
Citation: Li, J.; Zhang, R.; Liu, J.

ProvGRP: A Context-Aware

Provenance Graph Reduction

and Partition Approach for

Facilitating Attack Investigation.

Electronics 2024, 13, 100. https://

doi.org/10.3390/electronics13010100

Academic Editor: Baris Aksanli

Received: 14 November 2023

Revised: 20 December 2023

Accepted: 22 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ProvGRP: A Context-Aware Provenance Graph Reduction and
Partition Approach for Facilitating Attack Investigation
Jiawei Li , Ru Zhang * and Jianyi Liu

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
lijw960502@bupt.edu.cn (J.L.); liujy@bupt.edu.cn (J.L.)
* Correspondence: zhangru@bupt.edu.cn

Abstract: Attack investigation is a crucial technique in proactively defending against sophisticated
attacks. Its purpose is to identify attack entry points and previously unknown attack traces through
comprehensive analysis of audit data. However, a major challenge arises from the vast and redundant
nature of audit logs, making attack investigation difficult and prohibitively expensive. To address
this challenge, various technologies have been proposed to reduce audit data, facilitating efficient
analysis. However, most of these techniques rely on defined templates without considering the
rich context information of events. Moreover, these methods fail to remove false dependencies
caused by the coarse-grained nature of logs. To address these limitations, this paper proposes a
context-aware provenance graph reduction and partition approach for facilitating attack investigation
named ProvGRP. Specifically, three features are proposed to determine whether system events are
the same behavior from multiple dimensions. Based on the insight that information paths belonging to
the same high-level behavior share similar information flow patterns, ProvGRP generates information paths
containing context, and identifies and merges paths that share similar flow patterns. Experimental
results show that ProvGRP can efficiently reduce provenance graphs with minimal loss of crucial
information, thereby facilitating attack investigation in terms of runtime and results.

Keywords: provenance analysis; information path; graph reduction; audit log; attack investigation

1. Introduction

Enterprises face threats from covert and persistent multi-step attacks, such as Ad-
vanced Persistent Threats (APT). These sophisticated attacks employ complex strategies
and state-of-the-art techniques to infiltrate target systems and remain lurking for months,
stealthily gathering confidential information. To counter these attacks, attack investiga-
tion comprehensively analyzes audit logs to identify attack entry points and previously
unknown attack traces through comprehensive analysis [1–4]. Audit logs are generated
by monitoring system activity using kernel-level audit log collection tools such as Auditd,
Sysmon, and Dtrace. These logs record system events and status, capturing information
about system entities (e.g., processes, files, and sockets), dependency relationships between
entities (e.g., process-file interactions), event timestamps, and other system information.

Attack investigation based on audit logs often employs provenance analysis, which
constructs provenance graphs from audit logs, where nodes represent system entities and
directed edges represent dependency relationships. Analyzing these provenance graphs
enables investigation of attack behaviors and reconstruction of attack scenarios. Several
works have demonstrated the effectiveness of utilizing provenance analysis in attack
investigation [4–7] and detection [8–10]. However, it is complex and costly to analyze audit
logs. To effectively detect Advanced Persistent Threat (APT) attacks with long durations
and cover the complete attack process, it is necessary to collect audit logs over large time
spans through system monitoring, resulting in a significant volume of audit data. Due to
the dependency explosion problem [11,12], the size of the graphs generated from these

Electronics 2024, 13, 100. https://doi.org/10.3390/electronics13010100 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010100
https://doi.org/10.3390/electronics13010100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2611-1852
https://doi.org/10.3390/electronics13010100
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010100?type=check_update&version=1

Electronics 2024, 13, 100 2 of 21

audit logs is complex and huge, typically containing 200,000 edges. This complexity makes
it challenging for attack investigation approaches to identify attack-related edges and
entities within the graphs.

To address this challenge, recent research has proposed methods for provenance
graph reduction and compression [12–14]. These approaches are based on the observation
that audit logs record a large number of system call events that are redundant and not
strictly necessary for attack investigation. Therefore, these methods decrease the size
of the provenance graphs by eliminating redundant and irrelevant system events while
preserving crucial attack-related information. CPR/PCAR [13] merges repeated low-level
events between two OS objects, in order to extract a high-level abstraction of system
activities. NodeMerge [12] and LogApprox [15] identify redundant events using predefined
templates. For instance, they merge events that involve a process reading or writing to
multiple similar files in a short period. These reduction techniques are compared and
illustrated in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 22

spans through system monitoring, resulting in a significant volume of audit data. Due to
the dependency explosion problem [11,12], the size of the graphs generated from these
audit logs is complex and huge, typically containing 200,000 edges. This complexity makes
it challenging for attack investigation approaches to identify attack-related edges and en-
tities within the graphs.

To address this challenge, recent research has proposed methods for provenance
graph reduction and compression [12–14]. These approaches are based on the observation
that audit logs record a large number of system call events that are redundant and not
strictly necessary for attack investigation. Therefore, these methods decrease the size of
the provenance graphs by eliminating redundant and irrelevant system events while pre-
serving crucial attack-related information. CPR/PCAR [13] merges repeated low-level
events between two OS objects, in order to extract a high-level abstraction of system ac-
tivities. NodeMerge [12] and LogApprox [15] identify redundant events using predefined
templates. For instance, they merge events that involve a process reading or writing to
multiple similar files in a short period. These reduction techniques are compared and il-
lustrated in Figure 1.

Figure 1. Cases are used to compare and illustrate our approach ProvGRP and existing reduction
techniques. The gray nodes and edges in Case 1 represent events that are actually unrelated to the
black nodes. CPR/PCAR [13], NodeMerge [12], and LogApprox [15] fail to reduce Case 2 effectively.

Such reduction techniques have demonstrated promising outcomes in enhancing the
efficiency of attack investigation. However, there are two major limitations. (1) Audit logs
record coarse-grained system operations, which can lead to unrelated dependencies
among long-running processes. The main reason for this is that some processes have a
long lifetime and iterative input/output processes. In Case 1 of Figure 1, the nodes and
edges in gray have no relationship with the black nodes in high-level behavior, but are
associated to the same graph. Existing methods fail to partition the two behaviors in the
graph. (2) Existing methods cannot identify redundant patterns that have not been defined
by schemes and templates. Furthermore, they do not consider the information flow pat-
terns implicit in the deep causal relationships and contextual information of system events.
Although the existing techniques can effectively reduce the graph in Case 1, they cannot
deal with the redundant events in Case 2 of Figure 1 because they do not consider the
context information. Indeed, Case 2 can still be reduced without loss of critical information,
and the reduction result is shown on the right of Figure 1.

Figure 1. Cases are used to compare and illustrate our approach ProvGRP and existing reduction
techniques. The gray nodes and edges in Case 1 represent events that are actually unrelated to the
black nodes. CPR/PCAR [13], NodeMerge [12], and LogApprox [15] fail to reduce Case 2 effectively.

Such reduction techniques have demonstrated promising outcomes in enhancing the
efficiency of attack investigation. However, there are two major limitations. (1) Audit logs
record coarse-grained system operations, which can lead to unrelated dependencies among
long-running processes. The main reason for this is that some processes have a long lifetime
and iterative input/output processes. In Case 1 of Figure 1, the nodes and edges in gray
have no relationship with the black nodes in high-level behavior, but are associated to the
same graph. Existing methods fail to partition the two behaviors in the graph. (2) Existing
methods cannot identify redundant patterns that have not been defined by schemes and
templates. Furthermore, they do not consider the information flow patterns implicit in
the deep causal relationships and contextual information of system events. Although the
existing techniques can effectively reduce the graph in Case 1, they cannot deal with the
redundant events in Case 2 of Figure 1 because they do not consider the context information.
Indeed, Case 2 can still be reduced without loss of critical information, and the reduction
result is shown on the right of Figure 1.

To address the above limitations, this paper proposes ProvGRP, a novel context-
aware provenance graph reduction and partition approach. ProvGRP partitions prove-
nance graphs into subgraphs describing different behaviors and eliminates redundant
and behavior-unrelated events, thereby facilitating the efficiency of attack investigation.

Electronics 2024, 13, 100 3 of 21

Firstly, ProvGRP constructs platform-independent provenance graphs by parsing audit
logs. Subsequently, it proposes three features to calculate dependency similarity and uti-
lizes clustering technique HDBSCAN [16] to cluster events with high similarity into an
execution partition. The above step is implemented to partition a provenance graph into
multiple subgraphs to eliminate erroneous dependencies due to the coarse-grained nature
of logs. A key insight of merging redundant events based on context information is that
information paths belonging to the same high-level behavior share similar information flow patterns.
Therefore, ProvGRP obtains context information through forward and backward tracing
based on information tributaries, and generates information paths that effectively represent
information flow patterns by identifying information paths with similar flow patterns and
merging them to reduce redundant system events. Specifically, the information path repre-
sentation is naturally fit with sequence distance calculation methods. Thus, an improved
Levenshtein edit distance is designed to calculate the distance between two information
paths. Finally, ProvGRP merges the information paths clustered into one class to achieve
the reduction of the provenance graphs.

ProvGRP is evaluated on the publicly available datasets DAPRA TC and ATLAS,
which contain labeled attack entities and events. We employ four metrics to conduct a
comprehensive and quantitative analysis of the method’s effectiveness. Specifically, the
reduction factor evaluates the efficiency of the reduction, while Behavior Partition Accuracy
evaluates the accuracy of the graph partitioning. Attack Information Loss and Causal
Information Loss quantify the information loss situation caused by the reduction method.
The experimental results show that the reduction factors achieved by ProvGRP on these
two datasets are 10.10X and 42.21X, respectively. Taking into account both the reduction
factor and information loss, ProvGRP achieves further data reduction with losing much
less information than previous methods. The result of Behavior Partition Accuracy shows
that ProvGRP can accurately partition the provenance graph to remove false dependencies.
Furthermore, the evaluation results demonstrate that the use of ProvGRP-reduced graphs
can facilitate the efficiency of attack investigation approaches while maintaining high
performance.

2. Background and Motivation
2.1. Audit Logs and Provenance Analysis

Audit Logs: Audit logs are collected by system monitoring tools from various operat-
ing systems, which record in detail the actions and status of the system layer. Each audit
log is an encapsulation of a specific system event or system call, containing details about
system objects, relationships between objects, timestamps, event IDs, and other requisite
system information. Audit logs capture three types of system entities: Process, File, and
Network. The types of relationships are various according to different object operations. (1)
The relationships between recorded processes include process execution, fork, and close,
etc. (2) The relationship between processes and files records the operation from processes,
such as read, write, and delete. (3) The relationships recorded in the logs of the network
object include link, close, etc. Thereby, an audit log can be represented as a quadruple
<event= Subject, operation, Object, timestamp>. For instance, the quadruple <WORD.EXE,
write, Desktop\my_report.docx, 2023/4/22 9:31:32> represents the process, WORD.EXE
writes a file named my_report.docx in the path Desktop\, and the corresponding high-level
user behavior saves the my_report.docx file on the Desktop.

