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Abstract: Autonomous robotic swarms are envisioned for a variety of applications—for example,
space exploration, search and rescue, and disaster management. Important features of a robotic
swarm include its ability to share information within the network, to sense spatio-temporal processes
such as gas distributions, and to collaboratively enhance its navigation. In environments without
infrastructure, the swarm elements can cooperatively estimate their position, e.g., based on the time
of flight of exchanged radio signals. Cooperative positioning performance depends on the radio
propagation environment. Free-space path loss is commonly used for performance assessment, which
is an optimistic assumption. In this work, we investigate the limits to cooperative positioning and
ranging based on the time of flight of radio signals over the more realistic two-ray ground reflection
channel. We show that we obtain a ranging bias caused by the radio signal component reflected
from the ground, and that the ranging error becomes bias-limited. In the positioning domain, we
investigate how the ranging bias affects the cooperative positioning performance. As a result, we
gain in cooperation, but the achievable positioning performance is significantly worsened by the
ranging bias. As a conclusion, the two-ray ground reflection model should be considered to obtain
realistic cooperative positioning limits.

Keywords: ranging; robotic swarm; cooperative positioning; ground reflection model; OFDM; lower
bound; cramér-rao BOUND; Maximum Likelihood Estimation

1. Introduction

Autonomous robotic swarms are envisioned for a large variety of applications on
Earth and in space. On Earth, they can be used for search and rescue missions, disaster
management after natural or industrial disasters, and environmental monitoring [1,2]. In
space, we envision robotic swarms and scientific instruments deployed on the lunar or
Martian surface for exploration; see Figure 1 [3–6]. An important feature of a robotic swarm
is its ability to share information about its sensed environment, its current state, and the
robustness to failure of swarm elements [7,8]. For example, a robotic swarm can sense
spatio-temporal processes such as gas distributions in a distributed fashion [9]. Every
exploration of a physical phenomenon requires position information, timing information,
and communication. Infrastructure is commonly not available for, e.g., lunar exploration;
see Figure 1. GNSS (global navigation satellite system)-based positioning, and satellite or
cellular communications are not available. However, we can see the robotic swarm and
all sensors deployed as instrument packages in Figure 1 as one cooperative network [10].
Wireless communication is established by exchanging radio signals. These radio signals can
then be used for ranging: a distance estimate among all entities is obtained by estimating the
ToF (time of flight) or RTT (round trip time) of the radio signal [11,12]. Ranging estimates
are subsequently used to estimate the position of each swarm-element. We distinguish two
positioning techniques, namely non-cooperative and cooperative positioning [12,13]. In

Electronics 2023, 12, 2139. https://doi.org/10.3390/electronics12092139 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12092139
https://doi.org/10.3390/electronics12092139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9601-2887
https://orcid.org/0000-0001-7362-9406
https://orcid.org/0000-0002-7112-1833
https://orcid.org/0000-0003-4390-458X
https://doi.org/10.3390/electronics12092139
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12092139?type=check_update&version=3


Electronics 2023, 12, 2139 2 of 20

non-cooperative positioning, ranging estimates between a swarm-element and so called
anchors are used. Anchors are entities with known position, for example, the lander and
two instrument packages closely deployed to the lander; see Figure 1. In practice, not all
swarm-elements have connectivity to the anchors due to path loss or shadowing caused by
the terrain. Cooperation is the solution, where swarm-elements obtain ranging estimates.
The position of each swarm-element can then be estimated cooperatively in a centralized
or decentralized fashion [13,14].

4

Lander Instrument package

Exploring robot

Wireless links for
communication, positioning

Figure 1. Lunar robotic swarm exploration scenario with multiple robots and instrument packages
deployed on the lunar surface. All entities are connected with wireless links enabling communication,
ranging and positioning. Infrastructure for communication and radio navigation is not available.

The design of a a wireless system jointly enabling communications, ranging and po-
sitioning, is based on models for radio-propagation, methods to predict the achievable
positioning performance, and algorithms for estimation [15]. Commonly, the ranging vari-
ance and positioning error are predicted based on the CRBs (Cramér-Rao bounds) [16,17].
The CRB enables us to assess the precision of an unbiased estimator given a particular sys-
tem model [18]. For positioning, a common assumption is free-space path loss propagation
of the LoS (line-of-sight) signal between a transmitter and a receiver for an environment, as
shown in Figure 1. However, this assumption is too optimistic. Based on empirical results
from a space-analog experiment on the volcano Mt. Etna, Italy, in 2022 [19,20], we found
that our ranging estimates partly contain a negative bias. We set up the hypothesis that this
effect could be caused by the radio signal component reflected from the ground, which is
the motivation for this work.

In this work, we investigate limits on cooperative positioning for a robotic swarm
exploring the lunar surface. We especially focus on the two-ray ground reflection channel.
We investigate in detail the ranging variance and the ranging bias for this radio channel
model. From ranging domain, we move to the positioning domain and show how the
positioning performance degrades with the obtained ranging variance and ranging bias. In
addition, we show how the average positioning error improves with an increasing number
of swarm-elements in cooperative positioning, even though the ranging error is dominated
by the ranging bias. We use the free-space path loss model as reference for comparison to
existing works.

This paper is organized as follows: in Section 2, we introduce the two-ray ground
reflection channel model, the system model for ranging, the ML (maximum likelihood)
estimator and the CRB for ranging. The resulting ranging performance is presented in
Section 3. We move from ranging domain to positioning domain in Section 4, looking
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at single-swarm element positioning and cooperative positioning. Lower bounds, and
the ML positioning estimator are presented. In Section 5, we present the non-cooperative
positioning performance of a single swarm-element. Cooperative positioning performance
results are shown in Section 6. We conclude in Section 7 and provide an outlook of future
research directions in Section 8.

