
Citation: Chang, B.R.; Tsai, H.-F.;

Chang, F.-Y. Applying Advanced

Lightweight Architecture

DSGSE-Yolov5 to Rapid Chip Contour

Detection. Electronics 2024, 13, 10.

https://doi.org/10.3390/

electronics13010010

Academic Editors: Hyeonjoon Moon

and Lien Minh Dang

Received: 30 November 2023

Revised: 15 December 2023

Accepted: 16 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Applying Advanced Lightweight Architecture DSGSE-Yolov5 to
Rapid Chip Contour Detection
Bao Rong Chang 1 , Hsiu-Fen Tsai 2,* and Fu-Yang Chang 1

1 Department of Computer Science and Information Engineering, National University of Kaohsiung,
Kaohsiung 81148, Taiwan; brchang@nuk.edu.tw (B.R.C.); m1115509@mail.nuk.edu.tw (F.-Y.C.)

2 Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: sftsai@kmu.edu.tw

Abstract: Chip contour detection aims to detect damaged chips in chip slots during IC packaging and
testing using vision facilities. However, the operation speed of the new chip transportation machine
is too fast, and the current chip contour detection models, such as Yolov5, M3-Yolov5, FGHSE-Yolov5,
and GSEH-Yolov5, running on the embedded platform, Jetson Nano, cannot detect chip contours
in a timely manner. Therefore, there must be a rapid response for chip contour detection. This
paper introduces the DSGSE-Yolov5s algorithm, which can accelerate object detection and image
recognition to resolve this problem. Additionally, this study makes a performance comparison
between the different models. Compared with the traditional model Yolov5, the proposed DSGSE-
Yolov5s algorithm can significantly promote the speed of object detection by 132.17% and slightly
increase the precision by 0.85%. As a result, the proposed approach can outperform the other methods.

Keywords: Yolov5s; ghost convolution; depthwise separable convolution; object detection; image
recognition; attention mechanism

1. Introduction

IC packaging and testing often uses automated optical inspection (AOI) [1] to examine
whether the appearance of chips is defect-free. As the automatic production line delivers
chips in the fab and puts the chips into the slots for transportation, the AOI checks the
chip contours as quickly as possible to ensure that each chip has no appearance defects.
The primary purpose of chip contour detection is to detect damaged chips in chip slots
during manufacturing using vision facilities. If any damage is detected, the machine will
immediately generate a warning and mark the exact location of the damaged chip in the
chip slot. In chip packaging and testing, the devices operate at very high speeds, and chip
contour damage detection must respond quickly.

Regarding object detection technology, the YOLVO-related algorithms have the char-
acteristics of faster speed and high precision and have developed quite maturely in recent
years [2]. Therefore, our previous work [3] introduced the LWMG-Yolov5 algorithm to
detect objects quickly. Moreover, our previous article [4] delivered the FGHSE-Yolov5
and GSEH-Yolov5 algorithms to further speed up object detection by using the advanced
convolution techniques developed in an earlier paper [5]. However, the operation speed
of the new chip transportation machine in the IC packaging and testing process is much
faster than that of the old one, and the algorithms mentioned above cannot provide faster
chip contour detection. In this case, the speed of chip contour detection is more critical
than precision in AOI. Therefore, the main contribution of this study is to propose the
DSGSE-Yolov5s algorithm to boost the execution speed significantly in detecting small-scale
automotive electronic control chips used in car computers, which can resolve the speed
limitation problem to provide a rapid response to chip contour detection.

Electronics 2024, 13, 10. https://doi.org/10.3390/electronics13010010 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010010
https://doi.org/10.3390/electronics13010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0952-3591
https://orcid.org/0000-0002-7444-753X
https://doi.org/10.3390/electronics13010010
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010010?type=check_update&version=1

Electronics 2024, 13, 10 2 of 14

2. Related Work
2.1. Literature Review

Techniques for rapid object detection have involved the development of advanced
visual algorithms in the following papers in the last few years. Rajaram et al. [6] intended
to position object boxes precisely and explained restriction using a CNN model, an iterative
region-of-interest pooling fabric. In a paper concerning MobileNetV2, Sandler et al. [7]
explored the impact on convolutional neural networks with an improved residual structure
that uses inverted residuals and linear bottlenecks. Their study delivered a few ideas
for convolutional techniques, such as Ghost convolutional layers and Ghostbottleneck.
Chollet et al. [8] gave the Xception CNN architecture, which leverages depthwise separable
convolutions to replace standard convolutions, improving performance. This architectural
choice shows model enhancement by utilizing depthwise separable convolutions. In a work
on MobileNets, Howard et al. [9] developed a fabric designed for efficient and lightweight
image processing on mobile devices. This method conducts depthwise separable convolu-
tions to attain high efficiency in resource-constrained environments. Tan et al. [10] proposed
an efficient model scaling approach, introducing depthwise separable convolutions to up-
grade overall system performance. This method shows the benefit of using depthwise
separable convolutions to obtain better model scalability and efficiency. Lin et al. [11]
proposed an approach based on region segmentation search to distinguish defect contours
from edges of structures. They simulated different illumination situations to verify the
robustness of the proposed method. Zheng et al. [12] introduced a hybrid algorithm of the
R-CNN, SDD, and YOLO methods based on geometric computation and a convolutional
neural network for LED chip defect detection. The experimental results showed that this
algorithm has an average precision (AP) of 96.7% for large-scale chip detection with a low
defect rate.

On the other hand, the following articles have recently mentioned enhancing the
precision of object detection in visual algorithms. Dahai et al. [13] devised a lightweight,
improved YOLOX network with an attention mechanism (GhostC-YOLOX) in defect recog-
nition and classification for Si3N4 ceramic chip substrate surfaces with an accuracy of 96.47%;
this is better than the Faster RCNN model, with an improvement of 18.08%. Li et al. [14]
proposed a modified Yolov8s, introducing Bi-PAN-FPN to improve the missed detection
of small targets, a GhostblockV2 structure to replace some C2f modules to suppress the
loss of information, and WiseIoU loss to evaluate the overall performance of anchor boxes.
Aboah et al. [15] used few-shot learning to obtain a robust fewer-annotations Yolov8 model
for detecting real-time helmet violations with an mAP of 0.5861. Wu et al. [16] explored the
application of SqueezeDet in self-driving to improve accuracy by 6% in object detection at
0.22 s per frame with each 1242 × 375 image. Object detection using a fully convolutional
neural network (CNN) ensures prompt car control with rapid inferences, compact model
size, and energy-efficient embedded platform compatibility. In object detection, another
SqueezeDet+ model fulfilled a commendable 32.1 FPS frame rate and showed an mAP of
80.4% in precision. Chang et al. [17] modified two models of Yolov4-tiny together with
Resnet18 for self-driving control to detect objects quickly and handle the steering wheel
precisely using an NVIDIA GTX 1080Ti. In addition, Cai et al. [18] demonstrated a fabric,
Yolov4-5D, to promptly detect objects at 66 FPS, running on an NVIDIA GTX 2080Ti, where
it was able to increase precision using a real-time Yolov4 model. We successfully tested the
combination of two models to obtain 56.1 FPS and a Mean Square Error of 0.0683.