Provenance Analysis: Provenance analysis has been widely applied to attack investi-
gation and detection. Provenance analysis analyzes the audit logs to infer the dependencies
and construct a directed labeled graph known as the provenance graph. By performing
comprehensive causality analysis on the graphs, provenance analysis can identify attack
behavior patterns and traces. In fact, the causal relationships and contextual data found
within audit logs provide valuable insights into the tactics and goals of attackers, which are
inherently difficult to hide. In the provenance graph G =

(
VEntity, Edep

)
, a node v ∈ VEntity

represents a system entity (such as a process, a file, or an IP address). An edge e ∈ Edep

Electronics 2024, 13, 100 4 of 21

represents a dependency relationship (such as process write\read file) with its direction
indicating the relationship between two entities.

2.2. Motivating Example

Scenario. Consider the simulated APT attack scenario implemented by an APT group
named Kimsuky [17]. This scenario encompasses both malicious activities and regular user
actions. For instance, a user habitually checks emails and downloads attachments. Among
these emails, there is a phishing attempt containing a .zip file carrying a malicious .scr file. It
writes a DLL file and sets the registry key to establish persistence. Subsequently, the DLL file
utilizes the technique of process hollowing to inject malware code into explorer.exe to avoid
Anti-Virus detection. Finally, the attacker transmits encrypted information concerning the
compromised machine. Concurrently, the user performs activities such as downloading
documents, working with data samples, installing Python, and executing Python codes, etc.
Figure 2 illustrates a simplified provenance graph depicting the aforementioned process.
The gray boxes and lines in Figure 2 indicate the key nodes and steps of the attack.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 22

performing comprehensive causality analysis on the graphs, provenance analysis can
identify attack behavior patterns and traces. In fact, the causal relationships and contex-
tual data found within audit logs provide valuable insights into the tactics and goals of
attackers, which are inherently difficult to hide. In the provenance graph 𝐺 =(𝑉 , 𝐸), a node 𝑣 ∈ 𝑉 represents a system entity (such as a process, a file, or an
IP address). An edge 𝑒 ∈ 𝐸 represents a dependency relationship (such as process
write\read file) with its direction indicating the relationship between two entities.

2.2. Motivating Example
Scenario. Consider the simulated APT attack scenario implemented by an APT group

named Kimsuky [17]. This scenario encompasses both malicious activities and regular
user actions. For instance, a user habitually checks emails and downloads attachments.
Among these emails, there is a phishing attempt containing a .zip file carrying a malicious
.scr file. It writes a DLL file and sets the registry key to establish persistence. Subsequently,
the DLL file utilizes the technique of process hollowing to inject malware code into ex-
plorer.exe to avoid Anti-Virus detection. Finally, the attacker transmits encrypted infor-
mation concerning the compromised machine. Concurrently, the user performs activities
such as downloading documents, working with data samples, installing Python, and ex-
ecuting Python codes, etc. Figure 2 illustrates a simplified provenance graph depicting the
aforementioned process. The gray boxes and lines in Figure 2 indicate the key nodes and
steps of the attack.

Figure 2. The provenance graph of the Kimsuky attack scenario. The gray boxes and directed edges
represent attack events. The simplified provenance graph describes several behaviors, which are
associated together by long-running process chrome.exe. Limitation. The complete provenance
graph depicted in Figure 2 is huge and complex, and contains 19,306 nodes and 116,732 edges. It is
difficult and time-consuming to conduct attack investigation in this graph. Moreover, the above
graph is only constructed from audit logs collected on a single host within 12 h. We combine the
above attack scenario to provide a more intuitive analysis of the two main limitations of existing
reduction techniques.

CPR/PCAR [13] merges repeated low-level events between two objects, in order to
extract a high-level abstraction of system activities. CPR/PCAP can merge the python.exe
writing and deleting pyc files in the graph, and the reduced graph is still noticeably com-
plex. NodeMerge [12] only merges a set of read-only files that are always accessed to-
gether in the system events. The system event of the encryptor.exe process reading 241
files in the graph can be merged to one node by NodeMerge. LogApprox [15] solely
merges similar files read and written by a process, employing regular expression learning

Figure 2. The provenance graph of the Kimsuky attack scenario. The gray boxes and directed edges
represent attack events. The simplified provenance graph describes several behaviors, which are
associated together by long-running process chrome.exe. Limitation. The complete provenance
graph depicted in Figure 2 is huge and complex, and contains 19,306 nodes and 116,732 edges. It
is difficult and time-consuming to conduct attack investigation in this graph. Moreover, the above
graph is only constructed from audit logs collected on a single host within 12 h. We combine the
above attack scenario to provide a more intuitive analysis of the two main limitations of existing
reduction techniques.

CPR/PCAR [13] merges repeated low-level events between two objects, in order to
extract a high-level abstraction of system activities. CPR/PCAP can merge the python.exe
writing and deleting pyc files in the graph, and the reduced graph is still noticeably complex.
NodeMerge [12] only merges a set of read-only files that are always accessed together in
the system events. The system event of the encryptor.exe process reading 241 files in the
graph can be merged to one node by NodeMerge. LogApprox [15] solely merges similar
files read and written by a process, employing regular expression learning to assess their
similarity. Compared to NodeMerge, it can achieve better reduction results because it
can merge python.exe to write and delete all pyc files into a single event. However, these
methods can only reduce redundant events for specific schemes and templates, and cannot
effectively deal with undefined redundant patterns. More importantly, not considering the

Electronics 2024, 13, 100 5 of 21

context information limits these methods from further identifying multi-step redundant
events.

It can be seen from Figure 2 that chrome.exe is a long-running process, and it associates
multiple high-level behaviors related to it within the same graph. For example, there is no
causal relationship between the behavior of download mail attachment <chrome.exe write
*.zip, T0.2> and the behavior of downloading installation packages <chrome.exe write *.exe,
T3.2> during the lifetime of the process. This makes it difficult to determine the correct
information flow path. However, some previous work did not consider this situation.
Existing methods do not solve this problem.

Using ProvGRP. ProvGRP first partitions the original provenance graphs into multiple
subgraphs, thereby removing false dependencies between different high-level behaviors.
Here, ProvGRP partitions chorme.exe into multiple execution partitions, so that high-level
behaviors such as downloading malware, downloading code, and downloading python
packages are separated in different subgraphs. The error dependencies between attack
event <chrome.exe write *.zip, T0.2> and other normal events are removed correctly. Then,
ProvGRP constructs information paths based on context information, and realizes the
identification of redundant events by calculating the similarity between these information
paths. System events describing the same behavior in Figure 2 are accurately and efficiently
merged. For example, the system events that python.exe generates and deletes a large
number of pyc files are merged into a single event <python.exe read py file, T4.2> to represent
the high-level behavior of running the python code.

3. Approach Overview and Threat Model
3.1. ProvGRP Overview

The overall workflow of ProvGRP is shown in Figure 3. ProvGRP acts as the prede-
cessor work of attack investigations to reduce provenance graphs. It takes the provenance
graphs generated by the audit logs from different operating systems as input and out-
puts the reduced provenance graphs for attack investigation. ProvGRP consists of three
components: (1) Provenance Graph Construction, (2) Provenance Graph Partition, (3)
Behavior-unrelated Events Elimination. The Provenance Graph Construction component
constructs platform-independent provenance graphs from collected audit logs by per-
forming causality correlation (Section 4.1). The Provenance Graph Partition component
implements the partitioning of long-running process nodes by event features (Section 4.2).
The Behavior-unrelated Event Elimination component generates information paths and
merges similar paths to reduce the behavior-unrelated events (Section 4.3).

Electronics 2024, 13, x FOR PEER REVIEW 5 of 22

to assess their similarity. Compared to NodeMerge, it can achieve better reduction results
because it can merge python.exe to write and delete all pyc files into a single event. How-
ever, these methods can only reduce redundant events for specific schemes and templates,
and cannot effectively deal with undefined redundant patterns. More importantly, not
considering the context information limits these methods from further identifying multi-
step redundant events.

It can be seen from Figure 2 that chrome.exe is a long-running process, and it associates
multiple high-level behaviors related to it within the same graph. For example, there is no
causal relationship between the behavior of download mail attachment <chrome.exe write
*.zip, T0.2> and the behavior of downloading installation packages <chrome.exe write *.exe,
T3.2> during the lifetime of the process. This makes it difficult to determine the correct
information flow path. However, some previous work did not consider this situation. Ex-
isting methods do not solve this problem.

Using ProvGRP. ProvGRP first partitions the original provenance graphs into mul-
tiple subgraphs, thereby removing false dependencies between different high-level be-
haviors. Here, ProvGRP partitions chorme.exe into multiple execution partitions, so that
high-level behaviors such as downloading malware, downloading code, and download-
ing python packages are separated in different subgraphs. The error dependencies be-
tween attack event <chrome.exe write *.zip, T0.2> and other normal events are removed cor-
rectly. Then, ProvGRP constructs information paths based on context information, and
realizes the identification of redundant events by calculating the similarity between these
information paths. System events describing the same behavior in Figure 2 are accurately
and efficiently merged. For example, the system events that python.exe generates and de-
letes a large number of pyc files are merged into a single event <python.exe read py file, T4.2>
to represent the high-level behavior of running the python code.

3. Approach Overview and Threat Model
3.1. ProvGRP Overview

The overall workflow of ProvGRP is shown in Figure 3. ProvGRP acts as the prede-
cessor work of attack investigations to reduce provenance graphs. It takes the provenance
graphs generated by the audit logs from different operating systems as input and outputs
the reduced provenance graphs for attack investigation. ProvGRP consists of three com-
ponents: (1) Provenance Graph Construction, (2) Provenance Graph Partition, (3) Behav-
ior-unrelated Events Elimination. The Provenance Graph Construction component con-
structs platform-independent provenance graphs from collected audit logs by performing
causality correlation (Section 4.1). The Provenance Graph Partition component imple-
ments the partitioning of long-running process nodes by event features (Section 4.2). The
Behavior-unrelated Event Elimination component generates information paths and merges
similar paths to reduce the behavior-unrelated events (Section 4.3).

Figure 3. The black box indicates the overall workflow of ProvGRP. ProvGRP’s input is audit logs
collected from different operating systems (left of the black box). ProvGRP outputs reduced prove-
nance graphs for facilitating attack investigation.

