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Abstract: Multi-robot systems have been used in many fields by utilizing parallel working robots to
perform missions by allocating tasks and cooperating. For task planning, multi-robot systems need to
solve complex problems that simultaneously consider the movement of the robots and the influence of
each robot. For this purpose, researchers have proposed various methods for modeling and planning
multi-robot missions. In particular, some approaches have been presented for high-level task planning
by introducing semantic knowledge, such as relationships and domain rules, for environmental
factors. This paper proposes a semantic knowledge-based hierarchical planning approach for multi-
robot systems. We extend the semantic knowledge by considering the influence and interaction
between environmental elements in multi-robot systems. Relationship knowledge represents the
space occupancy of each environmental element and the possession of objects. Additionally, the
knowledge property is defined to express the hierarchical information of each space. Based on the
suggested semantic knowledge, the task planner utilizes spatial hierarchy knowledge to group the
robots and generate optimal task plans for each group. With this approach, our method efficiently
plans complex missions while handling overlap and deadlock problems among the robots. The
experiments verified the feasibility of the suggested semantic knowledge and demonstrated that the
task planner could reduce the planning time in simulation environments.

Keywords: multi-robot system; semantic navigation; hierarchical planning; semantic knowledge; robotics

1. Introduction

In recent years, significant advancements in robotics have led to increasing robot
applications in various fields, such as manufacturing and service industries. Robots are
being used to replace human workers in many industries because they can operate continu-
ously and require a lower cost than labor. As the use of robots grows, the use of multiple
robots together is also increasingly in focus. The multi-robot system has the advantage
of controlling each robot in parallel, thus performing more complex tasks than a single
robot [1]. In addition, when a specific robot has a failure during a mission, another robot
can be replaced to perform the task [2]. With these advantages, multi-robot systems are
being utilized for various missions, such as delivery, guidance, and security [3–5]. However,
because multi-robot systems need to consider not only the driving area and obstacles but
also the paths of all robots, there have been numerous kinds of research for multi-robot
systems, such as collision avoidance and path planning [6–8].

For a multi-robot system to successfully carry out its mission, it requires detailed
knowledge about its operating environment. Most multi-robot systems operate in environ-
ments shared with humans, and robots need semantic knowledge to interact with these
environments in a human-like manner. This semantic knowledge encompasses information
about concepts, properties, purposes, and relationships acquired through perception and
judgment. For example, humans recognize traffic signals on the road, cross the crosswalk,
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and also wait to use the elevator. Similarly, robots need to utilize semantic information,
such as the connections, rules, and properties of the place, and utilize them to plan their
missions. If not, the robot in the previous example could cause many problems, such as
trespassing on the road without permission or planning the wrong path. Thus, several
studies have been proposed to integrate semantic knowledge, such as the geometric posi-
tion relationships of environmental elements and special rules for places and behaviors,
into a robot’s map [9–11].

Semantic maps allow robots to understand their environment in detail based on
much information, such as knowledge of environmental elements and their relationships.
Planning robotic missions with heavy semantic maps that contain a huge amount of
information requires an efficient modeling approach. One method that has been applied
to overcome this complexity is the Hierarchical Task Network (HTN) [12]. The HTN is an
approach to effectively representing problems by dividing complex tasks into simplified
tasks and has been applied in various methods to solve complex problems [13]. It can
be used for robotic missions that require a high level of knowledge and reasoning with
semantic knowledge [14]. The constraint model is also helpful for modeling tasks in
complex domains. The constraint model defines the execution and finish conditions for a
task to explore the changing state performing the task and generates a plan to complete
the final goal. This study uses the HTN and the constraint model to define the multi-
robot tasks with semantic knowledge. Hierarchical task structures are usually separated
by the scale of the task, such as the mission, task, behavior, and action. However, our
proposed approach separates the task layer into more detailed layers based on hierarchical
relationship information in space. In addition, semantic knowledge such as occupancy and
possession are integrated as constraints when modeling unit tasks at each hierarchical layer
to represent multi-robot high-level tasks.

Several studies proposed using semantic knowledge to perform high-level tasks in
indoor and outdoor environments [15,16]. These studies used semantic knowledge to
define the task in detail and predict potential problems. As an extension, some studies
that utilize semantic knowledge for multi-robot systems with a detailed description of the
unique environment were proposed. Joo et al. [17] planned missions by defining semantic
information about the time of opening and closing doors, the relationship of places, and
the robot’s capabilities in an indoor and outdoor environment. This method selected
an adequate robot to perform a mission based on semantic knowledge and performed a
high-level task plan using environmental elements, such as elevators and automatic doors.
This study planned missions in an environment with multiple robots but did not consider
the situations in which the robots operated in parallel. In another study, Moon et al. [18]
performed a cooperative task for multiple AUVs and AGVs based on semantic knowledge.
This method used semantic knowledge of objects and geometric relationships to understand
the driving environment better and determine the mission failure situation by obstacles
existing in the driving area. However, their method did not consider the influence of
multiple robots on each other when planning missions. Task planners in multi-robot
systems need to consider traffic problems, such as collisions and deadlocks between robots,
when planning missions. To accomplish this, we extend semantic information that considers
all the objects in the environment.

This paper proposes a task planner that utilizes semantic knowledge to plan multi-
robot tasks quickly. Based on the semantic navigation framework [17], we extend the
semantic knowledge and planning structure by considering the relationship knowledge
between environmental elements in the multi-robot system. The hierarchical task planner
utilizes layered spatial knowledge and a multi-level task model to plan complex multi-robot
missions efficiently. We also introduce the re-planning approach for multi-robot mission
failure based on the task planning structure. Simulation experiments were conducted to
verify the improved performance of the proposed method over the previous method [17].
The experiments consisted of three parts: First, the failure-free driving of multiple robots
by the proposed semantic knowledge was observed, and second, the time taken on task
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planning was measured. Finally, the re-planning time for mission failure situations was
calculated. By comparing the experimental results, we validated the feasibility of the
proposed semantic knowledge and verified the performance of multi-robot task planning
and re-planning.

This paper is organized as follows: Section 2 compares studies related to the proposed
research. Section 3 presents the extended knowledge and methods for multi-robot task
planning and re-planning. Section 4 analyzes the suitability of our proposed approach
through the experimental results. Finally, Section 5 summarizes the literature and discusses
various implications and future work.