2.2. Chip Contour Detection Models

This study explored how to make the Yolo-related models perform better in appli-
cations with the Jetson Nano embedded platform [19,20]. According to the limitations
of hardware specifications for the Jetson Nano, we need a lightweight model that can
detect the chip contours quickly and precisely. Thus, the latest Yolov5 meets both needs.
Modifying the model depth and the number of kernels can downsize the Yolov5 model.
Therefore, we chose the most miniature model among the Yolov5-related models—Yolov5s.

Electronics 2024, 13, 10 3 of 14

GhostNet [21] delivered an insight into the issue of a downsized model for chip
contour detection. Our previous paper [3] showed that although the feature maps obtained
by the neural network are diversified, similar feature maps inevitably appear among all the
obtained feature maps. Similar feature maps are annotated with the same color, as shown
in Figure 1. Thus, we can produce similar feature maps using fast and easy operations with
low cost to obtain similar feature maps, instead of traditional convolution, as shown in
Figure 2. In our previous paper [3], we introduced the LWMG-Yolov5 model based on the
Yolov5 and M3-Yolov5 models, as shown in Figures 3 and 4, respectively. LWMG-Yolov5
can boost chip contour detection due to its concurrent reductions in model parameters
and computing load. However, the detection speed of this model cannot catch up with the
operation speed of the new chip transportation machine.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 15

Modifying the model depth and the number of kernels can downsize the Yolov5 model.
Therefore, we chose the most miniature model among the Yolov5-related models—
Yolov5s.

GhostNet [21] delivered an insight into the issue of a downsized model for chip con-
tour detection. Our previous paper [3] showed that although the feature maps obtained
by the neural network are diversified, similar feature maps inevitably appear among all
the obtained feature maps. Similar feature maps are annotated with the same color, as
shown in Figure 1. Thus, we can produce similar feature maps using fast and easy opera-
tions with low cost to obtain similar feature maps, instead of traditional convolution, as
shown in Figure 2. In our previous paper [3], we introduced the LWMG-Yolov5 model
based on the Yolov5 and M3-Yolov5 models, as shown in Figure 3 and Figure 4, respec-
tively. LWMG-Yolov5 can boost chip contour detection due to its concurrent reductions
in model parameters and computing load. However, the detection speed of this model
cannot catch up with the operation speed of the new chip transportation machine.

Figure 1. Many similar results in the feature maps using traditional convolution.

In our previous work [4], we added the Ghost module [3] and Ghostbottleneck [5] to
the traditional Yolov5 structure to construct the FGHSE-Yolov5 and GSEH-Yolov5 models,
as shown in Figure 5 and Figure 6, respectively. The primary goal in this case is to acquire
the features that the model can obtain initially with less calculation. The most critical tech-
nique is to reduce the number of convolution kernels used so that this also reduces the
output of feature maps using traditional convolution. In Figure 2, on an array of intrinsic
feature maps, Ghost convolution performs simple linear transformations to yield their
corresponding similar feature maps, significantly reducing the amount of calculation [21].

Figure 1. Many similar results in the feature maps using traditional convolution.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 15

Figure 2. Ordinary Ghost Module.

In our previous article [5], we applied a Ghostbottleneck comprising two Ghost mod-
ules, and its connection method is similar to that of ResNet [22]. The features are output
by performing the operation of the Ghost module twice and summing up the input fea-
tures before the process. Furthermore, another idea to improve the Yolov5 model comes
from SENet [23], given in our previous article [5]. The function of the SElayer [5] is to infer
the relationship between feature vectors so that the system can learn the importance of
features between different feature vectors.

In previous research, modifications to the network structure of Yolov5 were able to
reduce computation in feature extraction and decrease model parameters while enhanc-
ing the extraction of valuable features. The critical modules employed in this endeavor
included the Ghostbottleneck from GhostNet, the SElayer from SENet, and the network
structure inspired by MobileNet, all used to replace the traditional CSP module within
the CSPNet framework. Figures 3–6 illustrate this modification, which aims to optimize
the Yolov5 architecture for improved object detection performance.

Figure 3. Yolov5 architecture.

Figure 2. Ordinary Ghost Module.

Electronics 2024, 13, 10 4 of 14

Electronics 2023, 12, x FOR PEER REVIEW 4 of 15

Figure 2. Ordinary Ghost Module.

In our previous article [5], we applied a Ghostbottleneck comprising two Ghost mod-
ules, and its connection method is similar to that of ResNet [22]. The features are output
by performing the operation of the Ghost module twice and summing up the input fea-
tures before the process. Furthermore, another idea to improve the Yolov5 model comes
from SENet [23], given in our previous article [5]. The function of the SElayer [5] is to infer
the relationship between feature vectors so that the system can learn the importance of
features between different feature vectors.

In previous research, modifications to the network structure of Yolov5 were able to
reduce computation in feature extraction and decrease model parameters while enhanc-
ing the extraction of valuable features. The critical modules employed in this endeavor
included the Ghostbottleneck from GhostNet, the SElayer from SENet, and the network
structure inspired by MobileNet, all used to replace the traditional CSP module within
the CSPNet framework. Figures 3–6 illustrate this modification, which aims to optimize
the Yolov5 architecture for improved object detection performance.

Figure 3. Yolov5 architecture. Figure 3. Yolov5 architecture.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 15

Figure 4. M3-Yolov5 architecture.

Figure 5. FGHSE-Yolov5 architecture.

Figure 4. M3-Yolov5 architecture.

In our previous work [4], we added the Ghost module [3] and Ghostbottleneck [5] to
the traditional Yolov5 structure to construct the FGHSE-Yolov5 and GSEH-Yolov5 models,
as shown in Figures 5 and 6, respectively. The primary goal in this case is to acquire
the features that the model can obtain initially with less calculation. The most critical
technique is to reduce the number of convolution kernels used so that this also reduces the
output of feature maps using traditional convolution. In Figure 2, on an array of intrinsic

Electronics 2024, 13, 10 5 of 14

feature maps, Ghost convolution performs simple linear transformations to yield their
corresponding similar feature maps, significantly reducing the amount of calculation [21].

Electronics 2023, 12, x FOR PEER REVIEW 5 of 15

Figure 4. M3-Yolov5 architecture.

Figure 5. FGHSE-Yolov5 architecture. Figure 5. FGHSE-Yolov5 architecture.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 15

Figure 6. GSEH-Yolov5 architecture.