Figure 3. The black box indicates the overall workflow of ProvGRP. ProvGRP’s input is audit
logs collected from different operating systems (left of the black box). ProvGRP outputs reduced
provenance graphs for facilitating attack investigation.

3.2. Threat Model

Our threat model is similar to the threat model of previous work [7,8,18–20], which
assumes that the underlying operating system, audit engine, and monitoring data are
part of the trusted computing base (TCB). Kernel-level attacks that compromise the audit
monitoring and log collection systems are beyond the scope of this work. This paper also

Electronics 2024, 13, 100 6 of 21

assumes that the integrity of audit logs is maintained, meaning that attackers cannot modify
or delete them. Additionally, the usage of existing software and secure provenance systems
can ensure the secure capture and storage of logs.

4. Approach Design
4.1. Provenance Graph Construction

System monitoring tools are utilized to collect audit logs from various operating
systems, such as Windows, Linux, and Unix. ProvGRP then parses the collected logs to
construct platform-independent provenance graphs, which are directed labeled graphs.
The nodes represent system entities, and the directed edges represent system events.
Specifically, ProvGRP extracts information about system events recorded in audit logs
including node attributes and dependency attributes. ProvGPR focuses on three types
of node entities, process, file, and network. The dependency attributes include oper-
ations and timestamps, and ProvGRP uses a quadruple to represent system events <
Subject, operation, Object, timestamp >. Table 1 displays the complete extraction informa-
tion of system events. ProvGRP performs causality correlation on the extracted data to con-
struct provenance graphs. The node entities include the file name (c:/windows/system32/es.dll),
process name and PID (svchost.exe_896), and IP address (192.168.223.2:53). The labels of
the directed edges include the operations (read, execute, and connect, etc.) and the times-
tamp. Finally, ProvGPR eliminates unknown nodes and isolated nodes which are the noise
produced by the system monitoring.

Table 1. Attributes of extracted node attributes and dependency attributes.

Subject Entity Object Entity Denpendency (Edge)
Type Attributes Type Attributes Operations Attributes

Process
Name, PID, User,
Type, Subject ID

Process Name, PID, User,
Type, Object ID [execute, fork, clone, close]

Timestamp,
Cmd lines,
Event ID

File Name, Path, Type,
Object ID [read, write, delete] Timestamp,

Event ID

Network IP, Port, URL,
Protocol, Object ID

[connect, connected session,
sock send]

Timestamp,
Evnet ID

4.2. Provenance Graph Partition

The goal of this component is to partition the provenance graphs into multiple sub-
graphs to remove false dependencies caused by the coarse-grained nature of logs. The
subgraphs depict different high-level behaviors, which have no relationship with each
other. To achieve this, ProvGRP proposes a new provenance graph partition algorithm.
This algorithm abstracts three behavior features to judge which system events belong to
the same high-level behavior. Based on these features, incoming and outgoing edges are
clustered separately, and each class cluster corresponds to an execution partition. Subse-
quently, ProvGRP merges the execution partitions of the incoming edges and the execution
partitions of the outgoing edges based on the time of the events in the clusters. Through
the above steps, the original provenance graph is partitioned into multiple subgraphs.

4.2.1. Feature Definition

ProvGRP extracts three features to calculate the similarity between dependencies.
These three features can comprehensively quantify the similarity between dependencies
from multiple dimensions.

Time Interval Feature fT(e). Intuitively, dependencies belonging to the same behavior
have much smaller time intervals compared to those belonging to different behaviors. To
validate this intuition, we conducted a statistical analysis of the time intervals between
system events belonging to the same behavior in two publicly available audit log datasets

Electronics 2024, 13, 100 7 of 21

(the results are depicted in Section 5.2). Thus, the feature fT(e) is designed to model this
intuition.

fT(ei, ej) = 2× atan(
Tend−Tstart∣∣∣tei − tej

∣∣∣+α
− β)/π (1)

where tei and tej represent the timestamp of the events (edges) ei and ej, which are either
incoming or outcoming from the same node. Tend is the latest timestamp among the edges,
and Tstart is the start timestamp. atan(t) = tan−1(t) is an arctangent function, and α (we
set α = 0.001) is a positive number used to make sure the denominator is not 0. When two
events occur at the same time, the value of fT

(
ei, ej

)
is close to 1. β = Tend−Tstart

Tend−Tstart+α to ensure
the value of fT

(
ei, ej

)
is 0 when the time interval between events is maximum. The value of

the formula ranges from 0 to 1.
Entity Name Feature fE(e). The subjects or objects of system events that belong to the

same behavior have high similarity. This intuition is based on observing the habits of users
and computers. For example, when unzipping a zip file, the files are typically extracted
to the same directory path. Then, the feature fE(e) is designed to model this intuition.
Depending on the type of comparison nodes, fE(e) uses different formulas.

If the two entity nodes are different types, fE(e) = 0. If the type of two entity nodes is
process, the value of fE(e) is calculated by process name and PID, and

fE(nei , nej) =

{
1 i f nei = nej

0 otherwise
(2)

where nei and nej are entity node names of the events (edges) ei and ej, and ne is represented
as process_PID. If the type of two entity nodes is IP address, the value of fE(e) is calculated
by counting the number of the same initial bits of IP address, and

fE

(
nei , nej

)
= same_bit

(
binary(nei), binary

(
nej

))
/32 (3)

where binary(ne) converts the decimal IP address to binary, and same_bit counts the number
of the same initial bits. If the type of two entity nodes is file, path, or URL, the value of fE(e)
is calculated by comparing path and file name. For the similarity between two paths, we
treat each directory name as a token. Compare each token from the root directory and end
when the token is different. Thus, the feature fT(e) is designed as follows:

fE

(
nei , nej

)
= same_token

(
token(nei), token

(
nej

))
/max_len (4)

where token(ne) splitsa filepath into tokens, and max_len = max
(

len
(

token(nei), token
(

nej

)))
.

These formulas all yield values in the range [0, 1].
Operation Feature fO(e). Operations belonging to the same behavior have a potential

relationship, meaning that within the same behavior, there are only a few fixed types of
operation. For example, the same operation most likely belongs to the same behavior, and
write and delete operations often co-occur within the same behaviors. Therefore, we define
the Operation Feature as follows:

fO

(
oei , oej

)
= bool_oper

(
oei , oej

)
(5)

where bool_oper is a bool function that the value is set to 1 when the operations oei and oej

match the rule that belongs to the same behavior, otherwise 0.
Finally, the confidence value that two system events ei and ej belong to the same

behavior is obtained by weighting the three aforementioned feature values. The formula is
defined as follows:

F
(
ei, ej

)
= ωT fT(e) + ωE fE(e) + ωO fO(e) (6)

Electronics 2024, 13, 100 8 of 21

ωT , ωE, and ωO are the weight coefficients of each feature, and their sum is 1. In
this work, the weight coefficients are empirically determined as ωT = 0.5, ωE = 0.4, and
ωO = 0.1. The value range of F

(
ei, ej

)
is [0, 1].

4.2.2. Provenance Graph Partition

ProvGRP uses the above features to calculate the confidence matrices Fin(i,j) ∈ FN×N
in

and Fout(i,j) ∈ FM×M
out for the in-edges and out-edges of each long-running node. Since the

number of partitions is uncertain, ProvGRP uses HDBSCAN to implement our clustering
task, which does not need to declare the number of clusters in advance and has good
robustness to outliers. HDBSCAN can receive the all pairs matrix, and the code published
by McInnes L et al. [21] is adopted to implement the clustering task. For long-running
process nodes, incoming and outgoing edges are gathered separately. The incoming
and outgoing edges are then associated according to information reachability, with the
requirement that the information flow follows the chronological order of events. This
means that the incoming edge should exist before any of the outgoing edges.

Figure 4 illustrates the partitioned subgraphs. By partitioning the long-running process
(chrome.exe), ProvGRP divides the provenance graph into subgraphs that describe different
behaviors. Specifically, ProvGRP calculates the dependency distance between dependencies
associated with the process chrome.exe and performs clustering, as shown in the upper part
of Figure 4. Subsequently, based on the reachability of the information flow, the incoming
and outgoing dependencies belonging to the same information flow are associated within
the same execution partition. Finally, by splitting the nodes, the original graph is divided
into multiple subgraphs, as depicted in the lower part of Figure 4.

Based on the clustering results, ProvGRP merges the leaf nodes (nodes with in-degree
or out-degree of 0) within the same cluster. This reduces the number of information paths
that are subsequently generated, thus improving the efficiency of log reduction.

4.3. Behavior-Unrelated Events Elimination

The low-level and verbose nature of audit logs makes the presence of behavior-
unrelated events severely impact the efficiency of the attack investigation. In behavioral
instances, many events are redundant, and removing or merging them does not alter the
information flows. Previous approaches to event merging and elimination have focused
on individual event characteristics without considering contextual information and in-
formation transfer paths. As a result, a large number of redundant events still exist in
the reduced data. To identify these redundant and behavior-unrelated events, ProvGRP
obtains the context information of events based on the information flow and generates
information paths of a specific length. By merging these paths, ProvGRP can remove or
merge behavior-unrelated events effectively.

Information Path. Information flows represent the transfer path of information be-
tween system entities in provenance graphs. As can be seen from Figure 5A, informa-
tion from one node will pass through multiple information tributaries and merge at a
certain node. These information tributaries can be merged into one information flow
without loss of critical information describing high-level behavior, because they belong
to the same behavior instance and have a similar flow pattern. An information path,
denoted as P, indicates an information tributary that is a chain of events in which all
events record the same flow of information. It is an ordered sequence of dependency
events and represented as P = {e 1, e2, . . . , en}. For example, a specific information path
P = {< chrome.exe, write, report.pd f >,< AcroRd32.exe, read, report.pd f >, < AcroRd32.
exe, write, report ∗ .pd f >} has a length of 3. First, the information is transferred into report.pdf
by chrome.exe. Then, the information flows to the AcroRd32.exe by reading the report.pdf. Finally,
AcroRd32.exe writes a new file report*.pdf, which represents the information flows into the file. It
should be noted that the flow direction of information is not always consistent with the direction
of edges. Furthermore, events may appear in multiple paths, indicating the existence of multiple
information flows through these events.

Electronics 2024, 13, 100 9 of 21

Electronics 2024, 13, x FOR PEER REVIEW 8 of 22

where 𝑏𝑜𝑜𝑙_𝑜𝑝𝑒𝑟 is a bool function that the value is set to 1 when the operations 𝑜 and 𝑜 match the rule that belongs to the same behavior, otherwise 0.
Finally, the confidence value that two system events 𝑒 and 𝑒 belong to the same

behavior is obtained by weighting the three aforementioned feature values. The formula
is defined as follows: 𝐹(𝑒 , 𝑒) = 𝜔 𝑓 () + 𝜔 𝑓 () + 𝜔 𝑓 () (6)𝜔 , 𝜔 , and 𝜔 are the weight coefficients of each feature, and their sum is 1. In this
work, the weight coefficients are empirically determined as 𝜔 = 0.5 , 𝜔 = 0.4 , and 𝜔 = 0.1. The value range of 𝐹(𝑒 , 𝑒) is [0, 1].

