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Abstract: The maximum correntropy criterion (MCC), as an effective method for dealing with
anomalous measurement noise, is widely applied in the design of filters. However, its performance
largely depends on the proper setting of the kernel bandwidth, and currently, there is no efficient
adaptive kernel adjustment mechanism. To deal with this issue, a new adaptive Cauchy-kernel
maximum correntropy cubature Kalman filter (ACKMC-CKF) is proposed. This algorithm constructs
adaptive factors for each dimension of the measurement system and establishes an entropy matrix
with adaptive kernel sizes, enabling targeted handling of specific anomalies. Through simulation
experiments in target tracking, the performance of the proposed algorithm was comprehensively
validated. The results show that the ACKMC-CKF, through its flexible kernel adaptive mechanism,
can effectively handle various types of anomalies. Not only does the algorithm demonstrate excellent
reliability, but it also has low sensitivity to parameter settings, making it more broadly applicable in a
variety of practical application scenarios.

Keywords: maximum correntropy; Cauchy kernel; cubature Kalman filter; adaptive kernel size;
robust state estimation

1. Introduction

State estimation is the process of reconstructing the inherent state of a system by using
algorithms to address the inherent uncertainty and noise in limited observational data.
While the acquired data predominantly reflect the external characteristics of the system,
the dynamic behavior is typically represented by its internal state variables, which are
often challenging to measure directly or come with significant measurement errors. Hence,
state estimation plays a pivotal role in unveiling the internal structure and dynamics of
the system. It finds extensive applications in areas such as attitude determination, power
system monitoring, vehicle dynamics, and target tracking [1–6].

The Kalman filter (KF) employs the minimum mean square error (MMSE) as its
optimization criterion and achieves optimal state estimation for linear systems via the
Bayesian rule. Building upon the foundation of classical Kalman filtering theory, several
Gaussian approximation filters have been proposed to handle state estimation in nonlinear
systems [7,8], such as the unscented Kalman filter (UKF) and the cubature Kalman filter
(CKF). These filters also adhere to the MMSE principle and, when system noise is Gaussian,
can achieve satisfactory state estimation precision. However, in real-world scenarios with
intricate noise environments, the MMSE criterion is sensitive to significant outliers, which
can result in a notable performance degradation for conventional filters [9].

For certain specific non-Gaussian nonlinear processes, refs. [10,11] introduce multiple
model approach methods, which represent non-Gaussian system behavior by combining
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different modes of parallel Gaussian problems. Refs. [12,13] explore the use of the Condi-
tional Gaussian Observation Markov Switching Model (CGOMSM) statistical model, which
combines Markov Switching Models and Conditional Gaussian Observations, to handle
nonlinear and non-Gaussian characteristics that are difficult to capture with traditional
linear Gaussian models. These methods pose higher requirements in terms of modeling
and computation. In the design of filters, adopting non-MMSE criteria has also proven
to be an effective way to enhance the robustness of filters against non-Gaussian noise
disturbances. Notable examples include the H-infinity filter [14] and the M-estimation
filters [15,16]. Unlike the H-infinity filter, which primarily focuses on bounded energy gain
from disturbances to estimation errors, the M-estimator using Huber techniques offers
a novel approach to addressing discrepancies between Gaussian assumptions and the
actual error density. However, the tuning parameter plays a crucial role in shaping the
Huber cost function. Existing Huber M-estimators with fixed parameters to constrain the
score function may have certain conservations since precision is taken as the cost of the
robustness effect, even under ideal conditions [17].

Over recent years, the optimization criteria in Information Theory Learning (ITL) have
garnered increasing attention, leveraging information entropy estimated directly from
data as the optimization cost. As a local similarity measure within ITL, the correntropy,
endowed with higher-order moments of the probability density function, exhibits superior
characteristics when addressing non-Gaussian noise assumptions [18–20]. These robust
filters, designed based on the MCC, typically employ the Gaussian kernel function to define
distances between distinct vectors. Nonetheless, it might not always be the optimal kernel
choice [21]. On one hand, the kernel bandwidth substantially impacts the performance of
the MCC. An improperly sized kernel under MCC may fail to enhance robustness against
outliers and might even lead to filter divergence [22]. On the other hand, when the system is
perturbed by multi-dimensional non-Gaussian noise, the aforementioned MCC algorithms
grapple with numerical challenges due to the emergence of singular matrices [23,24].