3. Method
The Jetson Nano is an artificial intelligence platform designed by NVIDIA for em-

bedded systems, and its computing power is quite excellent. The recognition result is out-
put after the chip contour detection has been performed on the Jetson Nano platform.
Figure 7 shows the suitability of the model based on the chip contour detection and recog-
nition results [4].

(a)

Figure 6. GSEH-Yolov5 architecture.

In our previous article [5], we applied a Ghostbottleneck comprising two Ghost
modules, and its connection method is similar to that of ResNet [22]. The features are
output by performing the operation of the Ghost module twice and summing up the input
features before the process. Furthermore, another idea to improve the Yolov5 model comes
from SENet [23], given in our previous article [5]. The function of the SElayer [5] is to infer
the relationship between feature vectors so that the system can learn the importance of
features between different feature vectors.

In previous research, modifications to the network structure of Yolov5 were able to
reduce computation in feature extraction and decrease model parameters while enhancing

Electronics 2024, 13, 10 6 of 14

the extraction of valuable features. The critical modules employed in this endeavor included
the Ghostbottleneck from GhostNet, the SElayer from SENet, and the network structure
inspired by MobileNet, all used to replace the traditional CSP module within the CSPNet
framework. Figures 3–6 illustrate this modification, which aims to optimize the Yolov5
architecture for improved object detection performance.

3. Method

The Jetson Nano is an artificial intelligence platform designed by NVIDIA for embedded
systems, and its computing power is quite excellent. The recognition result is output after the
chip contour detection has been performed on the Jetson Nano platform. Figure 7 shows the
suitability of the model based on the chip contour detection and recognition results [4].

Electronics 2023, 12, x FOR PEER REVIEW 6 of 15

Figure 6. GSEH-Yolov5 architecture.

3. Method
The Jetson Nano is an artificial intelligence platform designed by NVIDIA for em-

bedded systems, and its computing power is quite excellent. The recognition result is out-
put after the chip contour detection has been performed on the Jetson Nano platform.
Figure 7 shows the suitability of the model based on the chip contour detection and recog-
nition results [4].

(a)

Electronics 2023, 12, x FOR PEER REVIEW 7 of 15

(b)

(c)

Figure 7. Classification of chip contour detection: (a) defective status, (b) empty status, and (c) oc-
cupied status.

In our previous work [4], the GSEH-Yolov5 model replaced Bottleneck_CSP with
GhostBottleneck and added SElayer to GhostBottleneck to upgrade its precision. In addi-
tion, the FGHSE-Yolov5 model used ghost convolution (Ghost Conv) to obtain a good
execution speed. However, these models cannot handle the fast operation of new chip
transportation machines. This study aims to amend the network architecture to escalate
the execution speed while maintaining a certain level of precision. This can also cut con-
volution operations and power consumption to achieve an energy-efficient system. Ac-
cordingly, we propose an improved architecture of the FGHSE-Yolov5 model to establish
a high-performance model, abbreviated as DSGSE-Yolov5s, as shown in Figure 8. Figure
9 explains depthwise separable convolution (DS Conv) [24]. This convolution replaces tra-
ditional convolution for generating an array of intrinsic feature maps. The advantage of
DS Conv is that it can decrease the computing load and uphold execution performance
[5]. In Figure 9, we propose the Randomized Mish (RMish) [25] activation function as a
substitute for ReLU in DS Conv to enhance the system performance. Equations (1) and (2)
compute RMish, where 𝛼௝௜ is a coefficient, ℵ denotes a normal distribution, 𝜇 repre-
sents the mean, 𝜎 stands for variance, 𝜀 indicates the upper bound, 𝑎௝௜ is the input, 𝑝௝௜
denotes intermedia output, and 𝑞௝௜ signifies output.

Figure 7. Classification of chip contour detection: (a) defective status, (b) empty status, and (c) occu-
pied status.

Electronics 2024, 13, 10 7 of 14

In our previous work [4], the GSEH-Yolov5 model replaced Bottleneck_CSP with
GhostBottleneck and added SElayer to GhostBottleneck to upgrade its precision. In ad-
dition, the FGHSE-Yolov5 model used ghost convolution (Ghost Conv) to obtain a good
execution speed. However, these models cannot handle the fast operation of new chip
transportation machines. This study aims to amend the network architecture to esca-
late the execution speed while maintaining a certain level of precision. This can also cut
convolution operations and power consumption to achieve an energy-efficient system.
Accordingly, we propose an improved architecture of the FGHSE-Yolov5 model to establish
a high-performance model, abbreviated as DSGSE-Yolov5s, as shown in Figure 8. Figure 9
explains depthwise separable convolution (DS Conv) [24]. This convolution replaces tradi-
tional convolution for generating an array of intrinsic feature maps. The advantage of DS
Conv is that it can decrease the computing load and uphold execution performance [5]. In
Figure 9, we propose the Randomized Mish (RMish) [25] activation function as a substitute
for ReLU in DS Conv to enhance the system performance. Equations (1) and (2) compute
RMish, where αji is a coefficient, ℵ denotes a normal distribution, µ represents the mean,
σ stands for variance, ε indicates the upper bound, aji is the input, pji denotes intermedia
output, and qji signifies output.

pji = aji·tanh(ln(1 + eaji)), j = 1, 2, . . . , β; i = 1, 2, . . . , γ (1)

qji =

{
pji i f pji ≥ 0

αji·pji i f pji < 0 , where αji ∼ ℵ(µ, σ), µ = 0, σ ∈ [0, ε) (2)

Electronics 2023, 12, x FOR PEER REVIEW 8 of 15

Figure 8. Proposed DSGSE-Yolov5s architecture.

Figure 9. Depthwise separable convolution (DS Conv) with RMish.

𝑝௝௜ ൌ 𝑎௝௜ ∙ 𝑡𝑎𝑛ℎ൫𝑙𝑛ሺ1 ൅ 𝑒௔ೕ೔ሻ൯, 𝑗 ൌ 1, 2, … , 𝛽; 𝑖 ൌ 1, 2, … , 𝛾 (1)

𝑞௝௜ ൌ ൜ 𝑝௝௜ 𝑖𝑓 𝑝௝௜ ൒ 0𝛼௝௜ ∙ 𝑝௝௜ 𝑖𝑓 𝑝௝௜ ൏ 0 , 𝑤ℎ𝑒𝑟𝑒 𝛼௝௜~ℵሺ𝜇, 𝜎ሻ, 𝜇 ൌ 0, 𝜎 ∈ ሾ0, 𝜀ሻ (2)