4.2.2. Provenance Graph Partition
ProvGRP uses the above features to calculate the confidence matrices 𝐹 (,) ∈ 𝑭 ×

and 𝐹 (,) ∈ 𝑭 × for the in-edges and out-edges of each long-running node. Since the
number of partitions is uncertain, ProvGRP uses HDBSCAN to implement our clustering
task, which does not need to declare the number of clusters in advance and has good ro-
bustness to outliers. HDBSCAN can receive the all pairs matrix, and the code published
by McInnes L et al. [21] is adopted to implement the clustering task. For long-running
process nodes, incoming and outgoing edges are gathered separately. The incoming and
outgoing edges are then associated according to information reachability, with the re-
quirement that the information flow follows the chronological order of events. This means
that the incoming edge should exist before any of the outgoing edges.

Figure 4 illustrates the partitioned subgraphs. By partitioning the long-running pro-
cess (chrome.exe), ProvGRP divides the provenance graph into subgraphs that describe dif-
ferent behaviors. Specifically, ProvGRP calculates the dependency distance between de-
pendencies associated with the process chrome.exe and performs clustering, as shown in
the upper part of Figure 4. Subsequently, based on the reachability of the information
flow, the incoming and outgoing dependencies belonging to the same information flow
are associated within the same execution partition. Finally, by splitting the nodes, the orig-
inal graph is divided into multiple subgraphs, as depicted in the lower part of Figure 4.

Figure 4. Different behaviors are divided into different subgraphs by partitioning long-running pro-
cesses into execution partitions.

chrome.exe

*.zip

7z.exe

write, T0.4

read, T0.3

connect, T0.1

write,T0.2src

……

……

chrome.exe

\path*.exe

write,T1

chrome.exe

*.pdf *.py

write, T2.2 write, T2.3

AcroRd32.exe

read, T2.4

*.pdf

write, T2.5

chrome.exe

*.exe

write, T3.2

python-3.10.1-amd64.exe

read, T3.3

python.e
xe

\Lib\ast.
py…… \include\

ast.h

write, T3.4

chrome.exe

.zip \path.exe *.pdf *.exe

connect, T0.1 connect, T3.1

write,T0.2

github.com

*.py……

write,T1 writewrite write, T2.2 write, T2.3 write, T3.2

connect, T2.1

Figure 4. Different behaviors are divided into different subgraphs by partitioning long-running
processes into execution partitions.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 22

Based on the clustering results, ProvGRP merges the leaf nodes (nodes with in-de-
gree or out-degree of 0) within the same cluster. This reduces the number of information
paths that are subsequently generated, thus improving the efficiency of log reduction.

4.3. Behavior-Unrelated Events Elimination
The low-level and verbose nature of audit logs makes the presence of behavior-unre-

lated events severely impact the efficiency of the attack investigation. In behavioral in-
stances, many events are redundant, and removing or merging them does not alter the
information flows. Previous approaches to event merging and elimination have focused
on individual event characteristics without considering contextual information and infor-
mation transfer paths. As a result, a large number of redundant events still exist in the
reduced data. To identify these redundant and behavior-unrelated events, ProvGRP ob-
tains the context information of events based on the information flow and generates infor-
mation paths of a specific length. By merging these paths, ProvGRP can remove or merge
behavior-unrelated events effectively.

Information Path. Information flows represent the transfer path of information be-
tween system entities in provenance graphs. As can be seen from Figure 5A, information
from one node will pass through multiple information tributaries and merge at a certain
node. hese information tributaries can be merged into one information flow without loss
of critical information describing high-level behavior, because they belong to the same
behavior instance and have a similar flow pattern. An information path, denoted as P,
indicates an information tributary that is a chain of events in which all events record the
same flow of information. It is an ordered sequence of dependency events and represented
as 𝑃 = {𝑒 , 𝑒 , … , 𝑒 } . For example, a specific information path 𝑃 = {<𝑐ℎ𝑟𝑜𝑚𝑒. 𝑒𝑥𝑒, 𝑤𝑟𝑖𝑡𝑒, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑝𝑑𝑓 >, < 𝐴𝑐𝑟𝑜𝑅𝑑32. 𝑒𝑥𝑒, 𝑟𝑒𝑎𝑑, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑝𝑑𝑓 >, <𝐴𝑐𝑟𝑜𝑅𝑑32. 𝑒𝑥𝑒, 𝑤𝑟𝑖𝑡𝑒, 𝑟𝑒𝑝𝑜𝑟𝑡 ∗. 𝑝𝑑𝑓 >} has a length of 3. First, the information is trans-
ferred into report.pdf by chrome.exe. Then, the information flows to the AcroRd32.exe by
reading the report.pdf. Finally, AcroRd32.exe writes a new file report*.pdf, which represents
the information flows into the file. It should be noted that the flow direction of information
is not always consistent with the direction of edges. Furthermore, events may appear in
multiple paths, indicating the existence of multiple information flows through these
events.

Figure 5. The process of merging paths based on similarity. Nodes and edges in the dotted box
represent the merged path. (A) represents the segmented subgraph, (B) represents the intermediate
result in the iteration, and (C) represents the final result of the provenance subgraph.

……

Length = 4Iterations
……

（A） （B） （C）

Length = 1Process
Network

File

Figure 5. The process of merging paths based on similarity. Nodes and edges in the dotted box
represent the merged path. (A) represents the segmented subgraph, (B) represents the intermediate
result in the iteration, and (C) represents the final result of the provenance subgraph.

Merging Information Paths. ProvGRP employs an iterative process to merge similar
paths based on their length. This has the advantage of reducing the number of long
information paths and improving merge efficiency. Our goal is to derive an algorithm

Electronics 2024, 13, 100 10 of 21

that accurately quantifies information path similarity based on these three features. The
information path representation is naturally fit with sequence distance calculation methods.
Thus, an improved Levenshtein edit distance is designed to calculated the distance between
two information paths Pi and Pj:

LP(m, n) =

max(m, n) i f min(m, n) = 0

min

LP(m− 1, n) + 1
LP(m, n− 1) + 1

LP(m− 1, n− 1) + (1− F(em, en))
otherwise.

(7)

where 1− F(em, en) calculate the distance between em and en in Pi and Pj, respectively.
For information path pair PL

i and PL
j of a certain length L, the normalization distance

between them can be expressed as LPPL
i ,PL

j
(L, L)/L, the value range of which is [0, 1]. We

empirically determined the threshold to be 0.2. If the distance is lower than the threshold,
the information paths PL

i and PL
j are merged. ProvGRP only calculates the distance of

information paths that contain at least one identical event. Moreover, it is important to
note that process nodes are not merged because most processes are directly associated with
behaviors, and merging them would result in the loss of crucial behavior information.

Figure 5 visually illustrates the path merging process. Figure 5A is a provenance
subgraph generated from Provenance Graph Partition, where the dotted box indicates
information paths of length 1. These paths are subjected to similarity calculation and
merged, resulting in Figure 5B. when the path length reaches 4, the two paths within the
red dotted box are merged, as shown in Figure 5C. Subsequent iterations do not identify
path pairs that exceed the similarity threshold, and the merging process terminates when
the path length reaches 6, which is the maximum length. Algorithm 1 outlines the iterative
calculation of path similarity for path merging.

Algorithm 1: Behavior-unrelated Event Elimination

Input: Provenance subgraphs G1, G2, . . . Gn
Result: Merged Provenance subgraphs G′1, G′2, . . . , G′n
for each Gi do

Set max_len← Gi ;
Empty list P;
while len_path < max_len do

Add Pn to P;

Calculate each pair paths Pi, PjεP with Spath

(
Pi, Pj

)
if Spath

(
Pi, Pj

)
> 0.8 then

Merge paths Pi and Pj;
Return G,

i

5. Evaluation
5.1. Datasets and Evaluation Metrics
5.1.1. Datasets

The effectiveness and generalizability of ProvGRP are evaluated using two publicly
available audit log datasets, ATLAS Dataset [1] and DAPRA CADETS dataset [22]. These
datasets are widely used for evaluating attack investigation methods and contain ground
truth information about attack scenarios.

ATLAS Dataset. The ATLAS Dataset, as provided in reference [1], consists of 10
repeated APT attacks with different vulnerabilities and attack strategies. The dataset
covers a time span of 24 h, and each attack is completed within one hour. During the
24 h emulation, an average of 20,784 unique entities and 249 K events are generated for
each attack. This paper constructs provenance graphs based on the attack scenarios in the
dataset. In the previous work, these attack scenarios were numbered. For ease of reference,
this paper uses the dataset name followed by the corresponding number to represent

Electronics 2024, 13, 100 11 of 21

the attack scenarios in the evaluation. For example, ATLAS. S-1 represents Strategic web
compromise, which is an APT campaign.

DAPRA CADETS dataset. The DAPRA CADETS dataset [22] is released by the
DARPA Transparent Computing program. This dataset was collected during DARPA’s
two-week red team vs. blue team Engagement 3. The dataset includes attacks against the
FreeBSD system, with the red team executing multiple attack methods four times during
different time periods. Throughout the attack, normal behaviors such as SSH login may
also occur on the host. A total of 44,404,339 OS-level audit logs were collected over the
two-week period.

5.1.2. Evaluation Metrics

Reduction factor. The reduction factor measures the rate of edges (events) removed
or merged. Therefore, the reduction factor is defined as Numorig/Numredu, where Numorig
is the number of edges in the original provenance graphs and Numredu is the number of
edges after Reduction and Partition by ProvGRP.

Behavior Partition Accuracy. This metric evaluates the accuracy of the provenance
graph partition. Here, we evaluate the accuracy of ProvGRP in separating attack behaviors
from normal behaviors, i.e., the proportion of events related to the attack in the subgraph
describing the attack scenario. Thus, Behavior Partition Accuracy is defined as follows.

Given a ground truth provenance graph of an attack scenario Gatt = (V, E) and parti-
tioned provenance subgraph G′att = (V′, E′), a lossless subgraph implies that E′ = E and
V′ = V. The accuracy of provenance graph partition can be measured using the formula.

AccBP =
|E′ − E|+|V′ −V|

|E|+|V| (8)

Attack Information Loss. This metric evaluates the loss of critical information related
to the attack after removing behavior-unrelated events. The key attack information is
crucial in the attack investigation. Mistakenly removing key attack information (nodes
or events) may disrupt the attack path, making it challenging for context-based attack
investigation methods to obtain complete context information of the attack events. It may
also hinder matching-based attack investigation methods in effectively matching similar
attack graphs. Therefore, the metric is used to describe the attack information loss.