2. Related Work

Among the multi-robot task planning approaches, some methods have been proposed
to generate the sequence of tasks to achieve the goal based on the constraints of each task
and the system’s state. Table 1 compares different constraint-based robot task planning
methods. It represents the approach of the planning and modeling information for each
robotic system.

Table 1. Comparison for constraints-based task planning approaches.

Name System
Task Planner Semantic Constraint Modeling

Planning Hierarchical Property and
Method Structure Re-Planning Relationship Duplication

Hwang et al. [19] Multi CCBBA O X - -
Thomas et al. [20] Multi POPF O X - -
Schillinger et al. [21] Multi LTL O X - -
Buehler et al. [22] Multi TFD X X

√
-

Galindo et al. [23] Single Metric-FF X X - -
OMRKF [24] Single ABPLAN O X

√
-

Joo et al. [25] Single POPF O X - -
Hanheide et al. [26] Multi POMDP X X

√
-

Moon et al. [18] Multi POPF X X
√

-
TOSMNav [17] Multi POPF O O

√
-

Our Multi POPF O O
√ √

O: condition satisfied, X: condition unsatisfied, - : not considered,
√

: considered

Most methods do not consider re-planning to handle problematic situations during
the robot’s task planning. Semantic knowledge, such as the property and relationship of
objects and places, is used for constraint modeling. However, no study has utilized the
knowledge of duplication for the multi-robot system. We explain the mentioned papers
and our proposed method in detail for further understanding.

Hwang et al. proceeded with multi-robot task planning based on the constraint table
and ordering rules for robot task planning [19]. In another way, Schillinger et al. proposed
the algorithm for cooperative task planning by considering time constraints within defined
rules [21]. In the multi-robot domain represented by constraints, it has also been proposed
to use a classical planner to generate a task plan. Classical planners plan a robot’s mission
by exploring state changes to achieve a goal based on a defined working environment,
robot task, and state. To represent various information, such as the initial state, goals, tasks,
and constraints, the Planning Domain Definition Language (PDDL) [27] is used. PDDL
is a standard language that supports several functions suitable for planning problems. It
has been used in many different ways to represent multi-robot domains. Thomas et al.
introduced a PDDL-based multi-robot cooperative navigation approach for TMP under
motion and sensing uncertainty. A task–motion interaction is facilitated by means of
semantic attachments that return motion costs to the task planner [20]. Buehler et al.
defined the capabilities of robots and the tasks in PDDL for implementing parallel tasks
among agents in a heterogeneous multi-robot system [22].
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Adopting semantic knowledge has enabled robots to understand rules and knowledge
to enable high-level tasks. Several studies have proposed utilizing ontology-based knowl-
edge to represent robotic domains in various environments. Galindo et al. introduced
the method to organize domains based on semantic knowledge to provide robots with a
higher level of autonomy and intelligence [23]. They defined a semantic map integrating
hierarchical spatial information and semantic knowledge to represent the ontology-based
relationship knowledge of objects and places in indoor environments. Suh et al. proposed
the Ontology-based Multi-layered Robot Knowledge Framework (OMRKF), which rep-
resents the robot domain as multiple layers of four knowledge classes: model, context,
perception, and activity [24]. They represented each element in the multiple layers based on
ontology and integrated robot knowledge with information, such as sensor data, primitive
behaviors, and contextual information, through rule reasoning to realize an efficient deliv-
ery mission for robots. Joo et al. proposed the robot framework that introduced semantic
knowledge to enable human-like behavior [25]. The framework built a semantic model of
the environment to represent the semantic knowledge-based environment database and
integrated it into the robot’s perception and navigation modules. They used semantic
knowledge-based environment information to perform object detection, localization, and
inferred relationship knowledge for the robot. The inferred semantic knowledge was
applied to a hierarchical planner that combines a classical planner and a reinforcement
learning algorithm to implement high-level task planning.

These semantic knowledge-based robot planning methods have been extended to mul-
tiple robots. Hanheide et al. defined the ontology-based semantic knowledge categorized
into three layers to represent the domain of a multi-robot system [26]. Among the knowl-
edge in each separated layer, the higher knowledge is used to modify the lower knowledge
to complement the knowledge of failure situations. The defined knowledge represented
uncertain information in the robot’s behavior to realize efficient multi-robot task planning
and execution. Moon et al. used natural language-based scene understanding to represent
and utilize semantic knowledge-based environmental information for a heterogeneous
multi-robot system [18]. They proposed the task planning method that organizes the infor-
mation of the environment obtained from scene understanding into ontology knowledge
and utilizes it to respond to the changing state of the driving area. Joo et al. planned the
mission for the multi-robot system based on a detailed semantic knowledge representation
of indoor and outdoor environments [17]. They represented the semantic knowledge of the
driving capabilities of the robots in the system, the opening and closing times of places,
and the position relationships of objects based on ontology. The semantic knowledge of the
defined environmental elements is used to build the on-demand database for mission plan-
ning by using Semantic Web Rule Language (SWRL)-based knowledge reasoning. Finally,
the on-demand database information is converted into the PDDL problem to generate a
robot mission plan based on a classical planner.

We propose a semantic knowledge-based multi-robot task planning method. We
extend the semantic knowledge and planning structure suitable for the multi-robot based
on the semantic navigation framework [17]. The extended semantic knowledge expresses
relationships, such as possession and occupancy, to consider the effects and interactions
between environmental elements in multi-robot systems. The proposed semantic knowl-
edge is integrated into a hierarchical task and utilized for high-level mission planning.
We also propose a hierarchical task structure that separates task levels in detail based on
spatial-layer information. The hierarchical task is used to represent the multi-robot domain
based on PDDL and the Partial-Order Planning Forwards (POPF) [28] planner to generate
the task sequence in the defined multi-robot domain. We also introduce a re-planning
approach that adapts to robot mission failure cases based on a hierarchical task planning
structure.
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3. Methods

This chapter describes the extended semantic knowledge and improved hierarchical
task planning method for effective task planning in semantic knowledge-based multi-robot
systems. The proposed approach extends the semantic navigation framework [17] to be
suitable for multi-robot planning.