Our previous work [5] demonstrated the depthwise and pointwise convolutions that
make a depthwise separable convolution (abbreviated as DS Conv). In depthwise convo-
lution, convolution filters are applied independently to each input channel, effectively
capturing spatial relationships in a picture. That is, the convolution highlights feature in-
teractions within individual channels. On the other hand, in pointwise convolution, the
intrinsic feature maps in the output channels then execute linear combinations to yield the
extra feature maps in the output channels. With relatively few parameters, this convolu-
tion can perform cross-channel combinations to give the model suitable feature represen-
tation. DS Conv uses fewer parameters in the convolution, achieving computational effi-
ciency. Technically, DS Conv, followed by a ghost convolution, can form a Depthwise
Separable Ghost Conv (DSGhost Conv), as shown in Figure 10. In Figure 10, DS Conv
produces intrinsic feature maps, and Ghost Conv generates ghost feature maps by means
of a simple linear transformation. Compared with the GSEH-Yolov5 and FGHSE-Yolov5
models, DSGSE-Yolov5s substitutes a pure Ghost Conv for a Depthwise Separable Ghost
Conv (DSGhost Conv), replaces Bottleneck_CSP with GhostBottleneck, and adds SElayer
to GhostBottleneck. With DSGhost Conv, the DSGSE-Yolov5s model can accelerate the
inference speed. Nevertheless, DSGSE-Yolov5s uses GhostBottleneck plus SElayer to up-
hold its precision.

Figure 8. Proposed DSGSE-Yolov5s architecture.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 15

Figure 8. Proposed DSGSE-Yolov5s architecture.

Figure 9. Depthwise separable convolution (DS Conv) with RMish.

𝑝௝௜ ൌ 𝑎௝௜ ∙ 𝑡𝑎𝑛ℎ൫𝑙𝑛ሺ1 ൅ 𝑒௔ೕ೔ሻ൯, 𝑗 ൌ 1, 2, … , 𝛽; 𝑖 ൌ 1, 2, … , 𝛾 (1)

𝑞௝௜ ൌ ൜ 𝑝௝௜ 𝑖𝑓 𝑝௝௜ ൒ 0𝛼௝௜ ∙ 𝑝௝௜ 𝑖𝑓 𝑝௝௜ ൏ 0 , 𝑤ℎ𝑒𝑟𝑒 𝛼௝௜~ℵሺ𝜇, 𝜎ሻ, 𝜇 ൌ 0, 𝜎 ∈ ሾ0, 𝜀ሻ (2)

Our previous work [5] demonstrated the depthwise and pointwise convolutions that
make a depthwise separable convolution (abbreviated as DS Conv). In depthwise convo-
lution, convolution filters are applied independently to each input channel, effectively
capturing spatial relationships in a picture. That is, the convolution highlights feature in-
teractions within individual channels. On the other hand, in pointwise convolution, the
intrinsic feature maps in the output channels then execute linear combinations to yield the
extra feature maps in the output channels. With relatively few parameters, this convolu-
tion can perform cross-channel combinations to give the model suitable feature represen-
tation. DS Conv uses fewer parameters in the convolution, achieving computational effi-
ciency. Technically, DS Conv, followed by a ghost convolution, can form a Depthwise
Separable Ghost Conv (DSGhost Conv), as shown in Figure 10. In Figure 10, DS Conv
produces intrinsic feature maps, and Ghost Conv generates ghost feature maps by means
of a simple linear transformation. Compared with the GSEH-Yolov5 and FGHSE-Yolov5
models, DSGSE-Yolov5s substitutes a pure Ghost Conv for a Depthwise Separable Ghost
Conv (DSGhost Conv), replaces Bottleneck_CSP with GhostBottleneck, and adds SElayer
to GhostBottleneck. With DSGhost Conv, the DSGSE-Yolov5s model can accelerate the
inference speed. Nevertheless, DSGSE-Yolov5s uses GhostBottleneck plus SElayer to up-
hold its precision.

Figure 9. Depthwise separable convolution (DS Conv) with RMish.

Our previous work [5] demonstrated the depthwise and pointwise convolutions that
make a depthwise separable convolution (abbreviated as DS Conv). In depthwise con-
volution, convolution filters are applied independently to each input channel, effectively

Electronics 2024, 13, 10 8 of 14

capturing spatial relationships in a picture. That is, the convolution highlights feature
interactions within individual channels. On the other hand, in pointwise convolution, the
intrinsic feature maps in the output channels then execute linear combinations to yield the
extra feature maps in the output channels. With relatively few parameters, this convolution
can perform cross-channel combinations to give the model suitable feature representation.
DS Conv uses fewer parameters in the convolution, achieving computational efficiency.
Technically, DS Conv, followed by a ghost convolution, can form a Depthwise Separable
Ghost Conv (DSGhost Conv), as shown in Figure 10. In Figure 10, DS Conv produces intrin-
sic feature maps, and Ghost Conv generates ghost feature maps by means of a simple linear
transformation. Compared with the GSEH-Yolov5 and FGHSE-Yolov5 models, DSGSE-
Yolov5s substitutes a pure Ghost Conv for a Depthwise Separable Ghost Conv (DSGhost
Conv), replaces Bottleneck_CSP with GhostBottleneck, and adds SElayer to GhostBottle-
neck. With DSGhost Conv, the DSGSE-Yolov5s model can accelerate the inference speed.
Nevertheless, DSGSE-Yolov5s uses GhostBottleneck plus SElayer to uphold its precision.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 15

Figure 10. DSGhost Conv.

4. Experiment Results and Discussion
A GPU workstation and Jetson Nano were used as the test environments. The speci-

fications of the GPU workstation consisted of an NVIDIA GeForce GTX 1080 Ti GPU, an
Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz CPU, 32 GB of 64-bit LPDDR4 memory (1600
MHz, 25.6 GB/s), a 256 GB SSD, and a 1 TB SATA drive. On the other hand, the specifica-
tions of the Jetson Nano comprised a GPU with NVIDIA Maxwell architecture with 128
NVIDIA CUDA® cores, a Quad-core ARM Cortex-A57 MPCore CPU, 4 GB of 64-bit
LPDDR4 memory (1600 MHz, 25.6 GB/s), and a 16 GB eMMC 5.1 storage module. The
packages LabelImg 1.8, Anaconda® Individual Edition 4.9.2, Jupyter Notebook 6.1.4, Ten-
sorFlow 2.2, TensorRT 7.2.3, PyTorch 1.6, and JetPack 4.5 were used.

In the experiment, we used Anaconda 3 to establish the run-time environment for the
Yolov5 model and collect the data. The idea was first to modify the traditional Yolov5
model, which is suitable for implementing rapid object detection, running on the Jetson
Nano embedded platform. Next, we deployed the improved Yolov5 models on the Jetson
Nano in this application. Finally, the experiment tested applications on the Jetson Nano
to examine the difference in execution speed and precision between Yolov5 and its im-
proved versions.