The log-similarity measure serves as another pivotal learning criterion within infor-
mation theoretic learning [25]. In comparison to the Gaussian loss based on local similarity
measures, the Cauchy loss rooted in log similarity offers enhanced robustness to non-
Gaussian noise and has been adeptly integrated into kernel adaptive filters [2,26]. Filters
based on the Cauchy kernel, when confronted with multi-dimensional non-Gaussian noise,
present a more stable structure, effectively mitigating the filtering collapse issues caused by
singular matrices in MCC algorithms [27].

Although Cauchy kernel-based filters have shown good performance in terms of
parameter sensitivity, choosing the right Cauchy kernel size remains crucial for ensuring
their high efficiency. In traditional methods, the setting of kernel size is often based
on experience or fixed rules, which may not be suitable for all situations, especially in
dynamically changing noise environments. To address this issue, this study proposes an
ACKMC-CKF method. This method calculates an adaptive factor for each dimension by
analyzing the noise characteristics in the measurement data. These factors directly affect
the size of the kernel, allowing the filter to automatically adjust its processing strategy
based on the current data characteristics. This adaptive adjustment not only improves the
accuracy of the filter in dealing with complex noise environments but also enhances its
robustness to unexpected noise and dataset changes.

The remainder of this paper is structured as follows: Section 2 provides foundational
knowledge on correntropy and derives the Cauchy kernel-based maximum correntropy
cubature Kalman filter (CKMC-CKF). In Section 3, we introduce an adaptive approach
for kernel size determination and design the ACKMC-CKF. Section 4 elucidates the per-
formance of the ACKMC-CKF through simulation experiments. Finally, conclusions are
drawn in Section 5.
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2. Problem Formulation
2.1. Maximum Correntropy Criterion and Cauchy Kernel Function

Correntropy is utilized to measure the metric of a nonlinear relationship between
two random variables. Given two random variables, X and Y, with their joint distribution
function denoted as FX,Y(x, y), their correntropy can be defined as follows [28]:

V(X, Y) = E(κ(X, Y)) =
x

κ(x, y)FX,Y(x, y)dxdy (1)

where E(·) means the expectation operator, κ(·) is the kernel function of the correntropy.
In practical scenarios, the quantity of sample data is limited, which prevents the precise cal-
culation of FX,Y(x, y). Therefore, V(X, Y) is commonly approximated through the average
of the samples

V(X, Y) =
1
N

N

∑
k=1

κ(xk, yk) (2)

where (xk, yk), k = 1, . . . , N represents n sampling points of FX,Y(x, y).
The Gaussian kernel function is currently the most widely applied in ITL. This paper

utilizes the Cauchy kernel defined by Equation (3) as the kernel function for the correntropy.
Compared to the Gaussian kernel, it has the advantages of being less sensitive to kernel
bandwidth and providing greater stability in the constructed filters [26]. The expression for
the Cauchy kernel is as follows:

Cσ(x − y) =
1

1 + (x − y)2/σ
(3)

where σ is the Cauchy kernel bandwidth (σ > 0).
Based on Equations (2) and (3), the maximum correntropy cost function utilizing the

Cauchy kernel is constructed.

JCKMC =
N

∑
i=1

Cσ(xi − yi) (4)

2.2. Cauchy Kernel-Based Maximum Correntropy Cubature Kalman Filter

Consider a nonlinear system described by the following state and measurement
equations: {

Xk = f (Xk−1) + vk−1
Zk = h(Xk) + wk

(5)

where Xk ∈ Rn is the system state vector at time k, Zk ∈ Rm is the system measurement vec-
tor at time k, f (·) and h(·) are the nonlinear dynamic state equation and the measurement
equation, respectively. vk−1 and wk represent the zero-mean Gaussian white noise asso-
ciated with the system’s dynamics and measurements, respectively, with their variances
denoted as Qk−1 for the dynamic noise and Rk for the measurement noise.

The traditional CKF algorithm experiences a significant decline in performance when
confronted with non-Gaussian noise. This is primarily because the CKF’s MMSE criterion
assumes that all observations are of equal importance. Filters based on the MCC take
into account observations with varying levels of importance, allowing for an adaptive
estimation of the system’s state. The CKMC-CKF method consists of two steps: the time
update and the measurement update.

2.2.1. Time Update

Firstly, based on the spherical-radial rule, cubature points are generated using x̂k−1
and the mean square error matrix Pk−1|k−1 from the last time step.