3.1. Semantic Knowledge-Based Multi-Robot System Modeling

The Triplet Ontology Semantic Model (TOSM) [25] is used to represent the semantic
knowledge-based multi-robot domain. The TOSM combines numerical information and
semantic knowledge about environmental elements. Based on the TOSM, we construct
the semantic database by defining the relationship knowledge between environmental
elements and data properties of places. Based on the extended semantic knowledge, tasks
for multi-robot missions are defined based on the HTN structure and expressed based on
the PDDL.

3.1.1. Semantic Knowledge Modeling

Based on the TOSM, we express the concepts of possession and usage to prevent
deadlock and duplication problems in multi-robot systems. For this purpose, the relation-
ship knowledge between robots and other robots, places, or objects in the environment
is extended using the object properties. The object properties express the relationship
knowledge between environmental elements, such as Robot, Place, and Object as the domain
and range. Table 2 provides information about the extended object properties. We represent
the class name of the environmental elements in italics to avoid word confusion.

Table 2. Extended object properties for multi-robot systems.

Object Property Hierarchy Domains Ranges

isOccupiedBy Place Robot
isNotOccupiedBy Place Robot
isUsedBy Object Robot
isNotUsedBy Object Robot
canUse Robot Object
isDifferent Robot Robot

First, the “isOccupiedBy” property represents a place that is occupied by the robot’s
movement and contains Place as the domain and Robot as the range. This object property
is created for the robot’s starting and destination places. The difference between this
property and the “isLocatedAt” property, which represents the robot’s location, is when it
becomes active/inactive, as shown in Figure 1a. By defining the “isOccupiedBy” property,
we can determine where the robot is working and utilize this knowledge to manage the
robot’s traffic. The “isNotOccupiedBy” property is defined to represent the negation of
the “isOccupiedBy” property, which is created as opposed to the active/inactive of the
“isOccupiedBy” property. Second, the “isUsedBy” property with the object is defined to
represent the robot’s possession knowledge. This property contains Object as the domain
and Robot as the range and is used to avoid the redundant use of objects when planning tasks
for the multi-robot. To represent the negation of this property, we define the “isNotUsedBy”
property. In addition, the “canUse” property is defined to express whether a specific object
can be used and is used as a constraint when planning multi-robot works. Finally, the
“isDifferent” property is defined to describe the relationship between different robots and is
used to ensure that all robots are considered in the detailed planning.

Additionally, low-resolution place information in the proposed hierarchical task plan-
ning structure is used to generate simplified plans. We introduce a new data property for
place environment elements to achieve this. In the previous study by Joo et al. [17], the
lowest-level place in the “isInsideOf” relationship graph is represented as a leaf place and
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used for robot planning. In contrast, we define the top-level place as a stem place and
extend the data property with the “isStemPlace” property to represent it.

(a)

(b)

Figure 1. Comparison of when object properties activate and deactivate during the navigation.
(a) When “isLocatedAt” property is activated/deactivated by the robot moving from place to place.
(b) Activation/deactivation of “isOccupiedBy” property during navigation.

Figure 2 shows the relationship graph of the Place environmental elements in the
semantic database, including the proposed stem place. The stem place is defined as the
top-level Place element in the “isInsideOf” relationship graph that is not involved in any
“isInsideOf” relationship with any other Place element. We can query the stem places in
the semantic database using the following Semantic Query-Enhanced Web Rule Language
(SQWRL) expression:

• Place(?p1) ∧ Place(?p2) ∧ isInsideOf(?p1, ?p2). sqwrl:makeSet(?s1, ?p1)
∧ sqwrl:makeSet(?s2, ?p2). sqwrl:difference(?s3, ?s2, ?s1) ∧ sqwrl:element(?p, ?s3)
−→ sqwrl:select(?p).

Figure 2. Hierarchical relationships of places in the semantic database.
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This expression retrieves the top-level Place environmental element by comparing the
places in the semantic database that are involved in the “isInsideOf” property with the
group corresponding to the domain and the group corresponding to the range. As shown
in Figure 2, we can utilize this expression to query Building1, which includes rooms, a
corridor, and a floor in the “isInsideOf” property.

3.1.2. Semantic Knowledge-Based Task Modeling

The HTN structure is used to decompose tasks for efficient task planning in the
semantic knowledge-based multi-robot system. The unit tasks are organized to accomplish
given missions into a 3-level hierarchy. The tasks in each level are defined in a domain
file using the PDDL. Table 3 lists each level of the proposed multi-robot task and its
representative tasks. We represent the task name in italics to avoid word confusion.

Table 3. An example of the task list defined by the hierarchy.

Task Level Hierarchy List of Tasks

Mission level Delivery Guidance Surveillance Patrol
Coarse level Move MoveSame Take Give
Fine level GoToPlace Charge PickUp Dropoff

First, the mission level in the proposed hierarchical task modeling structure contains
tasks that correspond to missions given to the multi-robot system. As shown in Table 3, the
missions assigned to robots commonly include Delivery, Guidance, Surveillance, and Patrol.

Second, the coarse level consists of lower-level actions designed to accomplish the
tasks of the mission level. Typically, missions assigned to multi-robots involve movement
and interaction with objects. As a result, we define tasks for Move and MoveSame in the
coarse level to describe movement and tasks for Take and Give to describe the interactions
with objects. The planner utilizes these tasks to plan the multi-robot mission in the stem
place, identifying the areas where the robots will perform their missions and the dependent
robots in the multi-robot system.

Finally, the fine level comprises the detailed unit tasks that robots execute to carry
out the coarse plan, composed of coarse-level tasks. There are numerous fine-level tasks,
depending on the robot’s characteristics and the interactive environment. As representative
fine-level tasks, we introduce the following: GoToPlace, Charge, PickUp, and DropOff.

The tasks defined in the mission level correspond to the tasks given to the robot system
and accomplish the goal defined in the problem file. For instance, the Deliver task aims to
transport a specific object to a destination. This task is implemented in the PDDL to achieve
the goal “delivery ?o ?p” when a robot with the specific object present at the destination
satisfies the required preconditions, as specified in Listing 1.

Listing 1. Defined mission-level action Delivery in the domain.