2. Time of Flight Ranging

In this section, we recapitulate the two-ray ground reflection channel model, and
introduce the system model for ToF-based ranging. To evaluate ranging performance in
Section 3, we introduce the ML estimator, followed by the CRB for distance estimation.

2.1. Two-Ray Ground Reflection Channel

The two-ray ground reflection channel is commonly used to model large-scale fading
in various wireless communication applications [21,22]. Figure 2 shows the geometry.
Transmitter and receiver are at height hT and hR, respectively, and separated by the hori-
zontal distance dH. The first ray is the LoS component with its distance denoted as d, with
d = dH if hT = hR. The second ray is the component reflected from the ground with its
equivalent distance drefl. Based on this geometry, the two signal components observed by
the receiver are

rLoS(t) =
λ

2πd
s
(

t− d
c0

)
e−j 2πd

λ , (1)

and

rrefl(t) = Γ(θ)
λ

2πdrefl
s
(

t− drefl
c0

)
e−j

2πdrefl
λ , (2)

with transmitted signal s(t), carrier wavelength λ, and reflection coefficient Γ(θ). We
assume unity antenna gain for all angles for both, transmitter and receiver, and specular
ground reflection only. The carrier wavelength is defined as λ = c0

fc
, with c0 as speed of

light in vacuum, and carrier frequency fc. The reflection coefficient is defined as

Γ(θ) =
sin θ − X
sin θ + X

, (3)

with an assumed vertical polarization, such that

X =

√
εg − cos2 θ

εg
. (4)

The incident angle of the reflected signal component is captured in θ, and the electrical
properties of the ground in εg. We assume specular reflection only, and discard diffraction
loss caused by surface roughness. The permittivity εg of the ground consists of two compo-
nents: the relative permittivity as the real part and the conductivity as the imaginary part.
In general, conductivity is found as so-called tangent loss in the literature and the imaginary
part of εg can be set as tangent loss multiplied by the relative permittivity. In this work, we
consider a real-valued εg only, as we assume a very low-conductive soil. Additionally, we
consider εg to be constant for the carrier frequency range under investigation.
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Figure 2. Geometry for two-ray ground reflection channel model.

With (1) and (2), we find the received signal

r(t) = rLoS(t) + rrefl(t). (5)

Both received signal components are subject to FSPL (free-space path loss) and su-
perpose constructively or destructively depending on the carrier phase. Hence, we will
observe a distance dependency of the received signal power. By considering a narrow-band
transmitted signal s(t), we can determine the total received signal power

PR(dH) = PT

(
λ

2π

)2∣∣∣∣1d + Γ(θ)
1

drefl
e−j∆φ

∣∣∣∣2, (6)

with the carrier phase difference ∆φ defined as

∆φ =
2π

λ
(drefl − d). (7)

2.2. System Model

In the following, we describe a generalized system model for ToF-based ranging
between a transmitter and receiver. We assume OFDM (orthogonal frequency-division mul-
tiplexing) modulation as a state-of-the-art modulation technique. Our qualitative results
are valid for other waveforms and our presented approach can be applied accordingly.

Our transmission model depicted in Figure 3 comprises a multi-carrier transmitter
and multi-carrier receiver based on OFDM. We assume that the transmitter and receiver are
perfectly time-synchronized to enable ToF-based ranging. In practice, one would choose
a multi-way ranging technique such as TWR (two-way ranging). We define a sampling
interval Ts as the inverse of the sampling frequency fs and describe the sampled and
transmitted OFDM symbol in time-domain as

s[n] =
1√
N

N/2−1

∑
k=−N/2

S
(

k
f
fs

)
ej2πn k

N , (8)

with n as sample index in the range n = [−C, N − 1], and k as subcarrier index. The OFDM
symbol consists of N even subcarriers with a C samples long cyclic prefix. In a practical
implementation, we need to keep guard bands at the spectrum’s edge for low-pass filtering.
Consequently, only Nu < N usable subcarriers can be allocated, yet the power of the
transmitted signal s[n] is normalized to one. We obtain the received signal with additive
Gaussian distributed white noise with zero mean and variance σ2

z represented by z[n] as

r[n] = s[n] ∗ h[n, τ] + z[n], (9)
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which is the convolution of the transmitted OFDM signal with the CIR (channel impulse
response) h[n, τ]. With (1) and (2), we can express the CIR as sum of weighted Dirac delta
functions

h[n, τ] =
2

∑
m=1

βmδm

[
n− τm

Ts

]
, (10)

with βm as complex amplitude of the LoS component with m = 1 and the reflected compo-
nent m = 2. We define propagation delays as τ = [τ1, τ2] with τ1 = d/c0 and τ2 = drefl/c0.
(10) reduces to a single-path CIR with m = 1 in the free-space path loss case without the
ground reflection component.

�̂�

T

OFDM Modulator Estimator

Radio channel ReceiverTransmitter

� � � � �

� �

ℎ �, �

Figure 3. Transmission model for OFDM based ToF ranging.