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (6)



Electronics 2024, 13, 114 4 of 17

Xi,cub = Sk−1|k−1ξi + x̂k−1, f or i = 1, 2, . . . , 2n (7)

where Sk−1|k−1 is obtained by the Cholesky decomposition of Pk−1|k−1. ξi is defined as

ξi =

{ √
n[1]i, i = 1, 2, . . . , n

−
√

n[1]i, i = n + 1, . . . , 2n
(8)

where [1]i denotes the i-th column vector of the n × n identity matrix I.
The cultivated points Xi,cub, after being propagated through the nonlinear function

f (·), can be obtained as
X∗

i,k|k−1 = f (Xi,cub) (9)

By using the cubature points X∗
i,k|k−1, the prior prediction state value x̂k|k−1 and the

prediction covariance matrix Pk|k−1 are calculated.

x̂k|k−1 = ω
2n

∑
i=1

X∗
i,k|k−1 (10)

Pk|k−1 = ω
2n

∑
i=1

X∗
i,k|k−1

(
X∗

i,k|k−1

)T
− x̂k|k−1 x̂T

k|k−1 + Qk−1 (11)

2.2.2. Measurement Update

Likewise, the cubature points are calculated again according to x̂k|k−1 and Pk|k−1
obtained in the previous step.

Pk|k−1 = Sk|k−1ST
k|k−1 (12)

X∗
i,cub = Sk|k−1ξi + x̂k|k−1, f or i = 1, 2, . . . , 2n (13)

The cultivated points X∗
i,cub, after being propagated through the measurement function

h(·), can be obtained as
Z∗

i,k|k−1 = h
(

X∗
i,cub

)
(14)

By using the cubature points Z∗
i,k|k−1, the prior measurement ẑk|k−1 is calculated.

ẑk|k−1 = ω
2n

∑
i=1

Z∗
i,k|k−1 (15)

The innovation covariance matrix Pzz and the cross-correlation covariance matrix Pxz
are as follows:

Pzz = ω
2n

∑
i=1

Z∗
i,k|k−1

(
Z∗

i,k|k−1

)T
− ẑk|k−1ẑT

k|k−1 + Rk (16)

Pxz = ω
2n

∑
i=1

X∗
i,k|k−1

(
Z∗

i,k|k−1

)T
− x̂k|k−1ẑT

k|k−1 (17)

For the convenience of matrix solving, we obtain the pseudo-measurement matrix
through statistical linearization [29]:

H = PT
xzP−1

k|k−1 (18)

An approximation of the nonlinear observation equation can be obtained through
statistical linearization:

zk = ẑk|k−1 + H
(

xk − x̂k|k−1

)
+ ek (19)

To maximize the posterior probability of the state, consider using the weighted least
squares method to handle process noise and the MCC method to handle measurement
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noise since the measurement noise is non-Gaussian. The defined cost function can be
expressed as:

JCKMC(xk) =
∥∥∥xk − x̂k|k−1

∥∥∥2

P−1
k|k−1

+ Cσ

(
∥ek∥2

R−1
k

)
(20)

The standard symbol operations used in the equation are as follows: ∥x∥2
A = xT Ax,

which denotes the A-weighted square Mahalanobis distance of a vector. The redefined
Cauchy kernel with squared Mahalanobis distance is expressed as

Cσ

(
∥x∥2

A

)
=

1

1 + ∥x∥2
A/σ

(21)

To obtain the optimal state estimation, with the maximization of the objective function
as the optimization criterion, the optimal solution can be expressed as:

x̂k|k = arg max
xk

JCKMC(xk) (22)

The solution to the extremum problem can be found from the derivatives of the above
equation, thereby obtaining the implicit equation.

∂JCKMC(xk)

∂xk
= P−1

k|k−1

(
xk − x̂k|k−1

)
− mk HT

k R−1
k (ek) = 0 (23)

where
mk = Cσ

(
∥ek∥2

R−1
k

)
(24)

Equation (23) constitutes a fixed-point problem with respect to mk, and given the de-
pendency of mk on xk, a fixed-point iteration method can be employed for its resolution [30].
Repeated iterations can slightly improve the accuracy of the estimate. In consideration
of the balance between computational efficiency and precision, this study adopts a single
round of fixed-point iteration process. Equation (23) yields the following result:

x̂k|k = x̂k|k−1 +
∼
Kk

(
zk − ẑk|k−1

)
(25)

The Kalman gain
∼
Kk, based on the MCC, is defined as:

∼
Kk =

(
P−1

k|k−1 + Mk HT
k R−1

k Hk

)−1
mk HT

k R−1
k (26)

The corresponding estimation error covariance is denoted as

Pk|k =

(
I −

∼
Kk Hk

)
Pk|k−1

(
I −

∼
Kk Hk

)T
+

∼
KkRk

∼
K

T

k (27)

When abnormal measurements occur, the innovation term
∼
z = Zk − ẑk|k−1 will de-

viate significantly from its expected value. The Gaussian kernel function exponentially
approaches zero as

∼
z increases, greatly increasing the possibility of matrix singularity.