( : a c t i o n d e l i v e ry
: parameters ( ? r − robot ?o − o b j e c t ?p − place )
: precondi t ion ( and

( is_used_by ?o ? r )
( i s _ l o c a t e d _ a t ? r ? to ) )

: e f f e c t ( and
( del ivery_complete ?o ?p ) ) )

Two actions are defined to represent movement in the coarse-level tasks. This is to
identify and group dependencies between robots that work in parallel in the multi-robot
system. Therefore, we add a time element to the movement task to determine which robots
are in the same place at the same time. For this purpose, move actions are implemented as
“duration-actions” in the PDDL, as described in Listings 2 and 3. The time taken for both
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move actions is calculated as the distance divided by the speed, as shown in the 3rd line of
each listing, and expressed as a duration item. This defined action implements an action at
the coarse level that operates on a stem place by checking the “isStemPlace” property of
the place as a condition to be executed.

Listing 2. Defined coarse-level action Move in the domain.

( : durative − a c t i o n move
: parameters ( ? r − robot ? from ? to − place )
: durat ion ( = ? duration (/ ( d i s t a n c e ? from ? to ) ( speed ? r ) ) )
: condi t ion ( and

( over a l l ( i s_connected_to ? from ? to ) )
( over a l l ( can_go_through ? r ? to ) )
( over a l l ( i s_s tem_place ? from ) )
( over a l l ( i s_s tem_place ? to ) )
( a t s t a r t ( i s _ l o c a t e d _ a t ? r ? from ) )
( a t s t a r t ( f o r a l l ( ? r2 − robot )

( imply ( i s _ d i f f e r e n t ? r ? r2 ) ( is_not_occupied_by ? to ? r2 ) ) ) ) )
: e f f e c t ( and

( a t s t a r t ( not ( i s _ l o c a t e d _ a t ? r ? from ) ) )
( a t end ( i s _ l o c a t e d _ a t ? r ? to ) )
( a t s t a r t ( is_occupied_by ? to ? r ) )
( a t s t a r t ( not ( is_not_occupied_by ? to ? r ) ) )
( a t end ( not ( is_occupied_by ? from ? r ) ) ) ) )

Listing 3. Defined coarse-level action MoveSame in the domain.

( : durative − a c t i o n move_same
: parameters ( ? r − robot ? from ? to − place )
: durat ion ( = ? duration (/ ( d i s t a n c e ? from ? to ) ( speed ? r ) ) )
: condi t ion ( and

( over a l l ( i s_connected_to ? from ? to ) )
( over a l l ( can_go_through ? r ? to ) )
( over a l l ( i s_s tem_place ? from ) )
( over a l l ( i s_s tem_place ? to ) )
( a t s t a r t ( i s _ l o c a t e d _ a t ? r ? from ) ) )

: e f f e c t ( and
( a t s t a r t ( not ( i s _ l o c a t e d _ a t ? r ? from ) ) )
( a t end ( i s _ l o c a t e d _ a t ? r ? to ) )
( a t s t a r t ( is_occupied_by ? to ? r ) )
( a t s t a r t ( not ( is_not_occupied_by ? to ? r ) ) )
( a t end ( not ( is_occupied_by ? from ? r ) ) )
( a t end ( is_not_occupied_by ? from ? r ) )
( a t s t a r t ( is_occupied_by ? to ? r ) ) ) )

The Move task is defined for a robot to navigate to a location alone. It utilizes the
“isOccupiedBy” and the “isNotOccupiedBy” properties to check for overlapping multi-
robot moves, as shown in lines 9 and 10 of Listing 2. It utilizes the “forall” function to
check the knowledge that “all other robots are not occupying the target place” for the
place where it wants to move. On the other hand, the MoveSame task implements a robot’s
movement despite the robot’s presence at the target place. This is the same as the Move
action with some conditions removed, such as Listing 3. We prioritize the Move task over
the MoveSame task to ensure efficient mission planning. The Move task is planned when a
robot moves alone. However, if another robot occupies the target place, the task planner
plans the MoveSame task instead. This MoveSame task is used in the planning to identify
and group robots working in the same place at the same time. These two defined domain
actions activate/deactivate the “isOccupiedBy” and the “isLocatedAt” properties.

In the coarse-level tasks of a multi-robot system, we have defined Take and Give tasks
for a robot to interact with an object. Listing 4 represents the PDDL action that defines the
Take task. This action creates knowledge of the interaction between the robot and the object
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when both exist in the same place and satisfy the property of “canUse ?r ?o.” In contrast,
the Give task in Listing 5 releases the robot from its relationship with the object it previously
interacted with. These two tasks enable the robot and the objects in the place to interact.

Listing 4. Defined coarse-level action Take in the domain.

( : a c t i o n take
: parameters ( ? r − robot ?o − o b j e c t ?p − place )
: durat ion (= ? duration ( take −time ? r ) )
: condi t ion ( and

( over a l l ( i s_s tem_place ?p ) )
( over a l l ( i s _ l o c a t e d _ a t ? r ?p ) )
( a t s t a r t ( i s _ i n s i d e _ o f ?o ?p ) )
( over a l l ( can_use ? r ?o ) ) )

: e f f e c t ( and
( a t end ( not ( i s _ i n s i d e _ o f ?o ?p ) ) )
( a t end ( is_used_by ?o ? r ) ) ) )

Listing 5. Defined coarse-level action Give in the domain.

( : a c t i o n give
: parameters ( ? r − robot ?o − o b j e c t ?p − place )
: durat ion (= ? duration ( give −time ? r ) )
: condi t ion ( and

( over a l l ( i s_s tem_place ?p ) )
( over a l l ( i s _ l o c a t e d _ a t ? r ?p ) )
( a t s t a r t ( is_used_by ?o ? r ) ) )

: e f f e c t ( and
( a t end ( not ( is_used_by ?o ? r ) ) )
( a t end ( i s _ i n s i d e _ o f ?o ?p ) ) ) )

We use the fine-level tasks to refine a coarse plan that consists of coarse-level tasks
for each robot. These tasks are executed individually at the leaf place, using the extended
“isOccupiedBy” and “isUsedBy” properties. All tasks include a customizable duration item.
For example, the GoToPlace task, shown in Listing 6, has its duration determined by the
distance and speed. The task is to perform the behavior for a specified duration of time if
the conditions are satisfied. At this time, we check whether other robots are at the location
with the connection information of the place through the forall function to prevent the
duplication and deadlock of multiple robots.