2.3. Maximum-Likelihood Estimator

We are interested in estimating d̂, for which we need to estimate τ̂1. The estimator
depicted in Figure 3, consisting of an ML estimator assuming a single-path radio channel.
As shown in [23], this ML estimator can be realized as single-tap correlation receiver,
equivalent to a DLL (delay-locked loop) in GNSS receivers. We focus on snapshot-based
estimation, where only one received OFDM symbol is used for estimation and no tracking
is applied. The ML estimator to incoherently estimate the delay τ1 = d/c0 of the LoS
component therefore corresponds to

τ̂1(r) = arg max
τ̃1

∣∣∣∣∣N−1

∑
n=0

r∗[n]s
[

n− τ̃1

Ts

]∣∣∣∣∣, (11)

assuming unknown phase offset between transmitter and receiver. The correlation length
is equivalent to the OFDM symbol length N. By using OFDM, we can shift the correlation
from the time domain into the frequency domain to avoid costly signal interpolations in
the time domain for sub-sample delay estimation. The incoherent delay estimation in the
frequency domain is

τ̂1(R) = arg max
τ̃1

∣∣∣∣∣ N/2−1

∑
k=−N/2

R[k]S∗[k]ej2πk fscτ̃1

∣∣∣∣∣. (12)

Ranging is commonly divided into two steps: an acquisition step and a fine synchro-
nization step. In the acquisition step, the correlation function in (12) is evaluated on a time
grid, which contains integer multiples of the receiver’s sampling interval Ts. This can be ef-
ficiently realized via FFT (fast Fourier transform) and IFFT (inverse fast Fourier transform).
The maximum of this coarse grid correlation function is detected and its correlation lag is
used as initialization for fine synchronization. We can see from (12) that we optimize with
respect to the strongest path only, assuming that the LoS component used for ranging is the
strongest path. The radio channel itself as defined in (10) comprises two components. As a
result, our ML estimator will be biased.

2.4. Lower Bound on Ranging Variance

In addition to the ranging estimate from (12), we are interested on lower bounding the
ranging variance. We recall a commonly known lower bound for the ranging variance, as
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we are interested in the resulting ranging precision based on the received signal power and,
hence, the SNR (signal to noise ratio) of the received signal.

One common method to quantify the precision of an unbiased estimator is the CRB. In
general, we can find the CRB for ToF-based ranging as follows

VAR{τ̂(R)} ≥ 1
8π2β2 Es

N0

, (13)

where Es/N0 represents the SNR, and β2 the so-called effective or equivalent bandwidth

β2 =

∫
f 2|S( f )|2d f∫
|S( f )|2d f

. (14)

A larger SNR and a larger equivalent bandwidth β2 result in a lower ranging variance. For
ToF-based ranging with OFDM signals, the CRB for the distance estimate states

VAR{τ̂1(R)c0} ≥ σ2
d = c0

σ2
z

8π f 2
fsc

N/2−1
∑

k=−N/2
|S(k)|2k2

, (15)

with noise variance σ2
z , OFDM subcarrier spacing ffsc = B/N, and the signal power |S(k)|2

allocated at subcarrier index k.

3. Ranging Performance Results

In the following sections, we take a detailed look at the resulting ranging performance.
We define ranging precision as the variance, ranging accuracy as the bias, and ranging
performance as the RMSE (root mean square error), respectively. Unless otherwise stated,
we use system parameters from Table 1. We assume a low-power WiFi such as OFDM
transmission system with a signal bandwidth of 20 MHz and 1 mW transmit power. At the
receiver, we do not include an additional noise figure to the thermal noise, to keep results
comparable. Furthermore, we assume a flat terrain.

Table 1. System parameters.

Parameter Value

Carrier frequency fc 5.7 GHz
Signal bandwidth B = fs 20 MHz
OFDM symbol length N 1024
Allocated subcarriers Nu 922

Cyclix prefix length C 144
Transmit power 1 mW

Receiver temperature 300 K
Polarization vertical

Transmitter antenna omnidirectional
Receiver antenna omnidirectional

Ground permittivity εg 3.5

We assume a relative ground permittivity of εg = 3.5 as a representative value for
lunar regolith and Titanium-Ilmenite [24–26]. Relative permittivity values between 2 and
6 are reported and are in a similar value range as volcanic ash and basalt rocks [25–27].
The tangent loss is very small; hence, we neglect the imaginary part of the relative ground
permittivity [24]. For comparison, an εg = 3.5 also relates to a very dry sandy soil [28]. We
also investigated how a larger εg influences our results. This investigation is beyond the
scope of this paper, but we can say that unless the εg is greatly increased, e.g., such as for
very wet soil or seawater, the results are very similar.
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3.1. Ranging Variance

Let us have a look at the first results, and for a more intuitive assessment, we depict
the ranging standard deviation σd. Figure 4 shows the ranging standard deviation over
a horizontal distance from 1 m to 10 km for a transmitter and receiver height of 0.8 m.
This low antenna height is representative of micro-rovers or instrument packages. We
apply (15) with system parameters from Table 1. The noise variance σz is determined
based on the receiver SNR for the free-space path loss and the two-ray ground reflection
case, respectively. We clearly see the linear increase in σd in the log–log domain for the
free-space path loss case. The radio signal component reflected from the ground results
in a dH-dependent received signal power variation, and thus, a variation of SNR and σd.
The red curve in Figure 4 shows this clearly. At a dH of about 150 m, we observe that the
steepness of σd is a factor of two in the log–log domain compared to one for the free-space
path loss case. This transition point is commonly called the breakpoint distance.

100 101 102 103 104

Horizontal distance dH[m]

10-4

10-2

100

102

<
d
[m

]

Free-space
Two-ray ground re.ection

Figure 4. Ranging standard deviation σd over horizontal distance dH. Transmitter height hT = 0.8 m
and receiver height hR = 0.8 m.