In contrast, the Cauchy kernel function approaches zero much more slowly, effectively
reducing the probability of singular values in the matrix [26].

Just like the Gaussian kernel, the choice of bandwidth for the Cauchy kernel signifi-
cantly affects the filter’s ability to resist non-Gaussian noise. Narrowing the bandwidth
can reduce the correlation coefficient, enhancing the system’s robustness to abnormal mea-

surements. However, a smaller bandwidth also decreases the Kalman gain
∼
Kk, which may

reduce the filter’s estimation accuracy in the presence of Gaussian noise. In existing meth-
ods, the bandwidth is often preset and fixed, which greatly limits the filter’s adaptability to



Electronics 2024, 13, 114 6 of 17

different types of noise [26,31,32]. Therefore, it is urgent to develop an adaptive adjustment
mechanism for the kernel bandwidth.

3. Adaptive Cauchy-Kernel Maximum Correntropy Cubature Kalman Filter
3.1. Adaptive Kernel Bandwidth Adjustment Strategy

The selection of the Cauchy kernel bandwidth should follow this principle: A narrower
bandwidth is advisable for systems with pronounced non-Gaussian noise characteristics,
whereas a wider bandwidth is suitable for systems where noise closely approximates a
Gaussian distribution [26]. As for the adaptive strategy for adjusting the Cauchy kernel
bandwidth, our aim is to preserve a wider bandwidth under most conditions, only reducing
the bandwidth upon encountering non-Gaussian noise or outlier measurement noise.
Consequently, the crux lies in how to effectively discern the comparative relationship
between state estimation accuracy under the MCC and the MMSE criterion when atypical
noise is present.

In the design of the filter, Rk represents the covariance matrix of measurement noise.
When anomalies occur in measurement noise, Rk can no longer accurately reflect the true
statistical characteristics of the measurement noise. In such cases, the actual measurement

noise covariance matrix is represented as
∼
Rk = E

(
wkwT

k
)
̸= Rk.

Theorem 1. When the following condition is met, the mean square error of the filter based on the
MCC criterion will be less than or equal to that of the filter based on the MMSE criterion:

∼
Rk ≥ (Pzz − Rk) + 2Rk (28)

∼
Rk ≤ C−1

k (Pzz − Rk)Ck + 2RkC−1
k (29)

where

Ck = diag
[

Cσ

(∥∥∥∼z1,k

∥∥∥2

R−1
1,k

)
, . . . , Cσ

(∥∥∥∼zm,k

∥∥∥2

R−1
m,k

)]
(30)

represents the correlation coefficient matrix based on the Cauchy kernel.
∼
z i,k represents the i-th

value of the innovation term, and Ri,k represents the i-th diagonal element of Rk.

The specific proof of Theorem 1 is not presented in the text; for detailed steps, refer
to [33]. Under the specific conditions of Theorem 1, by extracting the i-th diagonal element
from Equation (29), we can obtain:

∼
Ri,k ≤ (Pii,zz − Ri,k) + 2RkCσ

(∥∥∥∼z i,k

∥∥∥2

R−1
i,k

)−1
(31)

where Pii,zz and
∼
Ri,k represent the i-th diagonal elements of Pzz and

∼
Rk, respectively. By

substituting Equation (21) into Equation (31) and rearranging, we can obtain:

∼
Ri,k − (Pii,zz − Ri,k)

2Ri,k
≤ 1 +

∥∥∥∼z i,k

∥∥∥2

R−1
i,k

σk
(32)

Since φ =

(∼
Ri,k − (Pii,zz − Rii,k)

)
/2Rii,k ≥ 1 according to Equation (28), thus

Equation (32) can be rewritten as follows:

σk ≤

∥∥∥∼z i,k

∥∥∥2

R−1
i,k

φ − 1
(33)
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Therefore, to ensure that the performance of CKMC-CKF surpasses that of the tra-
ditional CKF, the setting of the kernel bandwidth must be constrained by an upper limit.
Once the kernel bandwidth exceeds this threshold, the CKMC-CKF will gradually con-
verge to the CKF, and its performance advantage over the CKF will no longer exist when
encountering anomalous noise.