Given a ground truth provenance graph of an attack scenario Gatt = (V, E), where εiεE
represents attack-related system events in Gatt, Grm_att represents a provenance graph that
contains attack events and has removed behavior-unrelated events, and ε′iεE

′ represents
attack-related system events in Grm_att. The loss of the attack information can be measured
using the formula:

LAI = 1− |E∩E
′|

|E| (9)

Causal Information Loss. Graph reduction methods may mistakenly remove events
related to normal behaviors, impacting the effectiveness of attack investigation methods
that learn from both attack and normal behaviors.

Give all ground truth events EGT =
{

εatt
1 , . . . , εatt

m , εnor
1 , . . . , εnor

n
}

that are directly re-
lated to behaviors. G = {G1, G2, . . . , Gn} represents a set of subgraphs after removing
behavior-independent events. Loss is defined as the proportion of any event ε ∈ EGT that
does not appear on any graph G ∈ G, which can be measured using the formula:

LCI = 1− |EGT ∩G|
|EGT |

(10)

Electronics 2024, 13, 100 12 of 21

5.2. Feature Verification

The features used in ProvGRP are proposed based on intuition and statistical analysis.
Below, we illustrate the validity of these features through statistical analysis results on two
publicly available datasets used in our experiments.

Time Interval Feature. Figure 6 shows the number of events belonging to the same
behavior for different time densities. The time density represents the relative time interval,
that is, the proportion of the time interval in the total lifetime of the node. It is calculated by∣∣∣tei−tej

∣∣∣+α

Tend−Tstart
, and a lower value indicates that two events are closer to each other. In the time

density distribution, events are mainly concentrated in the 0–0.05 and 0.95–1 ranges. Events
in the 0–0.05 range belong to the same behavior of long-running processes, while events in
the 0.95–1 range are executed by short-lived processes, where each process carries out a
single behavior, resulting in event intervals approximately equal to the process lifecycle.

Entity Name Feature. Figure 7 shows the number of event pairs with different entity
similarities within the same behavior. The value is calculated by fE(e). In the similarity
distribution, events within the same behavior exhibit entity similarities greater than 0.6,
whereas in attack-related behaviors, entity similarity is mostly distributed in the range of 0.8–1.

Operation Feature. Figure 8 represents the distribution of operations in the same
behavior. We can see that the distribution is similar in both datasets. In the operation
distribution, there are potential relationships between different operations within the same
operation.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 22

ℒ = 1 − |𝔼𝐺𝑇 ∩ 𝔾||𝔼 | (10)

5.2. Feature Verification
The features used in ProvGRP are proposed based on intuition and statistical analy-

sis. Below, we illustrate the validity of these features through statistical analysis results on
two publicly available datasets used in our experiments.

Time Interval Feature. Figure 6 shows the number of events belonging to the same
behavior for different time densities. The time density represents the relative time interval,
that is, the proportion of the time interval in the total lifetime of the node. It is calculated

by
| |

, and a lower value indicates that two events are closer to each other. In the
time density distribution, events are mainly concentrated in the 0–0.05 and 0.95–1 ranges.
Events in the 0–0.05 range belong to the same behavior of long-running processes, while
events in the 0.95–1 range are executed by short-lived processes, where each process car-
ries out a single behavior, resulting in event intervals approximately equal to the process
lifecycle.

Figure 6. Statistical analysis results of Time Density of two publicly available datasets (A) ATLAS
and (B) DAPRA CADETS. The blue line indicates the analysis result of all events, and the dotted
green line indicates the statistics result of attack events.

Entity Name Feature. Figure 7 shows the number of event pairs with different entity
similarities within the same behavior. The value is calculated by 𝑓 (). In the similarity
distribution, events within the same behavior exhibit entity similarities greater than 0.6,
whereas in attack-related behaviors, entity similarity is mostly distributed in the range of
0.8–1.

Figure 6. Statistical analysis results of Time Density of two publicly available datasets (A) ATLAS
and (B) DAPRA CADETS. The blue line indicates the analysis result of all events, and the dotted
green line indicates the statistics result of attack events.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 7. Statistical analysis results of Similarity Value of two publicly available datasets (A) ATLAS
and (B) DAPRA CADETS.

Operation Feature. Figure 8 represents the distribution of operations in the same be-
havior. We can see that the distribution is similar in both datasets. In the operation distri-
bution, there are potential relationships between different operations within the same op-
eration.

Figure 8. Statistical analysis results of operation distribution of two publicly available datasets (A)
ATLAS and (B) DAPRA CADETS. The base 10 logarithm is performed on the number of events.

5.3. Performance Evaluation
Reduction Performance. The effectiveness of ProvGRP is evaluated using the reduc-

tion factor. Table 2 shows the reduction factors for the attack scenarios in the publicly
available datasets. It can be observed that ProvGRP achieves reduction factors ranging
from 6.02X to 55.81X for different attack scenarios. On average, ProvGRP reduces the size
of provenance graphs generated from the ATLAS dataset by 10.10X, and from the CA-
DETS dataset by 42.21X. The variation in reduction factors is a result of the distinct data
characteristics between the two datasets, which utilize different system monitoring tools.
It is evident that the reduction factors are similar within the same dataset. The reduction
factors of different attack scenarios within the same dataset are similar. Additionally, cer-
tain attack scenarios involve user actions that generate a large number of dependencies in

Figure 7. Statistical analysis results of Similarity Value of two publicly available datasets (A) ATLAS
and (B) DAPRA CADETS.

Electronics 2024, 13, 100 13 of 21

Electronics 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 7. Statistical analysis results of Similarity Value of two publicly available datasets (A) ATLAS
and (B) DAPRA CADETS.

Operation Feature. Figure 8 represents the distribution of operations in the same be-
havior. We can see that the distribution is similar in both datasets. In the operation distri-
bution, there are potential relationships between different operations within the same op-
eration.

Figure 8. Statistical analysis results of operation distribution of two publicly available datasets (A)
ATLAS and (B) DAPRA CADETS. The base 10 logarithm is performed on the number of events.

5.3. Performance Evaluation
Reduction Performance. The effectiveness of ProvGRP is evaluated using the reduc-

tion factor. Table 2 shows the reduction factors for the attack scenarios in the publicly
available datasets. It can be observed that ProvGRP achieves reduction factors ranging
from 6.02X to 55.81X for different attack scenarios. On average, ProvGRP reduces the size
of provenance graphs generated from the ATLAS dataset by 10.10X, and from the CA-
DETS dataset by 42.21X. The variation in reduction factors is a result of the distinct data
characteristics between the two datasets, which utilize different system monitoring tools.
It is evident that the reduction factors are similar within the same dataset. The reduction
factors of different attack scenarios within the same dataset are similar. Additionally, cer-
tain attack scenarios involve user actions that generate a large number of dependencies in

Figure 8. Statistical analysis results of operation distribution of two publicly available datasets
(A) ATLAS and (B) DAPRA CADETS. The base 10 logarithm is performed on the number of events.

5.3. Performance Evaluation

Reduction Performance. The effectiveness of ProvGRP is evaluated using the reduc-
tion factor. Table 2 shows the reduction factors for the attack scenarios in the publicly
available datasets. It can be observed that ProvGRP achieves reduction factors ranging
from 6.02X to 55.81X for different attack scenarios. On average, ProvGRP reduces the
size of provenance graphs generated from the ATLAS dataset by 10.10X, and from the
CADETS dataset by 42.21X. The variation in reduction factors is a result of the distinct data
characteristics between the two datasets, which utilize different system monitoring tools.
It is evident that the reduction factors are similar within the same dataset. The reduction
factors of different attack scenarios within the same dataset are similar. Additionally, certain
attack scenarios involve user actions that generate a large number of dependencies in a
short period of time, such as installing software and running codes. These dependencies
are effectively merged and removed by ProvGRP.

Effectiveness Evaluation. The effectiveness of ProvGRP is evaluated using the three
metrics: Behavior Partition Accuracy, Attack Information Loss, and Causal Information
Loss. The two public datasets contain multiple attack scenarios, with marked information
related to the attacks such as entities and events. For each attack scenario, quantitative
evaluations of the reduction effectiveness are conducted. The results of the evaluation are
presented in Figure 9.

For Behavior Partition Accuracy, taller bars indicate better partition accuracy, meaning
that our method correctly divides different behaviors into separate subgraphs. The partition
results obtained by our method range from 0.805 to 0.954 across different attack scenarios.
These results indicate that the provenance subgraphs describing the attack behaviors retain
the majority of attack-related events while containing only a small number of normal
system events. This provides greater accuracy for some attack investigation methods. As
shown in Figure 9, the partition accuracy for the initial six attack scenarios is generally
higher than that of the last three. This difference arises from the presence of numerous
normal behaviors and system calls in CADETS that occur closely with the attack behaviors,
resulting in their inclusion in the same subgraph. However, the predominantly leaf nodes
representing normal behaviors do not significantly affect the topology of the subgraph that
describes the attack behavior.

Electronics 2024, 13, 100 14 of 21

Table 2. The scale of the reduction graph and reduction factor obtained by CaDR in different attack
scenarios.

Attack
Scenarios

Prov. Graph Reduction Graph Reduction
Factor|V| |E| |V| |E|

ATLAS. S-1 7468 14,820 1265 1330 11.14X
ATLAS. S-2 33,990 42,126 2749 3981 10.58X
ATLAS. S-3 8975 19,545 1985 3248 6.02X
ATLAS. S-4 13,021 23,669 1025 1730 13.68X
ATLAS. M-1 17,633 38,131 1842 2965 12.86X
ATLAS. M-2 24,489 45,775 2246 4782 9.57X
ATLAS. M-3 24,472 40,040 2312 4293 9.33X
ATLAS. M-4 15,405 32,217 987 1382 23.31X
ATLAS. M-5 35,716 52,934 3268 6092 8.69X
ATLAS. M-6 26,685 37,722 3109 4562 8.27X

ATLAS. Total 207,854 346,979 20,788 34,365 10.10X

CADETS.
case-1 237,722 519,657 10,731 14,194 36.61X

CADETS.
case-2 298,722 730,717 12,889 13,094 55.81X

CADETS.
case-3 175,607 296,206 5106 9350 31.68X

CADETS.
Total 712,051 1,546,580 28,726 36,638 42.21X

Electronics 2024, 13, x FOR PEER REVIEW 14 of 22

a short period of time, such as installing software and running codes. These dependencies
are effectively merged and removed by ProvGRP.