The received signal power—see (6)—is also dependent on the transmitter and receiver
height. Figure 5 shows the results if the transmitter height is increased from 0.8 m to 4.5 m.
The breakpoint distance increases from about 150 m to about 820 m. Furthermore, we
experience more fades and more variations in σd.

100 101 102 103 104

Horizontal distance dH[m]

10-4

10-2

100

102

<
d
[m

]

Free-space
Two-ray ground re.ection

Figure 5. Ranging standard deviation σd over horizontal distance dH. Transmitter height hT = 4.5 m
and receiver height hR = 0.8 m.

3.2. Ranging Bias

Besides the ranging variance, determined by the SNR, we are also interested in the
ranging bias, denoted as d̄. The radio channel defined in (10) consists of two signal
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components, yet the estimator in (12) assumes a single signal component only. Propagation
delay differences between the LoS component and the ground-reflected component become
very small with increasing dH, and thus are only a very small fraction of the sample length.
The used signal bandwidth from Table 1 relates to a sample length of c0/ fs ≈ 15 m. We
therefore expect that a dH-dependent ranging bias as the second signal component cannot
be resolved by the estimator, and have a closer look at some results. The investigation of
the ranging bias in this work is closely related to, e.g., the MEE (multipath error envelope)
determination in GNSS signal design. The main difference is that the relative signal
component amplitudes, phases, and delays are determined by (1) and (2). We determine
the ranging bias by applying (12) without additive white Gaussian distributed noise.

Figure 6 shows the resulting ranging bias for three selected carrier frequencies with
transmitter and receiver at a height of 0.8 m, and we observe multiple effects. Firstly, an
absolute ranging bias up to 20 cm, with a dominating negative d̄, clear dH-dependency,
and convergence to 0 for large dH. Secondly, a higher carrier frequency results in more
rapid variations along dH, and

∣∣d̄∣∣ peaks at the fading of the received signal power. Thirdly,
we see an envelope bounding the ranging bias variations, with a minimum at around
3 m. This envelope is driven by the geometry, whereas the variations are driven by the
carrier frequency. At dH ≈ 3 m we reach the Brewster angle, at which the signal component
towards the ground is absorbed. The Brewster angle is a function of the relative permittivity
εg only.

Figure 7 shows the ranging bias if we increase the transmitter height to 4.5 m, rep-
resentative for, e.g., a lander. The same effects as in Figure 6 can be observed, with two
major differences. First, the Brewster angle is at a dH of about 10 m compared to 3 m in
the previous case, due to the changed geometry. The second difference is the significantly
increased absolute value of the ranging bias.

100 101 102

Horizontal distance dH[m]

-0.4

-0.2

0

0.2

R
an

g
in

g
b
ia

s
7 d
[m

]

fc = 1:68GHz
fc = 2:45GHz
fc = 5:7GHz

Figure 6. Ranging bias d̄ over horizontal distance dH for three selected carrier frequencies fc. Trans-
mitter height hT = 0.8 m and receiver height hR = 0.8 m.

To obtain a better understanding of the influence of the carrier frequency on the
ranging bias variations, we determine d̄ for carrier frequencies from 1 GHz to 7 GHz.
Figure 8 shows the result for a transmitter and receiver antenna height of 2.5 m each. We
will use these height values in the remainder of the paper to represent a setup such as
a robot with an antenna pole. Our results provide insight how, e.g., the ranging bias
will change at a specific horizontal distance if one selects a different carrier frequency
for ranging.

3.3. Ranging RMSE

In the previous two sections, we investigated the ranging variance and ranging bias
independently and noticed that the ranging bias is generally larger than the ranging
standard deviation. As a final result for this ranging section, we calculate the ranging
RMSE over dH based on the bound on the conditional MSE (mean square error) [29].
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Figure 9 shows the ranging variance and the ranging RMSE for the system parameters in
Table 1 with a transmitter and receiver height of 2.5 m each.

100 101 102

Horizontal distance dH[m]

-0.4

-0.2

0

0.2

R
a
n
g
in

g
b
ia

s
7 d
[m

]

fc = 1:68GHz
fc = 2:45GHz
fc = 5:7GHz

Figure 7. Ranging bias d̄ over horizontal distance dH for three selected carrier frequencies fc. Trans-
mitter height hT = 4.5 m and receiver height hR = 0.8 m.

Figure 8. Ranging bias d̄ over horizontal distance dH for carrier frequencies between 1 GHz and
7 GHz. Transmitter height hT = 2.5 m and receiver height hR = 2.5 m.

We can see that up to a distance dH of 100 m, we obtain a significantly larger ranging
error compared to the unbiased case. At close distances, the RMSE is 1–2 magnitudes larger
compared to the predicted ranging standard deviation. We can obtain three important
findings from this final result. Firstly, the ranging variance obtained from the CRB, even
with the two-ray ground reflection model, is insufficient to model the ranging error ade-
quately. Secondly, a practical ranging system will be bias-limited and not noise-limited.
Thirdly, for this given geometry, increasing the transmit power, as well as increasing the
signal bandwidth does not improve the ranging error. Increasing the transmit power will
result in a lower ranging variance; however, as we are bias-limited, we will not see an
RMSE improvement—see, for example, Figure 9 for horizontal distances below 200 m. The
delay difference between the LoS component and the ground-reflected component is very
small, and thus only a very small fraction of the signal sample length. Even for a signal
bandwidth of, e.g., 200 MHz, we obtain a negligible improvement only with respect to the
ranging bias. A statement regarding an even increased signal bandwidth cannot be made in
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this work due to our narrow-band signal assumption and applied signal model. However,
as the ranging bias is heavily geometry-dependent, a slightly increased signal bandwidth
can lower the ranging bias for a different geometry. As a consequence, the ranging RMSE
comprising the ranging standard deviation and ranging bias should always be evaluated
for new geometries.