Based on the previous analysis, the size of the kernel bandwidth should be dynamically
optimized to conform to the established upper limit constraints. To effectively deal with
specific outliers in the measurement system, it is worth considering the independent
adjustment of the kernel bandwidth for each dimension. The following is the defined
adaptive parameter:

σi,k = µi,kσmax, f or i = 1, 2, . . . , m (34)

where µi,k represents the adaptive factor measured for the i-th element at the moment k, while
σmax denotes the predetermined maximum bandwidth parameter of the kernel function.

To ensure that the adaptive factor µi,k is optimally adjusted for various types of noise,
the first step is to analyze the relationship between the innovation term and its covariance
matrix Pzz. This step is to detect potential measurement anomalies. For this purpose, define
the parameter δi,k as follows:

δi,k =
Pii,zz(∼
z i,k

)2 (35)

where Pii,zz represents the i-th diagonal element of the innovation covariance matrix Pzz;
∼
z i,k

is the i-th component of the innovation sequence
∼
z k, which follows a Gaussian distribution

with zero mean and a variance of Pii,zz.
Further, the adaptive factor µi,k can be defined as:

µi,k = 1 − exp(−δi,k) (36)

The adaptive factor µi,k, as determined by the formula, strictly falls within the range
of 0 to 1. Under normal measurement conditions following a Gaussian distribution, the
factor µi,k tends towards 1, which maintains a relatively wide kernel bandwidth. In the
case of detected anomalous measurements, that is, when the value of the innovation term
∼
z i,k significantly deviates, the factor µi,k is accordingly decreased. This rapid decrease in
the correlation coefficient effectively mitigates the disturbance caused by the outliers. Such
an adjustment mechanism ensures the robustness of the estimation process, preventing the
excessive penetration of anomalous data into the final results.

The kernel bandwidth does not necessarily increase with the increment of the factor
σmax. When σmax is set to a higher value, it may not sufficiently suppress outliers, which
can cause the innovation term

∼
z i,k to enlarge. This situation results in a continual decrease

in parameter µi,k, enhancing the resistance to outliers. Thus, we might consider adopting a
larger σmax to enhance the accuracy of estimations in a Gaussian distribution context, and
this approach will not impair the robustness of the filter.

3.2. Adaptive Cauchy-Kernel Maximum Correntropy Cubature Kalman Filter

Through the strategy presented in Section 3.1, we have redefined the correlation
coefficient matrix for the adaptive multi-kernel method as follows:

∼
Ck = diag

[
Cσ1,k

(∥∥∥∼z1,k

∥∥∥2

R−1
1,k

)
, . . . , Cσm,k

(∥∥∥∼zm,k

∥∥∥2

R−1
m,k

)]
(37)

For the Kalman gain defined by Equation (26), we can derive an equivalent expression
with lower computational complexity:

∼
Kk = Pk|k−1HT

k

(
Rk(mk Im)

−1 + HT
k Pk|k−1Hk

)−1
(38)
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In the conventional CKMC-CKF, mk serves as a global scaling factor for Rk and does
not allow for adjustment of individual dimensions. Given that Rk is a diagonal matrix, we

can replace mk Im with
∼
Ck to achieve independent control over each diagonal element of

Rk. Similarly, we can continue to use the cubature rule to calculate the Kalman gain, thus
avoiding the need for statistical linearization.

∼
Kk =

∼
Pxz

∼
P
−1

zz (39)

where ∼
Pxz = Pxz

∼
Ck (40)

∼
Pzz = (Pzz − Rk)

∼
Ck + Rk (41)

The calculation of the posterior state estimate and its error covariance matrix is as
follows:

x̂k = x̂k|k−1 +
∼
Kk

(
zk − ẑk|k−1

)
(42)

Pk|k = Pk|k−1 −
∼
Kk

∼
Pzz

∼
K

T

k (43)

In summary, the ACKMC-CKF algorithm proposed in this study adopts an adaptive
multi-core strategy, effectively countering the impact of anomalous noise through the

adjustment of the correlation coefficient matrix
∼
Ck. Simultaneously, the algorithm avoids

the step of statistical linearization, thereby reducing potential errors that may arise. The
specific process of the algorithm can be referred to in Figure 1.
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4. Illustrative Examples

This chapter primarily validates the performance of the proposed algorithm through
a series of target-tracking simulation experiments. Specifically, the newly proposed algo-
rithm is compared and analyzed against the traditional CKF, MC-CKF, and CKMC-CKF
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algorithms. By designing three different experiments, a comprehensive evaluation of the
performance of these algorithms in their respective scenarios is conducted. The initial
section will detail the setup conditions and validation methods of the experiments, laying a
foundation for subsequent performance analysis.

