportion
(as can be seen in Table 2).

Validation (%) Precision Recall Accuracy F1

10 1.0000 0.8366 0.8366 0.9010
20 0.9019 0.8516 0.7885 0.8666
30 0.8641 0.8366 0.7563 0.8456
40 0.8464 0.8345 0.7426 0.8345
50 0.8332 0.8553 0.7468 0.8400
60 0.8626 0.8127 0.7377 0.8312
70 0.8399 0.8303 0.7326 0.8303
80 0.8310 0.8395 0.7323 0.8310
90 0.8197 0.8829 0.7464 0.8414

5.3. Comparison of the Proposed Methods

Table 6 shows a comparison between the three approaches developed in this work.
In order to compare the performance, we selected the score F1, which balances both
precision and recall metrics. It can be observed that better results are obtained when the
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proportion is 80%, as mentioned previously. The method with the highest F1 corresponds
to the formant (SVM) with 95.5%.

According to what is shown in Table 6, for the case in which the majority of the
audios used for validation (16% and 32%) do not have uncertainty, the speech-to-text (SVM)
method works better. While the case in which the majority of the validation data have
uncertainty (64% and 80%), the method that works best is the formant (SVM). In a balanced
condition (48%), the best result is delivered by speech-to-text (DNN).

Table 6. F1 Metric comparison of both approaches showing the maximum values.

Metric Approach 16% 32% 48% 64% 80%

F1

1.0 Formant (SVM) 11.6 39.6 68.1 77.4 95.5
2.1 Speech-to-text (DNN) 8.8 45.9 72.1 81.0 88.0
2.2 Speech-to-text (SVM) 49.2 56.5 67.3 77.3 90.1

6. Conclusions

In this article, we show the development of two methods for automatic uncertainty
classification in verbal communications. The results demonstrate that the detection and
classification of uncertainty is feasible, despite the reduced set of data available.

The first method, called formant analysis, extracts from the spectrogram the relevant
frequency content of the first two formants per sample time, and determines the level
of uncertainty within the audio, based on the change that these formants suffer with
time. The second method, called speech-to-text, infers from the order of words used
in the audio, the level of uncertainty, interpreting the sentiment of the speakers. All
results, for most of the performance metrics, show that the proportion with 80%, which
corresponds to 31 audios with uncertainty and 8 without uncertainty, seems to provide
the best result. The results for balanced proportions of audios (48% and 64%) depict much
more stable performances independently of the validation range. In terms of the limitations
to the proposed method, there is some difficulty in obtaining new data which affects the
performance of data-based models. And, due to the inherent nature of these types of
communications, the data tend to be unbalanced. Further works should consider the
collection of a larger set of data to improve the balance between the two kinds of audios.

Finally, in order to support further studies, interested readers can use the GitHub
repository to test their own classifiers.
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