Table 2. The scale of the reduction graph and reduction factor obtained by CaDR in different attack
scenarios.

Attack Scenarios
Prov. Graph Reduction Graph Reduction

Factor |V| |E| |V| |E|
ATLAS. S-1 7468 14,820 1265 1330 11.14X
ATLAS. S-2 33,990 42,126 2749 3981 10.58X
ATLAS. S-3 8975 19,545 1985 3248 6.02X
ATLAS. S-4 13,021 23,669 1025 1730 13.68X
ATLAS. M-1 17,633 38,131 1842 2965 12.86X
ATLAS. M-2 24,489 45,775 2246 4782 9.57X
ATLAS. M-3 24,472 40,040 2312 4293 9.33X
ATLAS. M-4 15,405 32,217 987 1382 23.31X
ATLAS. M-5 35,716 52,934 3268 6092 8.69X
ATLAS. M-6 26,685 37,722 3109 4562 8.27X

ATLAS. Total 207,854 346,979 20,788 34,365 10.10X
CADETS. case-1 237,722 519,657 10,731 14,194 36.61X
CADETS. case-2 298,722 730,717 12,889 13,094 55.81X
CADETS. case-3 175,607 296,206 5106 9350 31.68X
CADETS. Total 712,051 1,546,580 28,726 36,638 42.21X

Effectiveness Evaluation. The effectiveness of ProvGRP is evaluated using the three
metrics: Behavior Partition Accuracy, Attack Information Loss, and Causal Information
Loss. The two public datasets contain multiple attack scenarios, with marked information
related to the attacks such as entities and events. For each attack scenario, quantitative
evaluations of the reduction effectiveness are conducted. The results of the evaluation are
presented in Figure 9.

Figure 9. The three metrics value for ProvGRP in different attack scenarios. Figure 9. The three metrics value for ProvGRP in different attack scenarios.

The quantification of loss includes Attack Information Loss and Causal Information
Loss. The loss of attack information is controlled within the range of 0.031 to 0.098 across
all attack scenarios. This demonstrates that our method avoids substantial loss of attack
information. The analysis reveals that the lost attack information mainly consists of repeated

Electronics 2024, 13, 100 15 of 21

or failed attack events in the initial stages, such as port scanning and unsuccessful SSH
connections. The loss of such information does not significantly impact subsequent attack
investigations. Causal Information Loss includes both normal and attack information loss.
The loss of causal information is controlled within the range of 0.033 to 0.1 across all attack
scenarios.

5.4. Comparative Evaluation

ProvGRP is compared with other reduction methods using the publicly available
CADETS dataset. Since the source code of these methods is unavailable, we attempted
to recreate them based on their descriptions in the original papers. Figure 10 shows the
change in reduction ratios for the generated graphs compared to the original provenance
graphs as the original provenance graphs are reduced. ProvGRP generates the smallest
graphs, removing 97.63% of the system events from the provenance graphs of CADETS. In
contrast, LogApprox produces the largest graphs, removing 74.05% of the system events.
ProvGRP still achieves the best results on ATLAS dataset, and the reduction performance
of the other two methods is equal to that achieved by the method proposed by ATLAS in
data preprocessing. The experimental results show that ProvGRP can achieve better data
reduction results than the existing methods. Additionally, we compare the performance of
our re-implemented method with the original work. Although the re-implemented method
does not reach the peak of the previous work, the difference is not significant. The main
reason for this difference is that the datasets used are different.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 22

For Behavior Partition Accuracy, taller bars indicate better partition accuracy, mean-
ing that our method correctly divides different behaviors into separate subgraphs. The
partition results obtained by our method range from 0.805 to 0.954 across different attack
scenarios. These results indicate that the provenance subgraphs describing the attack be-
haviors retain the majority of attack-related events while containing only a small number
of normal system events. This provides greater accuracy for some attack investigation
methods. As shown in Figure 9, the partition accuracy for the initial six attack scenarios is
generally higher than that of the last three. This difference arises from the presence of
numerous normal behaviors and system calls in CADETS that occur closely with the at-
tack behaviors, resulting in their inclusion in the same subgraph. However, the predomi-
nantly leaf nodes representing normal behaviors do not significantly affect the topology
of the subgraph that describes the attack behavior.

The quantification of loss includes Attack Information Loss and Causal Information
Loss. The loss of attack information is controlled within the range of 0.031 to 0.098 across
all attack scenarios. This demonstrates that our method avoids substantial loss of attack
information. The analysis reveals that the lost attack information mainly consists of re-
peated or failed attack events in the initial stages, such as port scanning and unsuccessful
SSH connections. The loss of such information does not significantly impact subsequent
attack investigations. Causal Information Loss includes both normal and attack infor-
mation loss. The loss of causal information is controlled within the range of 0.033 to 0.1
across all attack scenarios.

5.4. Comparative Evaluation
ProvGRP is compared with other reduction methods using the publicly available CA-

DETS dataset. Since the source code of these methods is unavailable, we attempted to rec-
reate them based on their descriptions in the original papers. Figure 10 shows the change
in reduction ratios for the generated graphs compared to the original provenance graphs
as the original provenance graphs are reduced. ProvGRP generates the smallest graphs,
removing 97.63% of the system events from the provenance graphs of CADETS. In con-
trast, LogApprox produces the largest graphs, removing 74.05% of the system events.
ProvGRP still achieves the best results on ATLAS dataset, and the reduction performance
of the other two methods is equal to that achieved by the method proposed by ATLAS in
data preprocessing. The experimental results show that ProvGRP can achieve better data
reduction results than the existing methods. Additionally, we compare the performance
of our re-implemented method with the original work. Although the re-implemented
method does not reach the peak of the previous work, the difference is not significant. The
main reason for this difference is that the datasets used are different.

Figure 10. Comparison of reduction performance of different reduction methods on the two datasets
CADETS (A) and ATLAS (B).

The existing methods are also evaluated using the three proposed metrics and com-
pared with ProvGRP. The results are shown in Figure 11. Since LogApprox and NodeMerge
do not partition provenance graphs, the graphs they generate contain numerous normal
events and entities, resulting in lower values for Behavior Partition Accuracy. LogApprox
exhibits nearly no loss of attack information, which aligns with the results from the orig-
inal work. However, LogApprox experiences higher causal information loss compared
to ProvGRP, while its reduction factor is the smallest. Considering the comprehensive
evaluation, ProvGRP can achieve further data reduction with losing much less information
than previous methods, and can accurately partition the provenance graph to remove false
dependencies.

Electronics 2024, 13, 100 16 of 21

Electronics 2024, 13, x FOR PEER REVIEW 16 of 22

Figure 10. Comparison of reduction performance of different reduction methods on the two datasets
CADETS (A) and ATLAS (B).

The existing methods are also evaluated using the three proposed metrics and com-
pared with ProvGRP. The results are shown in Figure 11. Since LogApprox and Node-
Merge do not partition provenance graphs, the graphs they generate contain numerous
normal events and entities, resulting in lower values for Behavior Partition Accuracy.
LogApprox exhibits nearly no loss of attack information, which aligns with the results
from the original work. However, LogApprox experiences higher causal information loss
compared to ProvGRP, while its reduction factor is the smallest. Considering the compre-
hensive evaluation, ProvGRP can achieve further data reduction with losing much less
information than previous methods, and can accurately partition the provenance graph to
remove false dependencies.

Figure 11. Comparison of metrics of different methods.

5.5. Attack Investigation Facilitation
To evaluate the facilitation effect of ProvGRP for attack investigation, two attack in-

vestigation methods are selected for analysis, which, respectively, used the above two
public datasets. ATLAS [1] provides the ATLAS dataset and uses the dataset for the exper-
imental evaluation. Although this work optimized the provenance graph, the average re-
duction factor is 5.21X. Since the primary goal of this work is to perform attack investiga-
tions, its graph optimization method is relatively simple and does not consider context
information. The LogKernel [23] method performs experimental evaluation on the CA-
DETS dataset. This work only partitions the long-running process nodes and does not
reduce the graphs. In our experiments, we replaced the original graphs used as inputs in
the two methods with the graphs reduced by ProvGRP, and compared the changes in
runtime and their impact on the results. Table 3 shows the comparison results. When uti-
lizing the reduced graphs GRA and GRC, the runtime of the attack investigation is reduced
by 34.4% (ATLAS) and 61.0% (LogKernel), respectively.

Precision, recall, and F1-score are employed to evaluate the impact of using Prov-
GRP-reduced graphs on attack investigation results. As can be seen in Table 3, when using
the reduced GRA, the precision of ATLAS reached 99.73%, the recall reached 99.68%, and
the F1-score reached 99.70%. These metrics are slightly lower compared to using the orig-
inal graph GOA. A more in-depth analysis of the attack results shows that ATLAS is able to
more accurately identify attacks that share processes with normal users when performing
attack investigation in the reduced graphs GRA. ProvGRP can help identify this type of
attack more accurately by removing false dependencies caused by long-running

Figure 11. Comparison of metrics of different methods.

5.5. Attack Investigation Facilitation

To evaluate the facilitation effect of ProvGRP for attack investigation, two attack inves-
tigation methods are selected for analysis, which, respectively, used the above two public
datasets. ATLAS [1] provides the ATLAS dataset and uses the dataset for the experimental
evaluation. Although this work optimized the provenance graph, the average reduction
factor is 5.21X. Since the primary goal of this work is to perform attack investigations, its
graph optimization method is relatively simple and does not consider context information.
The LogKernel [23] method performs experimental evaluation on the CADETS dataset.
This work only partitions the long-running process nodes and does not reduce the graphs.
In our experiments, we replaced the original graphs used as inputs in the two methods
with the graphs reduced by ProvGRP, and compared the changes in runtime and their
impact on the results. Table 3 shows the comparison results. When utilizing the reduced
graphs GRA and GRC, the runtime of the attack investigation is reduced by 34.4% (ATLAS)
and 61.0% (LogKernel), respectively.

Table 3. The changes of the above three indicators and running time after using the reduced graphs.

Methods Graphs Time
(h:m:s) Precision Recall F1-Score

ATLAS
Original GOA 1:10:37 99.88% 99.89% 99.88%

Reduction GRA 0:46:21 99.73% 99.68% 99.70%

LogKernel Original GOC 1:18:08 3\(3 + 0) 3\(3 + 0) 1
Reduction GRC 0:30:29 3\(3 + 0) 3\(3 + 0) 1

Precision, recall, and F1-score are employed to evaluate the impact of using ProvGRP-
reduced graphs on attack investigation results. As can be seen in Table 3, when using the
reduced GRA, the precision of ATLAS reached 99.73%, the recall reached 99.68%, and the
F1-score reached 99.70%. These metrics are slightly lower compared to using the original
graph GOA. A more in-depth analysis of the attack results shows that ATLAS is able to more
accurately identify attacks that share processes with normal users when performing attack
investigation in the reduced graphs GRA. ProvGRP can help identify this type of attack
more accurately by removing false dependencies caused by long-running processes. This
ensures that the origin graphs describing attacks are devoid of unrelated normal behavior
instances. As a result, the number of false positives (FP), i.e., the misclassification of normal
events as attack events, is reduced. However, some attack information was lost during the
reduction process, leading to attack-related events being incorrectly classified as normal

Electronics 2024, 13, 100 17 of 21

events. By utilizing the causal relationships between events to construct attack scenarios,
these false negatives (FN) can be associated with the corresponding attack scenarios.