4.1. Simulation Scenarios and Performance Metrics

This experiment addresses a common problem in the field of target tracking: tracking
the trajectory of an aircraft executing maneuvers at a nearly constant rate of turn. In
this system configuration, the position and velocity of the aircraft are defined as the state
variables of the system. Meanwhile, in an environment filled with clutter, the distance and
azimuth information captured by radar are used as measurement data [27,34]. The specific
expressions for the state and measurement equations of this system are as follows:

xk =


1

sin ωT
ω

0 −
(

1 − cos ωT
ω

)
0 cos ωT 0 − sinωT

0
1 − cos ωT

ω
1

sin ωT
ω

0 sin ωT 0 cos ωT

xk−1 + vk (44)

Zk =

[
rk
θk

]
=

[√
x2 + y2

arctan
y
x

]
+ wk (45)

where xk =
[
x, vx, y, vy, ω

]T is the state vector, x and y represent the target’s position in
the X and Y directions, respectively, vx and vy denote the target’s velocity in the X and Y
directions, and ω indicates the target’s turning rate. The other relevant parameters for the
simulation experiment are shown in Table 1.

Table 1. Parameters for simulation.

Parameter Corresponding Value

Discrete sampling period T = 1 s
Turning rate ω = 3◦ s−1

Initial process noise covariance matrix Qk−1 = diag([M, M]), M =
[
T3/3, T2/2; T2/2, T

]
Initial measurement noise covariance matrix Rk = diag

([
σ2

r , σ2
θ

])
, σr = 30 m, σθ = 0.5◦

Initial true state and estimation x0 = x̂0 = [1000 m, 300m/s, 1000 m, 0m/s]T

Initial state covariance matrix P0 = diag
([

100m2, 10m2/s2, 100m2, 10m2/s2])
To ensure the reliability of the estimation, 200 independent Monte Carlo simulations

were conducted. For evaluating the simulation results, root mean square error (RMSE) and
average root mean square error (ARMSE) were chosen as the performance metrics. Their
definitions are as follows:

RMSEpos
k =

√
1
N

N
∑

i=1

(
xi

k − x̂i
k
)2

+
(
yi

k − ŷi
k
)2

RMSEvel
k =

√
1
N

N
∑

i=1

(
v i

xk
− v̂ i

xk

)2
+

(
v i

yk
− v̂ i

yk

)2
(46)

ARMSEk =
1
Ts

Ts

∑
k=1

RMSEk (47)

where N is the number of Monte Carlo simulations, i is the i-th Monte Carlo simulation, k
is the simulation time, and Ts = 100 s is the total simulation time.

(
xi

k, yi
k
)

and
(
vx

i
k, vy

i
k

)
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represent the true position and velocity of the target, respectively.
(

x̂i
k, ŷi

k
)

and
(

v̂ i
xk

, v̂ i
yk

)
represent the estimated position and velocity of the filter, respectively.

4.2. Gaussian Noise Test

In the first set of experiments, the focus is on the filtering performance of various
algorithms under Gaussian noise conditions to verify the effectiveness and rationality of
the proposed ACKMC-CKF algorithm in standard scenarios. The measurement noise used
in this experiment is Gaussian white noise, generated based on the measurement noise
covariance matrix outlined in Table 1. For the MC-CKF and CKMC-CKF algorithms, a
comparative analysis was conducted with multiple kernel bandwidth settings. As for the
ACKMC-CKF algorithm, the kernel bandwidth upper limit σmax = 100. This experimental
setup facilitates a thorough exploration of the performance and characteristics of each
algorithm when confronted with Gaussian noise.