Initially, we labeled the data set provided by a semiconductor manufacturing com-
pany in Kaohsiung, Taiwan through LabelImg [26], as shown in Figure 1. From the video,
with 1805 frames recorded at the chip slots, we collected the data set, including training
data for 1444 images and testing data for 361 images. We captured a part of the video
frames in individual images and then manually marked the detected object boxes in parts
of the image. Each picture has eight objects, and AOI can classify them into their respective
categories as defective, empty, or occupied, as shown in Figure 7.

The experiment recorded the time required for detecting objects and calculated the
inference time needed for an image. Equation (3) calculates the average inference time
(AIT) required for a picture by the traditional and improved Yolov5 models given the same
video stream. In Equation (3), IN signifies the number of frames in the video stream, and
ITfgh denotes the time for inferring an image to complete classification. 𝐴𝐼𝑇௙௚௛ ൌ 𝐼𝑇௙௚௛𝐼𝑁 , 𝑤ℎ𝑒𝑟𝑒 𝑓 ൌ 1,2, . . . , 𝜗; 𝑔 ൌ 1,2, . . . , 𝜋; ℎ ൌ 1,2, . . . , 𝜏 (3)

Figure 10. DSGhost Conv.

4. Experiment Results and Discussion

A GPU workstation and Jetson Nano were used as the test environments. The spec-
ifications of the GPU workstation consisted of an NVIDIA GeForce GTX 1080 Ti GPU,
an Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz CPU, 32 GB of 64-bit LPDDR4 memory
(1600 MHz, 25.6 GB/s), a 256 GB SSD, and a 1 TB SATA drive. On the other hand, the
specifications of the Jetson Nano comprised a GPU with NVIDIA Maxwell architecture
with 128 NVIDIA CUDA® cores, a Quad-core ARM Cortex-A57 MPCore CPU, 4 GB of
64-bit LPDDR4 memory (1600 MHz, 25.6 GB/s), and a 16 GB eMMC 5.1 storage module.
The packages LabelImg 1.8, Anaconda® Individual Edition 4.9.2, Jupyter Notebook 6.1.4,
TensorFlow 2.2, TensorRT 7.2.3, PyTorch 1.6, and JetPack 4.5 were used.

In the experiment, we used Anaconda 3 to establish the run-time environment for the
Yolov5 model and collect the data. The idea was first to modify the traditional Yolov5 model,
which is suitable for implementing rapid object detection, running on the Jetson Nano
embedded platform. Next, we deployed the improved Yolov5 models on the Jetson Nano in
this application. Finally, the experiment tested applications on the Jetson Nano to examine
the difference in execution speed and precision between Yolov5 and its improved versions.

Initially, we labeled the data set provided by a semiconductor manufacturing company
in Kaohsiung, Taiwan through LabelImg [26], as shown in Figure 1. From the video, with
1805 frames recorded at the chip slots, we collected the data set, including training data

Electronics 2024, 13, 10 9 of 14

for 1444 images and testing data for 361 images. We captured a part of the video frames
in individual images and then manually marked the detected object boxes in parts of the
image. Each picture has eight objects, and AOI can classify them into their respective
categories as defective, empty, or occupied, as shown in Figure 7.

The experiment recorded the time required for detecting objects and calculated the
inference time needed for an image. Equation (3) calculates the average inference time
(AIT) required for a picture by the traditional and improved Yolov5 models given the same
video stream. In Equation (3), IN signifies the number of frames in the video stream, and
ITfgh denotes the time for inferring an image to complete classification.

AITf gh =
ITf gh

IN
, where f = 1, 2, . . . , ϑ; g = 1, 2, . . . , π; h = 1, 2, . . . , τ (3)

This study mainly used the number of recognized frames per second and the average
precision to evaluate the object detection performance. In chip contour detection, this study
also presents a performance evaluation executed in the Jetson Nano embedded platform.
Equation (4) calculates how many frames per second (FPS) the traditional and improved
Yolov5 models can reach for rapid object detection in AOI, where RAITfgh represents the
time required for detecting an image from the video stream. Equation (5) calculates the
mean average precision (mAP) of object detection by the traditional and improved Yolov5
models in AOI, where cfgh denotes the number of classes that the model needs to recognize,
and APcfgh indicates the respective average precision in the number of classes.

FPS f gh =
1

RAIT f gh
, where f = 1, 2, . . . , ϑ; g = 1, 2, . . . , π; h = 1, 2, . . . , τ (4)

mAPf gh =
APc f gh

c f gh
, where f = 1, 2, . . . , ϑ; g = 1, 2, . . . , π; h = 1, 2, . . . , τ (5)

This study applied the traditional and improved Yolov5 models to evaluate their
respective performance in chip contour detection. According to Equation (2), this study
used the Jetson Nano for rapid object detection at an image resolution of 480 × 640 and a
specific frame rate. According to Equation (3), we can calculate the mean average precision
of all classes obtained from the traditional and improved Yolov5 models trained with the
same data set. The trained models were constructed for chip contour detection, and Table 1
lists the model parameters and computation quantity used by the traditional and improved
Yolov5 models.

Table 1. Parameters and Flops in Chip Contour Detection.

Specification Yolov5 M3-Yolov5 FGHSE-Yolov5 GSEH-Yolov5 DSGSE-Yolov5s

Parameter 7,251,912 3,205,296 2,606,944 4,182,136 2,213,726
Flop (Gflops.) 16.8 6.0 4.6 6.9 4.3

The experiment realized operations for saving the parameters of the best-performing
model by using a callback function and visualizing the training process using a tool. In
the training phase of the DSGSE-Yolov5s model, loss curves presenting its accuracy during
training were drawn in six plots during 70 training epochs, as shown in Figure 11. In
Figure 11, the first, second, and third columns are the positioning loss, the confidence level
loss, and the matching loss between the prediction and the valid target, respectively. Next,
the first and second rows signify the training and verification losses, respectively. In the
second row, the abbreviation “val” means validation.

Electronics 2024, 13, 10 10 of 14

Electronics 2023, 12, x FOR PEER REVIEW 10 of 15

This study mainly used the number of recognized frames per second and the average
precision to evaluate the object detection performance. In chip contour detection, this
study also presents a performance evaluation executed in the Jetson Nano embedded plat-
form. Equation (4) calculates how many frames per second (FPS) the traditional and im-
proved Yolov5 models can reach for rapid object detection in AOI, where RAITfgh repre-
sents the time required for detecting an image from the video stream. Equation (5) calcu-
lates the mean average precision (mAP) of object detection by the traditional and im-
proved Yolov5 models in AOI, where cfgh denotes the number of classes that the model
needs to recognize, and APcfgh indicates the respective average precision in the number of
classes. 𝐹𝑃𝑆௙௚௛ ൌ 1𝑅𝐴𝐼𝑇௙௚௛ , 𝑤ℎ𝑒𝑟𝑒 𝑓 ൌ 1,2, . . . , 𝜗; 𝑔 ൌ 1,2, . . . , 𝜋; ℎ ൌ 1,2, . . . , 𝜏 (4)

𝑚𝐴𝑃௙௚௛ ൌ ஺௉௖೑೒೓௖೑೒೓ , 𝑤ℎ𝑒𝑟𝑒 𝑓 ൌ 1,2, . . . , 𝜗; 𝑔 ൌ 1,2, . . . , 𝜋; ℎ ൌ 1,2, . . . , 𝜏v (5)

This study applied the traditional and improved Yolov5 models to evaluate their re-
spective performance in chip contour detection. According to Equation (2), this study used
the Jetson Nano for rapid object detection at an image resolution of 480 × 640 and a specific
frame rate. According to Equation (3), we can calculate the mean average precision of all
classes obtained from the traditional and improved Yolov5 models trained with the same
data set. The trained models were constructed for chip contour detection, and Table 1 lists
the model parameters and computation quantity used by the traditional and improved
Yolov5 models.