Listing 6. Defined fine-level action GoToPlace in the domain.

( : durative − a c t i o n goto_place
: parameters ( ? r − robot ? from ? to − place )
: durat ion ( = ? duration (/ ( d i s t a n c e ? from ? to ) ( speed ? r ) ) )
: condi t ion ( and

( over a l l ( i s_connected_to ? from ? to ) )
( over a l l ( can_go_through ? r ? to ) )
( over a l l ( i s _ l e a f p l a c e ? from ) )
( over a l l ( i s _ l e a f p l a c e ? to ) )
( a t s t a r t ( i s _ l o c a t e d _ a t ? r ? from ) )
( a t s t a r t ( f o r a l l ( ? r2 − robot )

( imply ( i s _ d i f f e r e n t ? r ? r2 ) ( is_not_occupied_by ? to ? r2 ) ) ) ) )
: e f f e c t ( and

( a t s t a r t ( not ( i s _ l o c a t e d _ a t ? r ? from ) ) )
( a t end ( i s _ l o c a t e d _ a t ? r ? to ) )
( a t s t a r t ( is_occupied_by ? to ? r ) )
( a t s t a r t ( not ( is_not_occupied_by ? to ? r ) ) )
( a t end ( not ( is_occupied_by ? from ? r ) ) )
( a t end ( is_not_occupied_by ? from ? r ) ) ) )

The time for each task can also be fixed to a constant value. For example, the PickUp
tasks defined in Listing 7 use a robot-specific constant value to represent the time required
to perform the task. This task checks to ensure that objects existing at the target location are
used by other robots to avoid duplication. This helps to avoid creating a waiting task when
planning it in the multi-robot planner. By defining these fine-level tasks, we can generate a
plan that prevents deadlocks and overlapping situations in the robot’s mission planning.
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Based on the fine-level tasks defined above, various derived tasks can be designed
depending on the type of robot and the task details. For example, if a new fine-level task is
added to plan a mission involving an elevator, we can define a unit task called “GoToPlace-
WithElevator” by adding the condition “can_use ?robot ?elevator” to the implemented
GoToPlace task representation. Similarly, tasks can be implemented for crossing a crosswalk
and going through an automatic door. Furthermore, various interaction actions can be
derived from the PickUp and DropOff .

Listing 7. Defined fine-level action PickUp in the domain.

( : durative − a c t i o n pick_up
: parameters ( ? r − robot ?o − o b j e c t ?p − place )
: durat ion (= ? duration ( pickup−time ? r ) )
: condi t ion ( and

( over a l l ( i s _ l e a f p l a c e ?p ) )
( a t s t a r t ( i s _ l o c a t e d _ a t ? r ?p ) )
( a t s t a r t ( i s _ i n s i d e _ o f ?o ?p ) )
( over a l l ( can_use ? r ?o ) )
( a t s t a r t ( f o r a l l ( ? r2 − robot )

( imply ( i s _ d i f f e r e n t ? r ? r2 ) ( is_not_used_by ?o ? r2 ) ) ) ) )
: e f f e c t ( and

( a t s t a r t ( not ( i s _ i n s i d e _ o f ?o ?p ) ) )
( a t s t a r t ( is_used_by ?o ? r ) )
( a t s t a r t ( not ( is_not_used_by ?o ? r ) ) ) ) )

3.2. Semantic Knowledge-Based Task Planner for Multi-Robots

We describe a method for utilizing semantic knowledge to plan tasks for multi-robot
systems. The proposed approach extends the task planner from the semantic navigation
framework [17] to be suitable for multi-robots. Our task planner transforms a given task
into a simplified problem and then generates a coarse plan of the area and robots required
for its implementation. Then, the coarse plan is used to group the robots that affect
each other’s navigation. Finally, we generate a fine plan that utilizes the grouped robots.
Through this process, complex missions given to the multi-robot system are efficiently
planned. In addition, a re-planning method is presented that effectively handles mission
failure situations using our proposed task planner.

3.2.1. Hierarchical Task Planning Approach for Multi-Robots

The structure of the semantic knowledge-based multi-robot task planning methods
is shown in Figure 3. Figure 3a shows the structure of multi-robot task planning based
on the task planner described in [17]. In this structure, the tasks are planned using a
classical planner, a behavior sequence is delivered to each robot, and feedback is received
according to the performance of the robot’s behavior. However, this approach requires
much computational power for multi-robot task planning because it utilizes all robots
to perform the tasks. Therefore, we introduce a hierarchical task planner to overcome
this limitation.

Our proposed hierarchical task planner is divided into four steps, goal generating,
coarse planning, plan reconstructing, and fine planning, as shown in Figure 3b. Each step
utilizes hierarchical tasks with integrated semantic knowledge to generate a plan. The
key idea of this planning structure is how to group dependent robots by generating a
coarse plan utilizing coarse-level tasks. We explain our task planning approach in detail by
considering an example environment, as shown in Figure 4.
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(a) (b)

Figure 3. Comparison of semantic knowledge-based task planning structures for multi-robot. (a) Pre-
sented hierarchical task planning approach in [17]. (b) Proposed hierarchical task planning approach.

Figure 4. Example of multi-robot working outdoor environments.

First, the goal-generating step converts the knowledge generated by the effects of the
mission-level tasks into problem goals so that the robot can understand human commands.
At this time, we replace the Place parameter of the task with the stem place. Therefore, the
goal-generating step queries the stem place information, including the target place, from
the semantic database using the following SQWRL expression.

• Place(?p1) ∧ name(?p1, “Target Place”) ∧ isInsideOf(?p1, ?p2) ∧ isStemPlace(?p2, true)
−→ sqwrl:select(?p2).

As shown in Figure 5a, if the delivery missions are given to the multi-robot task
planner, the goal lists are created based on the corresponding mission-level delivery task.
The example mission “Deliver bread box to hospital room 103” generates the coarse goal
“delivery_complete Box1 B1” based on the effect of the Delivery task, “delivery_complete ?o
?p,” with a bread box (Box1) in the Object parameter and a hospital (B1), a stem place of the
target place room 103, in the Place parameter. Finally, the goal-generating step utilizes all
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the given missions with the stem place and mission-level task to generate the coarse goal
lists based on the PDDL.