Overall, the evaluation results demonstrate that the use of ProvGRP-reduced graphs
significantly reduces the runtime of attack investigations while maintaining high precision.
Although a slight decrease in recall and F1-score was observed, the improved representa-
tiveness of the obtained sequence and the ability to associate false negatives with attack
scenarios compensate for this loss. Thus, ProvGRP effectively promotes the efficiency and
accuracy of attack investigations.

5.6. Running Time Performance

The time consumption of ProvGRP is measured on two publicly available datasets.
The size of these two datasets is comparable to real-world data. The runtime overhead
of ProvGRP consists of three phases. The first phase is to construct the audit logs as
provenance graphs, the second phase is provenance graphs partition, and the third phase is
behavior-unrelated event elimination and semantic extraction. We perform the experiments
on a server with an Intel(R) Xeon(R) Silver 4215R CPU (with 8 cores and 3.20 GHz of speed
each) and 256 GB of memory running on Ubuntu 18.04.5 LTS.

In this setting, the processing speed of constructing provenance graphs from ATLAS
and CADETS datasets are on average 169 MB/min and 483 MB/min, respectively. The
runtime overhead of provenance graph partitioning was measured on both datasets, where
our approach was able to handle an average of 38 and 45 long-running nodes per second,
respectively. Finally, we analyze each provenance subgraph to remove events that are
not related to behaviors. Although the removal was performed in a circular iteration, the
size of the graphs decreased and the number of generated paths decreased as the iteration
progressed. As a result, the time overhead for this phase was not as high as initially
anticipated. Specifically, it took 8 min and 35 s and 12 min and 19 s to process the graphs
generated by the two datasets, respectively.

From the reading of log data to construct the provenance graphs to the generation of
the reduced graphs after semantic extraction, the total time cost by ProvGRP was 17 min
and 43 s and 25 min and 39 s, respectively. These results are close to or even less than the
data preprocessing time in multiple attack investigation methods, indicating that the time
overhead of our method is acceptable. It will not significantly impact the time efficiency of
attack investigations.

6. Related Work

Data Reduction. Various approaches have been proposed to address the challenges
posed by large-scale provenance graphs in provenance analysis. Prior work has focused on
targeted reduction methods based on the characteristics of redundant data. One category
of approaches, including LogGC [24], FD-SD [25], KCAL [26], and Nodemerge [12], adopts
a lossy reduction strategy by removing logs based on predefined patterns. While these
methods have demonstrated effectiveness through case experiments, their reliance on
predefined patterns may limit their adaptability to diverse scenarios, raising concerns about
the completeness and correctness of results. In contrast, other reduction techniques such
as CPR [13], DPR [27], and ProTracer [12] take a more selective approach, retaining only
those system events deemed essential for constructing an accurate information flow graph.
Similarly, methods like PCAR [13], DFA [27], and LogApprox [15] explore the bounded
approximation of audit logs, accepting a controlled loss of accuracy to gain improved
space efficiency. These techniques have shown promise in enhancing the efficiency and
accuracy of forensic analysis, especially in scenarios where specific schemes and templates
can be applied effectively. It is worth noting that lossless compression methods, typified
by SEAL [14], prioritize the preservation of all information for detailed causal analysis.
SEAL achieves this by generating a dependency graph from system logs and subsequently
losslessly compressing the graph structure and attributes, including timestamps. This
approach ensures accurate query results while maintaining efficiency in query processing.

Electronics 2024, 13, 100 18 of 21

Although these methods have introduced innovative ideas for log reduction and
achieved good results, they overlook the erroneous dependency relationships caused by
the coarse-grained nature of logs. The erroneous dependency relationships are also a
significant factor leading to the generation of exceptionally large and complex provenance
graphs. Moreover, the method is unable to identify redundant patterns not defined by
schemes and templates. In fact, this paper’s approach demonstrates that leveraging context
information can more accurately and efficiently reduce audit data.

Attack Investigation. Sophisticated attacks disguise their behavior to evade the
monitoring of intrusion detection systems when infiltrating information systems [28].
Provenance analysis is commonly used to investigate attacks and uncover hidden attack
behaviors at the system layer. Nodoze [18] proposes attack investigation methods based
on statistical characteristics. They prioritize abnormal events and causal dependencies,
considering frequency and topological metrics. However, Priotracker focuses on individual
event anomalies, while Nodoze considers anomalies across event chains and employs
statistical low-frequency path mining. The statistical low-frequency path mining method is
proposed to solve the dependence explosion problem, so as to restore the subgraph of the
traceability data corresponding to the alarm generation more accurately. However, the IP
address of abnormal transmission cannot be accurately located, and this method based on
statistics may lead to unstable results.

Other approaches, Holmes [7] and RapSheet [29], treat multi-stage attacks as chains of
causal events that conform to the TTP specification. WATSON [30] uses context information
based on knowledge graph of system audit logs to realize semantic inference, expresses
different behavior semantics through vectors, and uses semantically similar behaviors
for clustering. The results show that benign and malicious behaviors can be accurately
abstracted. OmegaLog [2] can accurately coordinate application events with system layer
access by identifying and simulating application layer log behavior. Then, it intercepts
application runtime log activities and migrates these events to the system layer traceback
graph, so that investigators can more accurately infer the nature of attacks.

Hercule [31], Tiresias [32], Attack2vec [33], ATLAS [1], and IDERES [34] use machine
learning techniques to model attack behaviors. Hercule uses community detection algo-
rithms to correlate attack events, identifying clear behavioral divisions between threat
events and normal events. Tiresias and Attack2vec are limited to identifying and reporting
attack events within a single log. ATLAS aims to locate attacks through sequence learning
and reconstructing attack paths based on known attack features.

Overall, these previous works contribute valuable insights and techniques to attack
investigation and data reduction in provenance analysis, but each has its limitations and
focuses on specific aspects of the problem.

7. Discussion
7.1. Limitation of ProvGRP

Although ProvGRP has achieved good results in data reduction, the method still has
limitations. Our approach can identify more redundant events using contextual informa-
tion, but it may produce errors when dealing with lengthy and intricate information paths.
The extended length of information paths may accumulate minor differences, leading to
the risk of the method incorrectly categorizing similar information paths as dissimilar.
Another limitation is that ProvGRP cannot accurately partition two behaviors into different
subgraphs when they perform operations using the same process almost simultaneously. If
both of these behaviors are normal, they will not affect the subsequent investigation of the
attack. However, if one of them is an attack behavior, it may impact the assessment of that
behavior. Fortunately, the probability of this scenario occurring in practice is very low. In
addition, ProvGRP has effectively divided most behaviors into subgraphs, a practice that
is often overlooked in current methods for reducing audit data and investigating attacks.
The last obvious limitation is that ProvGRP consumes more computational resources than

Electronics 2024, 13, 100 19 of 21

previous methods based on predefined templates. This level of increased complexity is
acceptable compared to the efficiency of facilitating attack investigation.

7.2. Security Analysis of ProvGRP

ProvGRP is generally robust to attacks including APT attacks. Attackers typically
evade detection through spoofing or camouflage techniques, such as spoofing the IP
address, modifying the time information, double extension on file names, encapsulation
techniques, etc. These modifications do pose significant challenges to intrusion detection
systems, especially rule-based and matching IOC approaches. To address this challenge,
attack investigation methods are widely used to perform a comprehensive causal analysis
on audit data. Causal analysis is effective in identifying attacks because even if the attacker
conceals or alters some of their indicators of compromise (IOCs) at certain stages, the
behavioral patterns and objectives displayed throughout the attack process are markedly
different from normal behavior. ProvGRP, by generating information paths based on
contextual information, aids in recognizing similar behavior patterns, mitigating the impact
of deceptive techniques that alter information at various steps.

APT attacks typically change their behavior gradually to evade detection by template-
based and complex attack detection methods. However, this alteration does not significantly
impact the ProvGRP outcomes. Our approach does not require matching predefined
behavioral pattern templates, which means it does not need constant updates as attackers
change their strategies and behaviors. ProvGRP generates information paths that describe
all the paths that the information transfers pass through in the same attack instance.
These paths share similar flow patterns that describe this attack example. We identify
comparable information pathways and combine them to achieve efficient data reduction.
Thus, ProvGRP is capable of effectively handling APT attacks that frequently alter their
behavior.

8. Conclusions

Existing audit data reduction methods generally face the following two limitations:
(1) false dependencies caused by the coarse-grained nature of logs, and (2) the information
flow patterns implicit in the deep causal relationships and contextual information of system
events are not taken into account. In order to solve the above problems, this paper proposes
ProvGRP, a novel context-aware provenance graph reduction and partition approach that
partitions provenance graphs into subgraphs describing different behaviors and eliminates
redundant and behavior-unrelated events. It proposes three comprehensive features to
determine whether the system events belong to the same event, so as to realize the seg-
mentation of the provenance graph to remove the wrong dependencies. Subsequently,
it uses information paths containing rich context information to represent information
flow patterns, and removes redundant system events by identifying similar information
paths. Experimental results show that ProvGRP can effectively reduce audit data while
retaining key information of attacks. Furthermore, ProvGRP outperforms state-of-the-art
data reduction methods and reduces the runtime of attack investigation methods.

Due to the wide use of deep learning, it is possible to use deep learning models to
automatically learn information flow patterns. Therefore, exploring the use of deep learning
models to realize information path merging will be one of the future works. In addition,
we plan to explore new methods for segmenting graphs, such as analyzing the underlying
logic of audit logs to discover deeper features.

Author Contributions: Conceptualization, J.L. (Jiawei Li), R.Z. and J.L. (Jianyi Liu); Methodology, J.L.
(Jiawei Li); Software, J.L. (Jiawei Li); Validation, J.L. (Jiawei Li); Writing—original draft, J.L. (Jiawei
Li); Writing—review & editing, J.L. (Jiawei Li), R.Z. and J.L. (Jianyi Liu); Supervision, R.Z. and J.L.
(Jianyi Liu); Funding acquisition, R.Z. and J.L. (Jianyi Liu). All authors have read and agreed to the
published version of the manuscript.