Table 1. Parameters and Flops in Chip Contour Detection.

Specification Yolov5 M3-Yolov5 FGHSE-Yolov5 GSEH-Yolov5 DSGSE-Yolov5s
Parameter 7,251,912 3,205,296 2,606,944 4,182,136 2,213,726

Flop (Gflops.) 16.8 6.0 4.6 6.9 4.3

The experiment realized operations for saving the parameters of the best-performing
model by using a callback function and visualizing the training process using a tool. In
the training phase of the DSGSE-Yolov5s model, loss curves presenting its accuracy dur-
ing training were drawn in six plots during 70 training epochs, as shown in Figure 11. In
Figure 11, the first, second, and third columns are the positioning loss, the confidence level
loss, and the matching loss between the prediction and the valid target, respectively. Next,
the first and second rows signify the training and verification losses, respectively. In the
second row, the abbreviation “val” means validation.

(a) (b) (c)

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15

(d) (e) (f)

Figure 11. Loss plots in training DSGSE-Yolov5s. (a) Loss in box training. (b) Loss in objectness
training. (c) Loss in classification training. (d) Loss in box validation. (e) Loss in objectness valida-
tion. (f) Loss in classification validation. Each plot indicates that the x-axis represents the error
value and the y-axis stands for the number of epochs.

The trained model was tested for chip contour detection of 361 images to obtain the
frame rate and precision. The precision–recall curve, abbreviated as the PR curve, can be
used to estimate the precision of object detection during the testing phase, as shown in
Figure 12. In Figure 12, every coordinate exemplifies a particular pair of recall and preci-
sion. In Table 2, Equation (2) gives the frames per second (FPS), called the frame rate, and
Equation (3) provides the mean average precision (mAP). In summary, DSGSE-Yolov5s
obtained the best performance, and Yolov5 gave the worst-case result. What is noteworthy
about the PR curve here is how to accomplish the marginal improvement in precision. The
proposed model, DSGSE-Yolov5s, can speed up the inference significantly by using
DSGhost Conv as a substitute for traditional convolution, and it can uphold the detection
precision by using GhostBottleneck and SElayer to replace Bottleneck_CSP. In Figure 9,
we replaced ReLU with RMish in depthwise separable convolution (DS Conv) to increase
the precision slightly.

Figure 11. Loss plots in training DSGSE-Yolov5s. (a) Loss in box training. (b) Loss in objectness
training. (c) Loss in classification training. (d) Loss in box validation. (e) Loss in objectness validation.
(f) Loss in classification validation. Each plot indicates that the x-axis represents the error value and
the y-axis stands for the number of epochs.

The trained model was tested for chip contour detection of 361 images to obtain the
frame rate and precision. The precision–recall curve, abbreviated as the PR curve, can
be used to estimate the precision of object detection during the testing phase, as shown
in Figure 12. In Figure 12, every coordinate exemplifies a particular pair of recall and
precision. In Table 2, Equation (2) gives the frames per second (FPS), called the frame rate,
and Equation (3) provides the mean average precision (mAP). In summary, DSGSE-Yolov5s
obtained the best performance, and Yolov5 gave the worst-case result. What is noteworthy
about the PR curve here is how to accomplish the marginal improvement in precision.
The proposed model, DSGSE-Yolov5s, can speed up the inference significantly by using
DSGhost Conv as a substitute for traditional convolution, and it can uphold the detection
precision by using GhostBottleneck and SElayer to replace Bottleneck_CSP. In Figure 9, we
replaced ReLU with RMish in depthwise separable convolution (DS Conv) to increase the
precision slightly.

Electronics 2024, 13, 10 11 of 14

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15

Figure 12. Precision–recall curve in testing DSGSE-Yolov5s.

Table 2. FPS and Precision in Chip Contour Detection.

Metrics Yolov5 M3-Yolov5 FGHSE-Yolov5 GSEH-Yolov5 DSGSE-Yolov5s
FPS 5.75 6.46 10.13 8.47 13.39

Precision (%) 98.57 98.94 99.29 99.53 99.56
Recall (%) 98.01 98.27 98.86 99.14 99.22
F1-score 0.985 0.986 0.991 0.993 0.995

Accuracy (%) 98.91 99.13 99.33 99.51 99.55

After the chip contour detection test on the Jetson Nano, Table 2 shows the experi-
mental results. According to the performance evaluation in Table 2, the proposed ap-
proach GSEH-Yolov5s achieved the best performance and outperformed Yolov5, M3-
Yolov5, FGHSE-Yolov5, GSEH-Yolov5s, and DSGSE-Yolov5. Compared with Yolov5,
GSEH-Yolov5s has improved FPS, precision, recall, F1-score, and accuracy, increasing by
132.87%, 1.00%, 1.23%, 1.02%, and 0.65%, respectively. The primary goal of this study is
to detect damaged chips in chip slots during IC packaging and testing using on-site cam-
eras. However, the current chip contour detection models, such as Yolov5, M3-Yolov5,
FGHSE-Yolov5, and GSEH-Yolov5, running on the embedded platform, Jetson Nano, can-
not keep up with the speed of operation of the new chip transportation machine. There-
fore, this study proposed a faster object detection algorithm to respond to chip contour
detection rapidly. The resilient detection speed of GSEH-Yolov5s reached up to 13.39 FPS,
which can catch up with the operation speed of new chip transportation machines.

Improving the speed of object detection will inevitably involve changing the model’s
architecture, significantly improving it toward lightweight architecture. This paper fo-
cuses on lightweight architecture proposed to achieve high-speed object detection. The
method proposed in earlier papers [8–12] was to make the model more lightweight and
improve the speed of inference. These works are consistent with the purpose of this study,
but we can provide better performance and accelerate inference. On the other hand, the
object detection model must also consider the accuracy of image recognition. Otherwise,
loss of precision will cause unexpected failures. Therefore, in our proposed method, we

Figure 12. Precision–recall curve in testing DSGSE-Yolov5s.