(a)

(b)

(c)

(d)

Figure 5. Four steps of the proposed hierarchical task planning approach. (a) Goal-generating step,
which generates coarse goal lists with given missions. (b) Coarse planning step, which creates
coarse plan lists utilizing all robots with coarse goal lists. (c) Plan reconstructing step, which groups
overlapping robots in the coarse plan lists. (d) Fine planning step, which creates detailed behavior
sequences for each group of robots.

Second, the coarse planning step generates the coarse-level task sequence by planning
coarse goal lists using the POPF planner. For planning, the task planner queries the
environment information from the semantic database to configure the on-demand DB.
Importantly, because this step utilizes the coarse-level tasks, the planner only queries the
stem places among the Place environment elements to construct the on-demand DB. Finally,
the coarse planning step generates coarse task sequences based on the stem places, such as
the driveway, intersection, and building, as shown in Figure 5b.
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Third, the plan reconstructing step groups the robots that affect each other’s navigation.
In a multi-robot system, there may be overlapping situations between different robots
moving in the same place at the same time. Therefore, we group the places where the
MoveSame task occurred and the robots existing in the same place. In Figure 5c, the blue
robot (R2) exists in the same place as the red robot (R1) when it executes the MoveSame
operation indicated by the purple box. Therefore, the red and blue robots are organized
into one group. In contrast, the orange robot (R3) does not overlap with any other robot, so
we separate it into a single independent group. Finally, this step separates the robots with
multi-robot missions into two groups.

Finally, the fine planning step plans the corresponding tasks per group using the POPF
planner based on the fine-level tasks. For planning, each group’s goal reconfigures the Place
parameter to the leaf place, such as “delivery_complete Box1 room103.” The idea of this
step is to organize the on-demand database by querying only the information of the stem
places where the tasks are performed. So, we only query the leaf places that are included
as the “inInsideOf” property to the stem places used in the coarse plan result generated
for each group. Then, as shown in Figure 5d, the task planner generates a fine-level task
sequence to accomplish the assigned task for each group. This generates a detailed task
plan based on leaf places, such as a sidewalk, and a crosswalk, as shown in Figure 6.

Figure 6. Comparison of coarse and fine planning results.

3.2.2. Hierarchical Task Re-Planning Approach for Multi-Robots

Multi-robot systems can respond efficiently to mission failure situations. The re-
planning method using semantic knowledge introduced in [17] reconstructs a plan after
updating the current situation information if an error occurs during the task execution.
However, as shown in Figure 7, this scheme reconstructs the task plan utilizing all robots
when a problem occurs in a multi-robot system. If one robot’s path is blocked and creates
a simple detour, the planner will re-plan using all robots. This may be an inefficient re-
planning approach because it includes other robots that are executing their tasks well.
Therefore, based on the proposed task planning structure, we propose the multi-robot
re-planning approach by problem situation.

Figure 7. Re-planning method in previous method [17].
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We obtain the results of each robot’s execution feedback to the server. This allows the
planner to check whether the robot performs successfully or if something goes wrong. If
our task planner handles a simple problem, only grouped robots are re-planned in the plan
reconstruction step, as shown in Figure 8a. Therefore, the planner keeps the other robot
groups and re-plans only the problematic group to respond to the problem quickly. If a
serious problem occurs, such as a robot breakdown, we consider the state of the multi-robot
system and the remaining tasks, as shown in Figure 8b. In this way, the proposed task
planner appropriately responds according to the criticality of the problem situation.

(a)

(b)

Figure 8. Re-planning method in the proposed approach. (a) Case of specific robot group re-planning.
(b) Case of all robot re-planning.

4. Results

In this chapter, we validate the performance of our proposed method for multi-robot
task planning by comparing it with the semantic navigation framework [17] method. For
the comparison, three kinds of experiments were conducted in a simulation environment.
The first experiment validates the suitability of the extended semantic knowledge by com-
paring the planning results for multi-robot intersection or overlap situations. The second
experiment verifies the efficiency of the proposed task planning method by measuring the
number of environmental factors utilized in task planning and the speed of task planning.
The last experiment identifies the re-planning performance in response to problematic
situations during the mission execution.

4.1. Experimental Environment

We verified the performance by implementing a simulation environment with various
environmental elements and semantic knowledge, as shown in Figure 9. The simulation
environment was organized in a 6 × 6 layout with a cross-shaped step place, as shown
in Figure 9a. Each stem place in our environment consisted of five leaf places, as shown
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in Figure 9b. Therefore, the environment contained 252 place environment elements: 36
stem places and 180 leaf places. Every Place environment element was connected to its
neighboring places with the “isConnectedTo” property, and each leaf place was connected
to the stem place with the “isInsideOf” property.

(a) (b)

Figure 9. Simulationexperimental environment. (a) Cross-shaped stem place “area”. (b) All 180 leaf
places in the environment.

All the experiments were implemented utilizing the gazebo simulator on a computer
equipped with an Intel(R) Core(TM) i9-9900KF CPU @ 3.60 GHz.

4.2. Experimental Scenario
4.2.1. Semantic Knowledge-Based Multi-Robot Planning

Two situations were considered to demonstrate what differences the extended seman-
tic knowledge for multiple robots make to task planning, as shown in Figure 10. First, we
compared the generated plans based on the proposed occupancy knowledge by imple-
menting a situation where the robots cross each other. For comparison, a scenario was
constructed where the target places of the robots intersected, as shown in Figure 10a. The
generated sequence of tasks was compared to reach the destination and the plan execution
results. Second, we compared the generated plans based on the proposed possession
knowledge by implementing a situation where several robots use the charging station. For
comparison, the environment was constructed with two robots and two charging areas,
as shown in Figure 10b. The generated task plans were compared when short and long
charging times were required in this environment.

(a) (b)

Figure 10. Semantic knowledge test scenarios. (a) Multi-robot intersection situation. (b) Multi-robot
charging situation.
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4.2.2. Semantic Knowledge-Based Multi-Robot Task Planning

The performance of the multi-robot mission planning methods was compared in
a robot delivery mission situation under different conditions. The experiments were
conducted for delivering three objects using two to four robots, as shown in Table 4. The
number of robots and objects and the delivery locations in the table were randomly picked.
We measured and compared the generation time of the plan to deliver the objects and
the number of environmental elements used in the plan to verify the performance of the
proposed method.