Electronics 2024, 13, 100 20 of 21

Funding: This work is supported in part by the National Natural Science Foundation of China
under Grant U21B2020 and Grant U1936216, and the Fundamental Research Funds for the Central
Universities (Beijing university of posts and telecommunications) for Action Plan under Grant
2021XD-A11-3.

Data Availability Statement: The data DAPRA CADETS and ATALS supporting this paper are from
previously reported studies and datasets, which have been cited in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alsaheel, A.; Nan, Y.; Ma, S.; Yu, L.; Walkup, G.; Celik, Z.B.; Zhang, X.; Xu, D. ATLAS: A Sequence-based Learning Approach

for Attack Investigation. In Proceedings of the 30th USENIX Security Symposium, Vancouver, BC, Canada, 11–13 August 2021;
pp. 3005–3022.

2. Hassan, W.U.; Noureddine, M.A.; Datta, P.; Bates, A. OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer
Log Analysis. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February
2020.

3. Gao, P.; Xiao, X.; Li, Z.; Xu, F.; Kulkarni, S.R.; Mittal, P. AIQL: Enabling Efficient Attack Investigation from System Monitoring
Data. In Proceedings of the 2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA, USA, 11–13 July 2018;
pp. 113–126.

4. Milajerdi, S.M.; Eshete, B.; Gjomemo, R.; Venkatakrishnan, V.N. POIROT: Aligning Attack Behavior with Kernel Audit Records
for Cyber Threat Hunting. In Proceedings of the ACM Conference on Computer and Communications Security, New York, NY,
USA, 9–13 December 2019; pp. 1795–1812.

5. Kwon, Y.; Wang, F.; Wang, W.; Lee, K.H.; Lee, W.C.; Ma, S.; Zhang, X.; Xu, D.; Jha, S.; Ciocarlie, G.; et al. MCI: Modeling-based
Causality Inference in Audit Logging for Attack Investigation. In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, 18–21 February 2018; Volume 2, p. 4.

6. Zhao, J.; Yan, Q.; Liu, X.; Li, B.; Zuo, G. Cyber Threat Intelligence Modeling Based on Heterogeneous Graph Convolutional
Network. In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2020),
San Sebastian, Spain, 14–16 October 2020; pp. 241–256.

7. Milajerdi, S.M.; Gjomemo, R.; Eshete, B.; Sekar, R.; Venkatakrishnan, V.N. Holmes: Real-time apt detection through correlation of
suspicious information flows. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
19–23 May 2019.

8. Hossain, M.N.; Sheikhi, S.; Sekar, R. Combating dependence explosion in forensic analysis using alternative tag propagation
semantics. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020;
pp. 1139–1155.

9. Zhu, T.; Wang, J.; Ruan, L.; Xiong, C.; Yu, J.; Li, Y.; Chen, Y.; Lv, M.; Chen, T. General, Efficient, and Real-time Data Compaction
Strategy for APT Forensic Analysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3312–3325. [CrossRef]

10. Yang, R.; Chen, X.; Xu, H.; Cheng, Y.; Xiong, C.; Ruan, L.; Kavousi, M.; Li, Z.; Xu, L.; Chen, Y. RATScope: Recording and
Reconstructing Missing RAT Semantic Behaviors for Forensic Analysis on Windows. IEEE Trans. Dependable Secur. Comput. 2020,
19, 1621–1638. [CrossRef]

11. Lee, K.H.; Zhang, X.; Xu, D. High accuracy attack provenance via binary-based execution partition. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 24–27 February 2013.

12. Tang, Y.; Li, D.; Li, Z.; Zhang, M.; Jee, K.; Xiao, X.; Wu, Z.; Rhee, J.; Xu, F.; Li, Q. Nodemerge: Template based efficient data
reduction for big-data causality analysis. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1324–1337.

13. Xu, Z.; Wu, Z.; Li, Z.; Jee, K.; Rhee, J.; Xiao, X.; Xu, F.; Wang, H.; Jiang, G. High fidelity data reduction for big data security
dependency analyses. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24 October 2016.

14. Fei, P.; Li, Z.; Wang, Z.; Yu, X.; Li, D.; Jee, K. Seal: Storage-efficient causality analysis on enterprise logs with query-friendly
compression. In Proceedings of the USENIX Security Symposium, Online, 11–13 August 2021.

15. Michael, N.; Mink, J.; Liu, J.; Gaur, S.; Hassan, W.U.; Bates, A. On the forensic validity of approximated audit logs. In Proceedings
of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; pp. 189–202.

16. McInnes, L.; Healy, J. Accelerated Hierarchical Density Based Clustering. In Proceedings of the 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; IEEE: Piscateville, NJ, USA,
2017; pp. 33–42.

17. Blog, Y. The North Korean Kimsuky APT Keeps Threatening South Korea Evolving Its TTPs. YOROI TINXTA CYBER. 2020. Avail-
able online: https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-
its-ttps/ (accessed on 13 May 2023).

18. Hassan, W.U.; Guo, S.; Li, D.; Chen, Z.; Jee, K.; Li, Z.; Bates, A. Nodoze: Combatting threat alert fatigue with automated provenance
triage. In Proceedings of the Network and Distributed Systems Security Symposium, San Diego, CA, USA, 24–27 February 2019.

https://doi.org/10.1109/TIFS.2021.3076288
https://doi.org/10.1109/TDSC.2020.3032570
https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-its-ttps/
https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-its-ttps/

Electronics 2024, 13, 100 21 of 21

19. Hossain, M.N.; Milajerdi, S.; Wang, J.; Eshete, B.; Gjomemo, R.; Sekar, R.; Stoller, S.; Venkatakrishnan, V.N. Sleuth: Real-time
attack scenario reconstruction from cots audit data. In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada,
16–18 August 2017.

20. Liu, Y.; Zhang, M.; Li, D.; Jee, K.; Li, Z.; Wu, Z.; Rhee, J.; Mittal, P. Towards a timely causality analysis for enterprise security. In
Proceedings of the NDSS, San Diego, CA, USA, 18–21 February 2018.

21. Leland, M.; John, H.; Steve, A. How HDBSCAN Works. Available online: https://hdbscan.readthedocs.io/en/latest/how_
hdbscan_works.html (accessed on 5 July 2023).

22. Torrey, J. Transparent Computing Engagement 3 Data Release. 2020. Available online: https://github.com/darpa-i2o/
Transparent-Computing/blob/master/README-E3.md (accessed on 13 May 2023).

23. Li, J.; Zhang, R.; Liu, J.; Liu, G. LogKernel: A Threat Hunting Approach Based on Behaviour Provenance Graph and Graph Kernel
Clustering. Secur. Commun. Netw. 2022, 2022, 4577141. [CrossRef]

24. Lee, K.H.; Zhang, X.; Xu, D. Loggc: Garbage collecting audit log. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, Berlin, Germany, 4 November 2013.

25. Hossain, M.N.; Wang, J.; Weisse, O.; Sekar, R.; Genkin, D.; He, B.; Stoller, S.D.; Fang, G.; Piessens, F.; Downing, E.; et al.
Dependence-preserving data compaction for scalable forensic analysis. In Proceedings of the 27th {USENIX} Security Symposium
({USENIX} Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 1723–1740.

26. Ma, S.; Zhai, J.; Kwon, Y.; Lee, K.H.; Zhang, X.; Ciocarlie, G.; Gehani, A.; Yegneswaran, V.; Xu, D.; Jha, S. Kernel-supported
cost-effective audit logging for causality tracking. In Proceedings of the 2018 USENIX Annual Technical Conference (USENIX
ATC 18), Boston, MA, USA, 11–13 July 2018.

27. Hassan, W.U.; Aguse, L.; Aguse, N.; Bates, A.; Moyer, T. Towards scalable cluster auditing through grammatical inference
over provenance graphs. In Proceedings of the Network and Distributed Systems Security Symposium, San Diego, CA, USA,
18–21 February 2018.

28. Saračević, M.; Selimi, A.; Plojović, Š. Some specific examples of attacks on information systems and smart cities applications. In
Cybersecurity and Secure Information Systems: Challenges and Solutions in Smart Environments; Springer International Publishing:
Cham, Switzerland, 2019; pp. 205–226.

29. Hassan, W.U.; Bates, A.; Marino, D. Tactical provenance analysis for endpoint detection and response systems. In Proceedings of
the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–20 May 2020; IEEE: Piscateville, NJ, USA,
2020; pp. 1172–1189.

30. Zeng, J.; Chua, Z.L.; Chen, Y.; Ji, K.; Liang, Z.; Mao, J. Watson: Abstracting behaviors from audit logs via aggregation of
contextual semantics. In Proceedings of the 28th Annual Network and Distributed System Security Symposium, NDSS, Online,
21–25 February 2021.

31. Pei, K.; Gu, Z.; Saltaformaggio, B.; Ma, S.; Wang, F.; Zhang, Z.; Si, L.; Zhang, X.; Xu, D. Hercule: Attack story reconstruction via
community discovery on correlated log graph. In Proceedings of the 32nd Annual Conference on Computer Security Applications,
Los Angeles, CA, USA, 5–8 December 2016; pp. 583–595.

32. Shen, Y.; Mariconti, E.; Vervier, P.A.; Stringhini, G. Tiresias: Predicting security events through deep learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 592–605.

33. Shen, Y.; Stringhini, G. Attack2vec: Leveraging temporal word embeddings to understand the evolution of cyberattacks. In
Proceedings of the 28th {USENIX} Security Symposium ({USENIX} Security 19), Santa Clara, CA, USA, 14–16 August 2019;
pp. 905–921.

34. Rose, J.R.; Swann, M.; Grammatikakis, K.P.; Koufos, I.; Bendiab, G.; Shiaeles, S.; Kolokotronis, N. IDERES: Intrusion detection and
response system using machine learning and attack graphs. J. Syst. Archit. 2022, 131, 102722. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://doi.org/10.1155/2022/4577141
https://doi.org/10.1016/j.sysarc.2022.102722

	Introduction
	Background and Motivation
	Audit Logs and Provenance Analysis
	Motivating Example

	Approach Overview and Threat Model
	ProvGRP Overview
	Threat Model

	Approach Design
	Provenance Graph Construction
	Provenance Graph Partition
	Feature Definition
	Provenance Graph Partition

	Behavior-Unrelated Events Elimination

	Evaluation
	Datasets and Evaluation Metrics
	Datasets
	Evaluation Metrics

	Feature Verification
	Performance Evaluation
	Comparative Evaluation
	Attack Investigation Facilitation
	Running Time Performance

	Related Work
	Discussion
	Limitation of ProvGRP
	Security Analysis of ProvGRP

	Conclusions
	References