100 101 102 103 104

Horizontal distance dH[m]

10-4

10-2

100

102

<
d
;[
m

],
R

M
S
E

d
,[
m

]

<d, Free-space
<d, Two-ray ground re.ection
RMSEd, Two-ray ground re.ection

Figure 9. Ranging RMSE and standard deviation over horizontal distance dH. Transmitter height
hT = 2.5 m and receiver height hR = 2.5 m.

4. Cooperative Positioning

In this section, we move from the ranging domain to positioning domain, and look at
the lower bounds and the ML estimator. We investigate 2D (two-dimensional) positioning,
and the extension to 3D (three-dimensional) is straightforward. Let us start with the
scenario depicted in Figure 10, where we have a set of L anchors at known positions pal .
The swarm elements are located at unknown positions peq. Our goal is to estimate the
position of each swarm element based on observations of the distances between anchors
and swarm elements, as well as among swarm elements. A key element of cooperative
positioning are the ranging links among swarm elements.

3

�e1 = �e1 , �e1

�

�
Swarm element 1 Swarm element Q

�e� = �e� , �e�

Anchor 1Anchor 2

Anchor L

�a1 = �a1 , �a1�a2 = �a2 , �a2

�a� = �a� , �a� �a� ,e1

�a1 ,e1

�a2 ,e1

�a2 ,e�

�a� ,e�

�a1 ,e�

�e1 ,e�

�e� ,e1

Figure 10. Positioning of two swarm elements based on distance observations. Anchors have known
position, and ranging links among swarm elements are used for cooperative positioning.

4.1. Lower Bound on Positioning Variance

Let us recapitulate the CRB for single swarm-element positioning, as well as co-
operative positioning. We define the observed distances between anchors and swarm
elements with
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d̂al,eq = dal,eq + zal,eq =

√(
xeq − xal

)2
+
(
yeq − yal

)2
+ zal,eq, l = 1, . . . , L q = 1, . . . , Q, (16)

and among swarm elements with

d̂eq,eν = deq,eν + zeq,eν =

√(
xeν − xeq

)2
+
(
yeν − yeq

)2
+ zeq,eν, q, ν = 1, . . . , Q q 6= ν. (17)

The true distances dal,eq and deq,eν are corrupted by real valued additive white Gaussian
noise zal,eq and zeq,eν, respectively. The noise variables have zero mean and variances

E
{

z2
al,eq

}
= σ2

dal,eq
and E

{
z2

eq,eν

}
= σ2

deq,eν
. Based on (15), we can determine the value for

the ranging variance.

4.1.1. Non-Cooperative Positioning

We start with single swarm-element positioning and expand to multi swarm-element
positioning without cooperation. This provides the basis to extend the cooperative case in
the next subsection.

We wish to estimate the coordinates of swarm element 1, pe1 = [xe1, ye1]
T, with K = 2

unknown parameters and L distance observations. The CRB is defined as the inverse of the
FIM (Fisher information matrix)

CRB(α) = F(α)−1, (18)

with α = pe1 = [xe1, ye1]
T for our single swarm-element, 2D positioning case. We can

express the FIM with the Jacobian matrix Jd(α) as

F(α) = Jd(α)
Tdiag

(
σ2

da1,e1
, σ2

da2,e1
, . . . , σ2

daL,e1

)
Jd(α). (19)

The Jacobian matrix contains the partial derivatives of dal,e1 with respect to our K unknown
parameters, defined as

Jd(α) =


∂

∂α1
da1,e1

∂
∂α2

da1,e1 . . . ∂
∂αK

da1,e1
∂

∂α1
da2,e1

∂
∂α2

da2,e1 . . . ∂
∂αK

da2,e1
...

...
. . .

...
∂

∂α1
daL,e1

∂
∂α2

daL,e1 . . . ∂
∂αK

daL,e1

, (20)

and has the size L× K. In our example, for 2D positioning with K = 2 and α = pe1 =

[xe1, ye1]
T, we can determine the Jacobian matrix

Jd(α) = Jd(xe1, ye1) =


∂

∂xe1
da1,e1

∂
∂ye1

da1,e1
∂

∂xe1
da2,e1

∂
∂ye1

da2,e1
...

...
∂

∂xe1
daL,e1

∂
∂ye1

daL,e1

, (21)

where the partial derivatives are the components of the gradient

∇dal,e1 =
(

∂
∂xe1

dal,e1
∂

∂ye1
dal,e1

)
=
(

xe1−xal
dal,e1

ye1−yal
dal,e1

)
. (22)
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We now extend the positioning problem to two swarm elements. In the absence of
distance observations among swarm elements, we can define the Jacobian matrix for our
2D scenario as

Jd(xe1, ye1, xe2, ye2) =



∂
∂xe1

da1,e1
∂

∂ye1
da1,e1

∂
∂xe1

da2,e1
∂

∂ye1
da2,e1

...
...

∂
∂xe1

daL,e1
∂

∂ye1
daL,e1

0

0

∂
∂xe2

da1,e2
∂

∂ye2
da1,e2

∂
∂xe2

da2,e2
∂

∂ye2
da2,e2

...
...