Table 4. Multi-robot delivery task conditions.

Located Corridor ID
Robot Object Target Place

1 2 3 4 1 2 3 1 2 3

C
as

e
1

1 3405 2004 - - 2802 2004 3005 403 3502 1201
2 804 1902 - - 1104 2805 3303 2002 3504 1105
3 1003 805 - - 1204 305 2401 603 1901 1702
4 2504 401 - - 2804 103 3302 3001 601 803
5 2802 2303 - - 3104 2301 1803 2403 1802 3302
6 3203 3604 - - 105 805 3101 1801 2601 1302
7 3005 3602 - - 2902 2304 102 1002 3102 1104
8 2404 1405 - - 3201 602 802 303 3505 103

C
as

e
2

1 3003 203 802 - 2001 3302 604 2101 2403 1202
2 3501 303 2103 - 2701 3601 104 3105 703 605
3 904 605 1703 - 1804 503 2902 904 802 2602
4 1905 803 1702 - 1202 2205 2101 1002 3002 1102
5 2205 3603 604 - 2301 1005 2201 2602 602 705
6 2305 1804 3401 - 1502 1103 2203 1705 101 1904
7 1904 2304 3203 - 3403 405 3102 2105 901 1104
8 502 805 3105 - 2401 2101 603 2901 1002 1704

C
as

e
3

1 3205 1504 1005 2404 1201 1505 2801 801 2902 2402
2 3203 2004 305 202 3303 301 2601 502 2103 204
3 2201 1501 1305 2101 3601 802 903 2802 1602 2403
4 2702 202 102 302 3404 1604 703 2201 3204 3601
5 504 2903 2005 3105 2204 1104 1405 3105 604 2205
6 3201 1105 605 1303 1102 1205 2304 2502 904 1403
7 2902 804 701 3403 1105 2402 1004 1604 804 2101
8 1702 2703 305 701 3501 2305 3002 405 1202 2704

Figure 11 shows an example of three robots delivering three items. The circle shapes
are the locations of the items, and the squares are the delivery locations. In this case,
different colors were used for the Object location and the target place of each Object in the
environment to make it easier to understand the tasks. In the simulation, we assumed that
the PickUp task is completed after a while when the robot arrives at the Object location, and
the DropOff task is completed after a while when the robot reaches the delivery location.
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Figure 11. Deliver task environments.

4.2.3. Semantic Knowledge-Based Multi-Robot Task Re-Planning

We verified the mission re-planning performance by comparing the re-planning time
for robot failure. For this, the mission failure situations of a specific robot were assumed
during a delivery mission with three robots. The mission failure situation included a
path-blocked situation and the breakdown of a robot. The mission failure scenarios applied
in this experiment are when the robot’s path is blocked and when the robot breaks down.
This situation was made by forcing a mission failure signal on a specific robot during a
multi-robot mission.

4.3. Experimental Results
4.3.1. Semantic Knowledge-Based Multi-Robot Planning

Figure 12a shows the planned task sequence without the occupancy knowledge in a
multi-robot cross-driving situation. The planner without semantic knowledge generated
parallel robot tasks with the shortest execution time for each robot to complete its goal.
However, it did not consider the positions of other robots, so when the plan was executed
the robots got into a deadlock with each other, as shown in Figure 12b.

However, our proposed semantic planner produced a more complex plan for the
same task, as shown in Figure 13a, because our method utilizes semantic knowledge to
represent the occupancy of a space. Thus, when we executed the plan result, green robot2
moved aside and red robot1 passed, avoiding the deadlock between the robots, as shown in
Figure 13b.
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(a)

(b)

Figure 12. Multi-robot planning results without knowledge of “occupancy”. (a) Planning result for
multi-robot. (b) Task implementing result with multi-robot.

(a)

(b)

Figure 13. Multi-robot planning results with knowledge of “occupancy”. (a) Planning result for
multi-robot. (b) Task implementing result with multi-robot.

In the case of the charging task, the result of the task planning without the semantic
knowledge of “usage” is shown in Figure 14. In the previous method, when a short time
is required for charging, the task sequence was planned for each robot to navigate to the
nearest charging station and charge, as shown in Figure 14a. This plan did not consider
that the other robots had finished charging. Therefore, the late robots waited when this
plan was executed at the charging station. If a longer time is required for charging, the task
sequence for charging is planned similarly, as shown in Figure 14b.
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(a)

(b)

Figure 14. Planned behavior sequences without knowledge of “usage”. (a) Planned sequence with
short charging time. (b) Planned sequence with long charging time.

However, the proposed method utilized “usage” knowledge to plan, as shown in
Figure 15. The planner generates a plan when charging takes a short time, as shown in
Figure 15a. This plan consisted of a sequence in which robot2 starts charging when robot1
finishes using the charger. Because of the “isUsedBy” property of the charger, the robot
took over the permission by planning the action of waiting. Therefore, when charging took
a long time, the proposed method showed different results, as shown in Figure 15b. When
charging at another charging station takes less time than a plan that includes waiting at a
close charging station, our method generated a plan to visit the other charging station even
if the distance was far. As a result, our task planner generated a plan where robot1 uses
Charger1 and robot2 uses Charger2.

Through this experiment, we observed that utilizing the extended object properties
detected the deadlock and redundancy situations of the robots and generated plans to
prevent them. The generated plan sequence had a longer execution time, but it was
organized in a sequence that ensured a trouble-free operation of the multi-robot system.
Thus, our results showed that the proposed semantic knowledge helps to organize multi-
robot plans in detail and avoid problematic situations.

(a)

Figure 15. Cont.
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(b)

Figure 15. Planned behavior sequences with knowledge of “usage”. (a) Planned sequence with short
charging time. (b) Planned sequence with long charging time.

4.3.2. Semantic Knowledge-Based Multi-Robot Task Planning

Figure 16 is an example of a task plan with three robots generated using the previous
and proposed methods. As shown in Figure 16a, each robot moves at the same time from
the assigned corridor to deliver the items allocated to each robot. After navigating to the
place where each item is located and waiting for a period of time, the robot moves to the
target place. Thus, as shown in Figure 16b, the robot’s mission ends when each robot has
completed its assigned task.