Figures 2 and 3 illustrate the performance of several algorithms under Gaussian noise
conditions. It is observed that with the appropriate selection of kernel bandwidth, both
MC-CKF and CKMC-CKF can achieve results close to those of CKF, and their performance
increasingly aligns with CKF as the kernel bandwidth is enlarged. Compared to MC-CKF,
CKMC-CKF demonstrates a higher tolerance for kernel bandwidth selection. The ARMSE
data for various kernel bandwidth choices presented in Table 2 further corroborates this
observation. However, when the kernel bandwidth is set too small, the performance of
both algorithms significantly deteriorates, falling short of CKF. These experimental findings
are consistent with the analysis of kernel bandwidth selection discussed in Section 2.2. The
ACKMC-CKF algorithm proposed in this paper shows the closest performance to CKF. In
Gaussian noise scenarios, the calculated kernel adaptive factor µi,k is close to 1, leading to
a final kernel bandwidth near the preset upper limit, thus achieving performance nearly
identical to CKF.
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Figure 3. The velocity RMSE of each filtering algorithm under Gaussian measurement noise.

Table 2. The ARMSE of different algorithms under Gaussian noise.

Filters ARMSE of Position (m) ARMSE of Velocity (m/s)

CKF 33.43 4.91
MC-CKF (δ = 0.5) 46.29 5.53
MC-CKF (δ = 1) 39.50 5.18
MC-CKF (δ = 2) 34.51 4.96
MC-CKF (δ = 3) 33.78 4.92
MC-CKF (δ = 5) 33.52 4.91

CKMC-CKF (σ = 1) 36.56 5.09
CKMC-CKF (σ = 5) 34.57 4.97
CKMC-CKF (σ = 20) 33.68 4.92
CKMC-CKF (σ = 50) 33.52 4.91

CKMC-CKF (σ = 100) 33.44 4.91

ACKMC-CKF (σmax = 100) 33.45 4.91

4.3. Non-Gaussian Noise Test

In most real-world scenarios, measurement noise does not strictly adhere to a Gaussian
distribution. This leads to a significant performance degradation in traditional CKF, and this
degradation trend becomes even more pronounced as the degrees of freedom in the system
increase [35]. Therefore, the second set of experiments focuses on Gaussian mixture noise,
a typical form of non-Gaussian noise, to evaluate the filtering performance of different
algorithms in such a noisy environment. The aim of this experiment is to validate the
superior performance of the proposed ACKMC-CKF algorithm in handling non-Gaussian
noise. The measurement noise used in these experiments follows the specific distribution
described below:

wk ∼ (1 − λ) N(0, Rn) + λ N
(
0, Rp

)
(48)

where δ ∈ [0, 1] denotes the proportion of contaminated noise, Rn denotes the standard mea-
surement noise error covariance matrix, and Rp denotes the contaminated noise covariance
matrix. In the experimental setup, λ = 0.2, Rn = Rk and Rp = 50Rn.

In this scenario, if the kernel bandwidth is set too small, MC-CKF and CKMC-CKF
might encounter numerical singularities, leading to interruptions in the filtering process or
divergence issues. Therefore, it is necessary to appropriately increase the kernel bandwidth
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to ensure the smooth progression of the experiment. Additionally, the experiment also com-
pares ACKMC-CKF algorithms with two different upper limit values for kernel bandwidth,
aiming to investigate the specific impact of this parameter on the filtering performance.

Figure 4 and Table 3 demonstrate the RMSE and ARMSE of several algorithms under
non-Gaussian noise conditions. Under such conditions, the traditional CKF shows a trend
of divergence, significantly reducing its filtering precision. When the MC-CKF’s kernel
bandwidth δ is set to 1, a numerical singularity issue arises, causing the algorithm to
halt execution. Although CKMC-CKF did not crash when the kernel bandwidth σ was
set to 1, its numerical fluctuations were too severe to be displayed in the figure. With
an appropriate increase in kernel bandwidth, both MC-CKF and CKMC-CKF surpass
the filtering accuracy of CKF, exhibiting superior performance. This set of experiments
further highlights the importance of kernel bandwidth settings for the filtering accuracy
of MC-CKF. When the upper limit of kernel bandwidth is set to 50 and 100, ACKMC-
CKF shows excellent filtering effects in both cases, with only minor differences between
these two settings. Figure 5 reveals that under scenarios approximating Gaussian noise
distribution, the kernel bandwidth of ACKMC-CKF approaches its set upper limit. Despite
the significant differences in upper limit settings, the insensitivity of the Cauchy kernel
results in no substantial change in filtering accuracy. In the presence of contaminated
noise, the adaptive kernel bandwidth strategy in the algorithm quickly adjusts the kernel
bandwidth to a smaller value, unaffected by the upper limit settings.
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Table 3. The ARMSE of different algorithms under non-Gaussian noise.