Table 2. FPS and Precision in Chip Contour Detection.

Metrics Yolov5 M3-Yolov5 FGHSE-Yolov5 GSEH-Yolov5 DSGSE-Yolov5s

FPS 5.75 6.46 10.13 8.47 13.39
Precision (%) 98.57 98.94 99.29 99.53 99.56

Recall (%) 98.01 98.27 98.86 99.14 99.22
F1-score 0.985 0.986 0.991 0.993 0.995

Accuracy (%) 98.91 99.13 99.33 99.51 99.55

After the chip contour detection test on the Jetson Nano, Table 2 shows the exper-
imental results. According to the performance evaluation in Table 2, the proposed ap-
proach GSEH-Yolov5s achieved the best performance and outperformed Yolov5, M3-Yolov5,
FGHSE-Yolov5, GSEH-Yolov5s, and DSGSE-Yolov5. Compared with Yolov5, GSEH-Yolov5s
has improved FPS, precision, recall, F1-score, and accuracy, increasing by 132.87%, 1.00%,
1.23%, 1.02%, and 0.65%, respectively. The primary goal of this study is to detect damaged
chips in chip slots during IC packaging and testing using on-site cameras. However, the
current chip contour detection models, such as Yolov5, M3-Yolov5, FGHSE-Yolov5, and
GSEH-Yolov5, running on the embedded platform, Jetson Nano, cannot keep up with the
speed of operation of the new chip transportation machine. Therefore, this study proposed
a faster object detection algorithm to respond to chip contour detection rapidly. The resilient
detection speed of GSEH-Yolov5s reached up to 13.39 FPS, which can catch up with the
operation speed of new chip transportation machines.

Improving the speed of object detection will inevitably involve changing the model’s
architecture, significantly improving it toward lightweight architecture. This paper focuses
on lightweight architecture proposed to achieve high-speed object detection. The method
proposed in earlier papers [8–12] was to make the model more lightweight and improve
the speed of inference. These works are consistent with the purpose of this study, but we
can provide better performance and accelerate inference. On the other hand, the object
detection model must also consider the accuracy of image recognition. Otherwise, loss

Electronics 2024, 13, 10 12 of 14

of precision will cause unexpected failures. Therefore, in our proposed method, we also
specifically aim to maintain the accuracy of image recognition. The accuracy specifically
improved in certain architectural blocks. The purpose discussed in earlier papers [13–17] is
the same idea as our proposal to ensure the detection precision. Fortunately, the proposed
approach can maintain the detection precision above a certain level.

The following experiment estimated chip contour detection success and failure cases
to ensure that the proposed object detection and image recognition is effective and efficient.
Assuming that the chip conveying machine can send eight chip bases through the camera
in front of the conveyor per second, the video equipment can detect an image of each chip
base within 0.125 s (i.e., the retrieval time per image from a camera). The access time per
image through the model is 0.05 s. According to the FPS value of each detection model, as
listed in Table 2, we can next calculate the inference time of each model for each image. The
access time plus the inference time gives the processing time per image through the model.
Then, the retrieval time divided by the processing time calculates the success rate per image
the visual device processes. According to the accuracy, as listed in Table 2, Table 3 finally
shows the yield of chip contour detection by multiplying it and the success rate. As a result,
the proposed model DSGSE-Yolov5s obtained the best yield rate in the experiment.

Table 3. Yield in Chip Contour Detection.

Measures Yolov5 M3-Yolov5 FGHSE-Yolov5 GSEH-Yolov5 DSGSE-Yolov5s

FPS 5.75 6.46 10.13 8.47 13.39
Inference time 0.1739 0.1548 0.0987 0.1181 0.0747

Processing time 0.2239 0.2048 0.1487 0.1681 0.1247
Success Rate 0.5583 0.6104 0.8405 0.7438 1.0025
Accuracy (%) 98.91 99.13 99.33 99.51 99.55

Yield (%) 55.22 60.50 83.49 74.01 99.80

In our previous work [3], the LWMG-Yolov5 algorithm was applied to chip contour
detection to detect objects quickly. Furthermore, our previous article [4] delivered two
advanced models, FGHSE-Yolov5 and GSEH-Yolov5, to accelerate chip contour detection,
because the frame rate is more important than the precision in AOI. Furthermore, this study
proposed the DSGSE-Yolov5s model, which is better than both models in boosting the
execution speed and concurrently maintaining high precision. DSGSE-Yolov5s can escalate
the FPS by up to 32.18% and slightly increase the precision by 0.27% when compared with
FGHSE-Yolov5. Compared with GSEH-Yolov5, DSGSE-Yolov5s can promote the FPS by up
to 58.09% and slightly increase the precision by 0.03%. Therefore, the proposed approach
can achieve the acquired rate of fast AOI operations with rapid response.

In the chip packaging and testing process, the chip transportation speed of the new
machines is fast. The operation may not significantly improve the IC packaging and
testing yield rate if the AOI cannot produce high-resolution frames of live video streaming.
However, the Jetson Nano embedded platform cannot produce higher-resolution images for
real-time object detection. Dealing with this hardware limitation is a big issue. Therefore,
we must find an advanced embedded platform, e.g., the Jetson AGX Xavier, that promptly
resolves higher-resolution video streaming. On the other hand, supplying enough battery
power is requisite for a high-performance embedded platform. Thus, we need a power-
efficient embedded platform in the AOI application.

In this application, a carrier contains eight chip slots to accommodate eight small
chips for transportation. Our proposed approach can detect eight chips simultaneously.
Our proposed method can also perform AOI well for large-scale chip contour detection
applications. Still, we need a larger carrier and larger chip slots to accommodate large
chips and adjust the viewing distance of the camera for appropriate video capture. Besides
chip contour detection, the proposed approach can extend to other applications. As long as
many objects are in a picture, the classifier has to classify many objects exactly. Especially

Electronics 2024, 13, 10 13 of 14

in everyday life, many applications require object detection, such as object tracking, street
scene analysis, mask-wearing detection, gesture recognition, and obstacle detection.

5. Conclusions

This study’s main contribution is introducing DSGSE-Yolov5s to provide a rapid object
detection and image recognition response to boost AOI during IC packaging and testing.
This approach can keep up with the fast operation of the new chip transportation machines.
The experiment showed that DSGSE-Yolov5s can outperform M3-Yolov5, FGHSE-Yolov5,
and GSEH-Yolov5. As a result, DSGSE-Yolov5s achieved the best performance in chip
contour detection.