∂
∂xe2

daL,e2
∂

∂ye2
daL,e2


. (23)

The resulting Jacobian matrix has a block diagonal structure, and additional swarm el-
ements can be added by extending the diagonal structure. Due to the block diagonal
structure of the Jacobian matrix, the FIM is block diagonal as well, where each block is
related to one swarm element. As a result, the CRB can be calculated by inverting the
diagonal blocks of the FIM separately. This also means that we have no coupling for the
estimation of each swarm element’s state. The ranging variances required to calculate the
FIM, as in (19) are defined as

diag
(

σ2
da1,e1

, σ2
da2,e1

, . . . , σ2
daL,e1

, σ2
da1,e2

, σ2
da2,e2

, . . . , σ2
daL,e2

)
. (24)

4.1.2. Cooperative Positioning

For cooperative positioning, we additionally include distance observations among
swarm elements—see (17)—and keep our scenario with the two swarm-elements. We can
extend the Jacobian matrix (23) with the gradients of the inter-swarm-element distance
observations

∇deq,eν =
(

∂
∂xeν

deq,eν
∂

∂yeν
deq,eν

∂
∂xeq

deq,eν
∂

∂yeq
deq,eν

)
=
(

xeν−xeq
deq,eν

yeν−yeq
deq,eν

xeq−xeν

deq,eν

yeq−yeν

deq,eν

) . (25)

These gradients add additional rows to (23) and the Jacobian matrix becomes

Jd(xe1, ye1, xe2, ye2) =



∂
∂xe1

da1,e1
∂

∂ye1
da1,e1

∂
∂xe1

da2,e1
∂

∂ye1
da2,e1

...
...

∂
∂xe1

daL,e1
∂

∂ye1
daL,e1

0

0

∂
∂xe2

da1,e2
∂

∂ye2
da1,e2

∂
∂xe2

da2,e2
∂

∂ye2
da2,e2

...
...

∂
∂xe2

daL,e2
∂

∂ye2
daL,e2

∂
∂xe1

de1,e2
∂

∂ye1
de1,e2

∂
∂xe1

de2,e1
∂

∂ye1
de2,e1

∂
∂xe2

de1,e2
∂

∂ye2
de1,e2

∂
∂xe2

de2,e1
∂

∂ye2
de2,e1



. (26)

To calculate the FIM from (19), we also need to provide ranging variances and we extend (24)
with the ranging variances of the link between the two swarm elements to

diag
(

σ2
da1,e1

, σ2
da2,e1

, . . . , σ2
daL,e1

, σ2
da1,e2

, σ2
da2,e2

, . . . , σ2
daL,e2

, σ2
de1,e2

, σ2
de2,e1

)
. (27)
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Equations (25)–(27) can be generalized for an arbitrary number of swarm elements.

4.2. Maximum-Likelihood Position Estimation

In the previous subsections, we derived the CRB for 2D positioning, which provides
us a lower bound on the positioning variance, assuming an unbiased estimator. In practice,
we need to find an appropriate estimator, and in this work we focus on ML estimation,
which we will recapitulate in the following.

As for Section 4, we start with single swarm-element non-cooperative positioning,
and extend to two swarm-element cooperative positioning. For single swarm-element ML
position estimation, we collect L observations d̂al,e1 in a vector d̂. Since we assume additive
white Gaussian distributed noise, as in (16), the noise samples are statistically independent.
Therefore, we can express the likelihood function

p
(

d̂|pe1

)
=

L

∏
l=1

p
(

d̂al,e1|pe1

)
=

L

∏
l=1

(
2πσ2

dal,e1

)− 1
2 exp

−
(

d̂al,e1 − dal,e1

)2

2σ2
dal,e1

, (28)

and finding the maximum of the log likelihood function results in

p̂e1 = [x̂e1, ŷe1] = arg max
p̃e1

ln p
(

d̂|p̃e1

)

= arg min
(x̃e1,x̃e1)

L

∑
l=1

(
d̂al,e1 −

√
(x̃e1 − xal)

2 + (ỹe1 − yal)
2
)2

σ2
dal,e1

.

(29)

For the non-cooperative multi swarm-element positioning case, we can estimate (29) for
each swarm element independently as their estimation is not coupled; see also (23). We
can extend (29) for the cooperative positioning case with two swarm-elements and find the
estimator to be

[p̂e1, p̂e2] = [x̂e1, ŷe1, x̂e2, ŷe2]

= arg min
x̃e1,ỹe1,x̃e2,ỹe2

L

∑
l=1

Q=2

∑
q=1

(
d̂al,eq − d̃al,eq

)2

σ2
dal,eq

+
Q=2

∑
q,ν=1,q 6=ν

(
d̂eq,eν − d̃eq,eν

)2

σ2
deq,eν

.
(30)

In order to estimate the swarm element’s positions based on (30), we need to select an
appropriate optimizing method. We use the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
quasi-Newton algorithm for single-swarm-element position estimation. The same algo-
rithm can be applied for cooperative positioning, but it slowly converges for a larger
number of swarm-elements. Thus, we use the Levenberg–Marquardt algorithm and the
Jacobian from (26) to estimate each swarm-element’s position.

5. Non-Cooperative Positioning Performance

We evaluate the non-cooperative positioning performance with the following scenario.
We assume three anchor nodes with known position—see the triangle markers in Figure 11—
and a single swarm element. Anchor positions resemble a space-analog setup, where, e.g., a
lander and two deployed sensor boxes close the lander and define the coordinate frame. We
use the system model parameters defined in Table 1 and a transmitter and receiver height
of 2.5 m.