Filters ARMSE of Position (m) ARMSE of Velocity (m/s)

CKF 90.19 8.45
MC − CKF (δ = 5 ) 57.02 6.16
MC − CKF (δ = 8 ) 68.75 6.92

MC − CKF (δ = 10 ) 74.02 7.29
CKMC − CKF (σ = 10 ) 57.11 6.15
CKMC − CKF (σ = 15 ) 58.13 6.22
CKMC − CKF (σ = 30 ) 61.58 6.45

ACKMC − CKF (σmax = 50 ) 41.42 5.33
ACKMC − CKF (σmax = 100 ) 40.33 5.27
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Figure 5. The adaptive kernel size of ACKMC-CKF with different kernel bandwidth upper limits in
Experiment 2.

Furthermore, to validate the applicability of the algorithm in higher-dimensional
systems, we expanded the simulation system to a three-dimensional configuration with 9-
DoF for a more comprehensive algorithm comparison. Figure 6 clearly illustrates the RMSE
performance of various algorithms in a 9-DoF system. As seen in the figure, all algorithms
exhibit a trend of gradual performance degradation over time. However, compared to the
CKF and the traditional correntropy-based CKF, the proposed ACKMC-CKF algorithm in
this paper demonstrates the slowest decline in performance.
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4.4. Observation Outliers Test

The main objective of the third set of experiments was to evaluate the performance
of various algorithms in handling anomalous measurement values. By introducing both
unidimensional and multi-dimensional measurement anomalies, the aim was to validate
the necessity and adaptability of the ACKMCCKF algorithm for using multiple adaptive
kernels for noise processing. The experiment was conducted under the Gaussian noise con-
ditions established in the first set of experiments, and the specific methods of introducing
anomalous measurement values were as follows:

z20 = z20 +

[
500 m

0

]
z30 = z30 +

[
0
5◦

]
z40 = z40 +

[
500 m

5◦

]
(49)

The analysis of Figure 7 reveals that the MC-CKF and CKMC-CKF algorithms can ef-
fectively counteract the disturbance caused by anomalous values in the system by reducing
the kernel bandwidth. Notably, CKMC-CKF exhibits superior performance in shielding
against anomalies compared to MC-CKF. However, as the system predominantly operates
without encountering anomalous interferences, setting the kernel bandwidth too small
could lead to a decrease in the precision of these algorithms, contradicting the purpose
of employing the maximum correlation entropy criterion. In contrast, the ACKMC-CKF
algorithm only reduces the kernel bandwidth rapidly when anomalies are detected, main-
taining a larger width at other times. This approach not only prevents disturbances from
anomalies but also ensures the algorithm does not terminate due to singular values. The
results indicate that the use of ACKMC-CKF is almost unaffected by anomalous values.
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Moreover, as illustrated in Figure 8, the ACKMC-CKF algorithm can effectively discern
the dimensions where anomalies occur and make targeted adjustments. For instance,
anomalies appear in the distance dimension at 20 s and in the azimuth dimension at 30 s.
ACKMC-CKF manages to adjust the kernel bandwidth only for the affected dimensions
without altering others. When both the distance and azimuth dimensions experience
anomalies at 40 s, the algorithm can adjust both simultaneously, significantly enhancing its
flexibility and accuracy.
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Experiment 3.

5. Conclusions

This study introduces a novel adaptive Cauchy-kernel maximum correlation entropy
CKF approach. By timely adjusting the kernel bandwidth, it effectively resolves the chal-
lenge of setting kernel bandwidth in the CKF based on the MCC. The proposed algorithm
utilizes the Cauchy kernel function and a multi-kernel adjustment strategy, reducing the
sensitivity to the upper limit settings of the kernel bandwidth and enabling targeted adjust-
ments. This significantly enhances the practical application capabilities of the algorithm.

This research is grounded in the hidden Markov model (HMM), characterized by in-
dependent process noise and measurement noise. However, in recent years, more complex
state space models such as pairwise Markov models [36,37] and triplet Markov mod-
els [38,39] have been successfully applied in the realm of KF. These models demonstrate
greater universality and flexibility compared to traditional HMMs, offering new possibil-
ities for enhancing modeling capabilities. Thus, exploring how to effectively adapt the
algorithm presented in this paper to these advanced models constitutes a crucial direction
for our future research endeavors. This exploration is anticipated not only to potentially im-
prove the performance of the algorithm but also to contribute new theoretical and practical
insights into the field of state estimation for complex systems.
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