In future works, we seek a high-performance embedded platform like the Jetson AGX
Xavier to outperform the Jetson Nano and Xavier NX in running high-speed chip object
detection. On the other hand, we are still working on improving the visual algorithms to
increase the speed of object detection. In other words, we will adopt a recently developed
model, e.g., Yolov9, and use an advanced convolution method, e.g., dilated convolution,
to further speed up the inference and maintain high precision in object detection. Next,
we want to know whether this study’s results can be used to gain a better manufacturing
advantage in increasing chip yields and reducing losses in production costs during the
IC packaging and testing process. In other words, we will check each visual algorithm’s
efficiency and calculate their respective operational times, factory overheads, chip yields,
and manufacturing costs. Examining the chip yields and production costs during chip
packaging and testing would be of greater benefit in terms of annual income.

Author Contributions: B.R.C. and F.-Y.C. conceived and designed the experiments; H.-F.T. collected
the data set and proofread the manuscript; and B.R.C. wrote the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: The Ministry of Science and Technology fully supported this work in Taiwan, Republic of
China, under grant numbers NSTC 112-2622-E-390-001 and NSTC 112-2221-E-390-017.

Data Availability Statement: The Sample Programs for Sample Program.zip data used to support
the findings of this study are available at https://drive.google.com/drive/folders/1HibUtORzDRl7
taHIC0JOfiPAiobc3q95?usp=drive_link (accessed on 11 November 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, Y.L.; Chiang, Y.M.; Hsu, H.C. Capacitor Detection in PCB Using Yolo Algorithm. In Proceedings of the 2018 IEEE International

Conference on System Science and Engineering, New Taipei, Taiwan, 28–30 June 2018; pp. 1–4.
2. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019,

7, 128837–128868. [CrossRef]
3. Chang, B.R.; Tsai, H.-F.; Hsieh, C.-W. Location and Timestamp Based Chip Contour Detection Using LWMG-Yolov5. Comput. Ind.

Eng. 2023, 180, 109277. [CrossRef]
4. Chang, B.R.; Tsai, H.-F.; Chang, F.-Y. Chip Contour Detection and Recognition Based on Deep-Learning Approaches. In Proceedings

of the 2023 5th International Conference on Emerging Networks Technologies, Okinawa, Japan, 22–24 September 2023.
5. Chang, B.R.; Tsai, H.-F.; Chang, F.-Y. Boosting the Response of Object Detection and Steering Angle Prediction for Self-Driving

Control. Electronics 2023, 12, 4281. [CrossRef]
6. Rajaram, R.N.; Ohn-Bar, E.; Trivedi, M.M. Refinenet: Refining Object Detectors for Autonomous Driving. IEEE Trans. Intell. Veh.

2016, 1, 358–368. [CrossRef]
7. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

8. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017; pp. 1800–1807.

9. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

10. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

https://drive.google.com/drive/folders/1HibUtORzDRl7taHIC0JOfiPAiobc3q95?usp=drive_link
https://drive.google.com/drive/folders/1HibUtORzDRl7taHIC0JOfiPAiobc3q95?usp=drive_link
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1016/j.cie.2023.109277
https://doi.org/10.3390/electronics12204281
https://doi.org/10.1109/TIV.2017.2695896

Electronics 2024, 13, 10 14 of 14

11. Lin, B.; Wang, J.; Yang, X.; Tang, Z.; Li, X.; Duan, C.; Zhang, X. Defect contour detection of complex structural chips. Math. Probl.
Eng. 2021, 2021, 5518675. [CrossRef]

12. Zheng, P.; Lou, J.; Wan, X.; Luo, Q.; Li, Y.; Xie, L.; Zhu, Z. LED Chip Defect Detection Method Based on a Hybrid Algorithm. Int. J.
Intell. Syst. 2023, 2023, 4096164. [CrossRef]

13. Dahai, L.; Zhihui, C.; Xianqi, L.; Qi, Z.; Nanxing, W. A lightweight convolutional neural network for recognition and classification
for Si3N4 chip substrate surface defects. Ceram. Int. 2023, 49, 35608–35616. [CrossRef]

14. Li, Y.; Fan, Q.; Huang, H.; Han, Z.; Gu, Q. A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition. Drones
2023, 7, 304. [CrossRef]

15. Aboah, A.; Wang, B.; Bagci, U.; Adu-Gyamfi, Y. Real-Time Multi-Class Helmet Violation Detection Using Few-Shot Data Sampling
Technique and Yolov8. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 18–22 June 2023; pp. 5349–5357.

16. Wu, B.C.; Iandola, F.; Jin, P.H.; Keutzer, K. SqueezeDet: Unified, small, low power fully convolutional neural networks for
real-time object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 129–137.

17. Chang, B.R.; Tsai, H.F.; Chou, H.L. Accelerating the Response of Self-Driving Control by Using Rapid Object Detection and
Steering Angle Prediction. Electronics 2023, 12, 2161. [CrossRef]

18. Cai, Y.; Luan, T.; Gao, H.; Wang, H.; Chen, L.; Li, Y.; Sotelo, M.A.; Li, Z. Yolov4-5D: An effective and efficient object detector for
autonomous driving. IEEE Trans. Instrum. Meas. 2021, 70, 4503613. [CrossRef]

19. Marco, V.S.; Taylor, B.; Wang, Z.; Elkhatib, Y. Optimizing Deep Learning Inference on Embedded Systems through Adaptive
Model Selection. arXiv 2019, arXiv:1911.04946. [CrossRef]

20. Sun, Y.; Wang, C.; Qu, L. An Object Detection Network for Embedded System. In Proceedings of the 2019 IEEE International
Conferences on Ubiquitous Computing & Communications and Data Science and Computational Intelligence and Smart
Computing, Networking and Services, Shenyang, China, 21–23 October 2019; pp. 506–512.

21. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 770–778.

23. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

24. Ding, W.; Huang, Z.; Huang, Z.; Tian, L.; Wang, H.; Feng, S. Designing Efficient Accelerator of Depthwise Separable Convolutional
Neural Network on FPGA. J. Syst. Archit. 2019, 97, 278–286. [CrossRef]

25. Misra, D. Mish: A Self Regularized Non-monotonic Activation Function. arXiv 2020, arXiv:1908.08681v3.
26. Saqlain, M.; Abbas, Q.; Lee, J.Y. A Deep Convolutional Neural Network for Wafer Defect Identification on an Imbalanced Dataset

in Semiconductor Manufacturing Processes. IEEE Trans. Semicond. Manuf. 2020, 33, 436–444. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/5518675
https://doi.org/10.1155/2023/4096164
https://doi.org/10.1016/j.ceramint.2023.08.239
https://doi.org/10.3390/drones7050304
https://doi.org/10.3390/electronics12102161
https://doi.org/10.1109/TIM.2021.3065438
https://doi.org/10.1145/3371154
https://doi.org/10.1016/j.sysarc.2018.12.008
https://doi.org/10.1109/TSM.2020.2994357

	Introduction
	Related Work
	Literature Review
	Chip Contour Detection Models

	Method
	Experiment Results and Discussion
	Conclusions
	References