Let us look at the positioning error based on the CRB from (18) with the ranging
variance determined by the CRB from (15) with the free-space path loss model. The CRB
defined in (18) is the lower bound on the variance for x̂e1 and ŷe1. The positioning error is,
therefore, calculated as

√
tr{CRB} from (18). Figure 11 shows the result for the defined

exploration area. We chose the geometry of the area such that we can investigate the
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positioning error close to the anchors, and further away where the geometry becomes
unfavorable for precise positioning. Due to the free-space path loss assumption, we
observe a smoothly increasing positioning error at a larger distance from the anchors. The
positioning error reaches about 2 m at a distance of 300 m from the origin based on our
system parameters.

Figure 11. Positioning error of a single swarm element based on the CRB with free-space path loss
model. Black triangles show the anchor node positions and contour lines are plotted for every 0.5 m.

The positioning error significantly increases with the two-ray ground reflection model
for the ranging variance. Figure 12 shows the result, again based on the CRB. We can
see rapid spatial variations in the positioning error and the maximum error reaches ap-
prox. 13 m. The significantly increased positioning error at distances of around 230 m and
115 m result from the SNR drop at the receiver, leading to an increased ranging variance.
See Figure 9 at similar horizontal distances for comparison.

Figure 12. Positioning error of a single swarm element based on the CRB with two-ray ground
reflection model. Black triangles show the anchor node positions, and contour lines are plotted for
every 0.5 m. The positioning error significantly increases and shows rapid spatial variations. The
color coding is saturated at 2 m, and errors of up to 13 m are reached.
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We now move from a CRB-based positioning variance prediction to an ML-based
estimation defined in (29) and the evaluation of the positioning RMSE. First, we evaluated
the correctness of the our ML estimation without ranging bias by comparing the resulting
positioning RMSE with the CRB. In order to calculate the RMSE for each position, we use
1000 Monte-Carlo runs. For the final evaluation, we take the ranging bias d̄ from Section 3.2
into account. The distance estimate for the ML position estimator becomes

d̂al,e1 = dal,e1 + d̄al,e1 + zal,e1, (31)

with d̄al,e1 as ranging bias, and the noise term zal,e1. The ranging variance σ2
dal,e1

required
for (29) is determined by (15) with the two-ray ground reflection model. At this point, we
have to make clear that a model mismatch exists, as the weighting of distance estimates in
the log-likelihood is solely based on the ranging variance. However, we are particularly
interested in the resulting positioning RMSE, as a practically implemented positioning
estimator is not aware of the ranging bias. The ranging variance can be determined by the
SNR of the received signal. Figure 13 shows the final result. If we compare this result with
Figure 12, we clearly see an increased positioning error in particular at smaller distances.
At larger distances, we only see a minor increase in positioning error. This is expected as
the ranging RMSE is dominated by the ranging bias for most distances; see Figure 9.

Figure 13. Positioning error of a single swarm element based on ML estimation with the ranging
bias and ranging variance determined by the two-ray ground reflection model. Black triangles show
the anchor node positions and contour lines are plotted every 0.5 m. For visual clarity, we removed
contour labels and the color-coding is saturated at 2 m.

Based on the final result in Figure 13, we obtain the following three main conclusions.
Firstly, the predicted positioning error is significantly larger with the two-ray ground
reflection model, compared to the too-optimistic free-space path loss model. Secondly, the
positioning CRB with the two-ray ground reflection model can provide insights as to which
locations in the exploration area we cause us to experience an increased positioning error.
Thirdly, if we assume a certain robot trajectory through the exploration area, the robot will
experience a rapidly changing positioning error along the trajectory. This is in particular of
interest for tracking applications, as, in this work, we focus on snapshot-based estimation.

6. Cooperative Positioning Performance

We now extend the scenario from non-cooperative positioning to cooperative posi-
tioning. We chose an identical setup as before, randomly place Q swarm elements in the
defined area, calculate the cooperative positioning CRB, and estimate the swarm elements’
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positions. For ML estimation, we use 1000 realizations for each of the 104 randomly selected
swarm-element positions. To evaluate the resulting overall positioning performance, we
determine the CDF (cumulative distribution function) of the positioning RMSEs of all
swarm elements.

Figure 14 shows the CDF of the positioning error for Q = 10 swarm-elements. The
result, based on the CRB with the FSPL model, provides the reference. We can see that the
estimator approaches the result obtained by the CRB; see the solid blue line. Interestingly,
we obtain a lower positioning error based on the CRB with the two-ray ground reflection
model. We identified this to be caused by the increased SNR due to the constructive
superposition of the LoS signal component and the ground-reflected signal component.
For example, in Figure 9 we see the peaks in increased ranging variance followed by a
decreased ranging variance over the horizontal distance dH. The value range of dH with
a smaller ranging variance is larger compared to the one for larger ranging variances. In
this unbiased case, the two-ray ground reflection model, on average, is even beneficial for
cooperative positioning. However, we also have to take the ranging bias d̄ into account and
we model the distance estimate as input for the positioning estimator with (31) and with

d̂eq,eν = deq,eν + d̄eq,eν + zeq,eν. (32)

The orange curve in Figure 14 shows the result of the estimator with the ranging bias, and
the ranging variance determined by the two-ray ground reflection model. The positioning
error is significantly increased: from 18 cm to 83 cm for the 90th percentile.

0 0.25 0.5 0.75 1 1.25 1.5
Positioning error [m]

0

0.2

0.4

0.6
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CRB, free-space
Estimator, free-space
CRB, two-ray model
Estimator, two-ray model
Estimator, two-ray model + 7d

Figure 14. CDF of the positioning error for Q = 10 swarm-elements. The CRB with free-space path
loss provides the reference. The estimator approaches the CRB, and we see a significantly increased
positioning error with the two-ray ground-reflection model and included ranging bias d̄.

Next, we look at how the positioning error obtained from the estimator with the
two-ray ground reflection model and ranging bias improves with an increasing number
of swarm-elements Q. Figure 15 shows the CDF curve of the resulting positioning error.
In the single-swarm-element scenario, we see a large positioning error; see also Figure 13.
Adding a second swarm element for cooperative positioning reduces the overall positioning
error significantly, as well as for Q = 5 swarm elements. Increasing the number of
swarm elements even more improves the positioning error, as expected [17]. However, the
improvement becomes minor, even though we assume a fully meshed network. This results
from the ranging bias, which is not zero-mean, and thus does not spatially average out.

Figure 16 shows the 90th percentile of the CDFs from Figure 15, with results from the
estimator. The resulting 90th percentiles over Q more clearly show the gain obtained by
cooperative positioning with multiple swarm elements. For all three models, the error is
steadily decreasing. We are particularly interested in the positioning error with the two-ray
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ground reflection model with ranging bias d̄. The 90th percentile reduces from > 3 m for
Q = 1 to 0.9 m for Q = 5. Beyond the five swarm elements, the 90th percentile decrease
is small.
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Figure 15. CDF of the positioning error for an increasing number of Q swarm-elements. As expected,
we see an improvement for increasing Q, but it becomes small beyond five swarm-elements.
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Figure 16. 90th percentile of the positioning error over the number of swarm elements Q. An
increasing number of Q results in a lower positioning error in general. However, for the two-ray
ground reflection model with ranging bias d̄, the error decrease becomes small for Q > 5.

Based on the results in this section, we can conclude with three important findings.
Firstly, the overall positioning error with ranging variance and ranging bias determined
by the two-ray ground reflection model is significantly larger compared to using the too-
optimistic FSPL model. Secondly, an increasing number of swarm elements, cooperatively
estimating their positions, improves the positioning performance. Thirdly, we do not
necessarily need a large number of swarm elements to obtain an improved positioning
performance compared to a single swarm element positioning: in our scenario, five swarm
elements are sufficient. An even larger number of swarm elements does not improve the
positioning error too much, as we are ranging-bias-limited. However, this is only strictly
valid for our defined area, antenna heights, and the fully meshed network assumption. For
larger areas with less well-connected swarm elements, and different antenna heights, a
higher number of swarm elements will certainly improve the positioning performance.



Electronics 2023, 12, 2139 18 of 20

7. Conclusions

In this work, we investigated the impact of a two-ray ground reflection model for
ranging error determination on the cooperative positioning performance. In particular,
we investigated the resulting ranging bias caused by the superposition of the LoS signal
component and the signal component reflected from the ground. Based on the presented
results, we draw the following conclusions. In general, the FSPL model is too optimistic to
adequately assess the cooperative positioning performance. The two-ray ground reflection
model without ranging bias determination provides a better assessment. However, the
ranging RMSE is mostly dominated by the ranging bias and not the ranging variance. Thus,
the ranging bias must be considered for a realistic performance assessment. Increasing
the signal bandwidth and transmit power for ranging does not necessarily improve the
ranging RMSE. The antenna heights are important, as the overall geometry has a significant
influence on the fractional delay with respect to the signal sample length. Similar to existing
works, we observe, on average, a lower positioning error for cooperative positioning with
an increasing number of swarm elements. However, as the ranging bias is a limiting
factor for large swarms, we do not see the same improvement as the simplistic FSPL
model assumption. The positioning error shows spatially rapid variations with the two-ray
ground reflection model for ranging. As a consequence, a position tracking algorithm must
be properly designed to take this into account. Finally, resulting ranging biases and ranging
variances are sensitive to the selected carrier frequency and relative geometry. The value of
relative ground permittivity for a generally dry soil is less important.

8. Outlook

The investigations presented in this work stimulated many discussions among the
authors, and the results provide the first insights and a fundamental base. As a next step,
we will investigate different polarizations, such as horizontal and circular polarized radio
waves. In addition, we assume that a fully meshed network ranging down to very low
SNR values is possible. In practice, ranging requires communication as well; thus, the SNR
must be high enough for correct decoding. This will result in a SNR threshold behaviour
for a real OFDM receiver. Finally, terrain data representative of the lunar or Martian surface
should be included.
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Abbreviations
The following abbreviations are used in this manuscript:
2D two-dimensional.
3D three-dimensional.

BFGS Broyden–Fletcher–Goldfarb–Shanno.

CDF cumulative distribution function.
CIR channel impulse response.
CRB Cramér-Rao bound.

DLL delay-locked loop.

FFT fast Fourier transform.
FIM Fisher information matrix.
FSPL free-space path loss.
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GNSS global navigation satellite system.

IFFT inverse fast Fourier transform.

LoS line-of-sight.

MEE multipath error envelope.
ML maximum likelihood.
MSE mean square error.

OFDM orthogonal frequency-division multiplexing.

RMSE root mean square error.
RTT round trip time.

SNR signal to noise ratio.

ToF time of flight.
TWR two-way ranging.
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