(a) (b)

Figure 16. Multi-robot navigation based on planned task sequence. (a) Executing multi-robot delivery
missions. (b) Completing multi-robot delivery missions.

When planning a multi-robot task, the previous task planner used all three robots to
generate a task plan, as shown in Figure 17. However, the proposed task planner generates
a task plan differently than before, as shown in Figure 18. Our task planner generates a
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coarse task plan based on the coarse-level hierarchy tasks that work in the stem place, as
shown in Figure 18a. Then, the planner generated a fine plan for each robot group based
on the generated coarse plan, as shown in Figure 18b,c. Both methods have the same object
and destination delivered by the robots in the plan. However, there were differences in
the methods used to generate those plans. The table below compares the number of place
instances used in each method and the time to plan the task.

The proposed method measured the number of place elements used by summing the
number of stem places and leaf places in the coarse planning step and the fine planning
step, and the previous method measured the number of leaf places used. As shown in
Table 5, the previous method planned using all 180 leaf places in the environment because
it uses all places where the robot can explore. However, the proposed method only uses
leaf places belonging to stem places, where the tasks are performed. So, each task used a
different number of place elements. We can observe that the proposed method uses fewer
place environmental elements than the previous method, as shown in Figure 19.

In addition, we compared the planning time of the previous method by summing
the time spent in the coarse and fine steps. In this case, the plan reconstructing step of
the proposed task planner was ignored in Table 5 because the time spent was less than
1 ms. We observed that the proposed method generates task plans faster than the previous
method, as shown in the graph in Figure 20. When planning a task for multiple robots,
the time spent by the previous method increased dramatically as the number of robots
increased. Especially if the number of robots was increased to four, the planner failed to
generate a plan because it exceeded the planning limit time of 3 minutes. However, the
proposed method did not significantly increase the planning time even if the number of
robots increased. Our method also successfully generated a plan when using four robots.

These results show the improved performance of our task planning approach. Al-
though the proposed method produces the same mission plan result, the extended task
planning structure uses fewer environmental elements. It also planned the multi-robot
mission in less time than the previous method. If the task does not require referring to all
the places, the proposed method will use less data to generate the plan than the previous
method. These results prove that the proposed planning structure is an efficient approach
to planning multi-robot system tasks even in environments with many environmental
factors, such as urban centers and campuses.

Figure 17. Planned task sequence with the previous method [17].
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(a)

(b)

(c)

Figure 18. Planned task sequence with the proposed method. (a) Planned task sequence in coarse
planning step. (b) Planned group1 task sequence in fine planning step. (c) Planned group2 task
sequence in fine planning step.
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(a) (b) (c)

Figure 19. Graph of used Place instance quantity. (a) Test results with 2 robots. (b) Test results with
3 robots. (c) Test results with 4 robots.

(a) (b) (c)

Figure 20. Graph of multi-robot task planning time. (a) Test results with 2 robots. (b) Test results
with 3 robots. (c) Test results with 4 robots.

Table 5. Experimental results of multi-robot task planning.

Quantity of Used Place Instance Planning Time
Proposed Method Previous

Method
Proposed Method Previous

MethodCoarse Fine Total Coarse Fine Total

C
as

e
1

1 36 90 126 180 0.22 0.23 0.45 31.88
2 36 95 131 180 0.34 0.48 0.82 1.8
3 36 70 106 180 0.09 0.32 0.41 3.89
4 36 120 156 180 0.33 0.36 0.69 3.7
5 36 95 131 180 0.65 0.28 0.93 9.51
6 36 95 131 180 0.37 0.3 0.67 58.52
7 36 110 146 180 0.23 0.31 0.54 1.12
8 36 95 131 180 0.24 0.27 0.51 2.42

C
as

e
2

1 36 100 136 180 0.54 1.14 1.68 61.25
2 36 135 171 180 0.74 1.51 2.25 9.71
3 36 70 106 180 0.18 1.57 1.75 11.93
4 36 75 111 180 0.16 1.25 1.41 80.23
5 36 75 111 180 0.14 0.98 1.12 11.89
6 36 90 126 180 0.11 0.91 1.02 2.34
7 36 100 136 180 0.73 1.04 1.77 11.07
8 36 85 121 180 0.24 1.12 1.36 10.7

C
as

e
3

1 36 85 121 180 0.74 3.46 4.2 Time
over

2 36 110 146 180 0.95 2.01 2.96 Time
over

3 36 85 121 180 1.89 5.9 7.79 Time
over

4 36 115 151 180 2.32 8.1 10.42 Time
over

5 36 90 126 180 2.22 4.51 6.73 Time
over

6 36 80 116 180 0.77 5.29 6.06 Time
over

7 36 95 131 180 2.69 6.81 9.5 Time
over

8 36 85 121 180 1.79 4.05 5.84 Time
over

4.3.3. Semantic Knowledge-Based Multi-Robot Task Re-Planning

Figure 21 shows an example of semantic knowledge-based multi-robot re-planning.
As shown in Figure 21a, when the robot fails to execute a task due to external factors,
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the robot updates the current situation to the server and generates a plan to execute the
remaining mission. In this case, the task planner re-plans and executes a path that avoids
the blocked area, as shown in Figure 21b. This finally generates a plan to reach the goal,
achieving the mission, as shown in Figure 21c.

(a) (b) (c)

Figure 21. Re-planning in a mission failure case. (a) Path-blocked problem situation. (b) Driving a
detour route. (c) Completing a delivery mission.

The previous method and our proposed method use different numbers of robots to
generate these re-plans. The previous method considers the current state and remaining
tasks of all three robots in the environment to generate a re-plan, as shown in Listing 8.
However, the proposed method proceeds with re-planning only for the group currently
in trouble, as shown in Listing 9. So, in this case, only one robot (robot1) belonging to the
separated group is re-planned. Table 6 below shows the robots used in each re-planning
method and their time for the two mission failure cases.

Table 6. Experimental results of multi-robot task re-planning.

Trouble
Case

Troubled
Robot ID

Re-Planned Robot ID Re-Planning Time
Proposed
Method

Previous
Method

Proposed Method Previous
MethodCoarse Fine Total

C
as

e
1

Block path
1 1 1, 2, 3 - 0.31 0.31 38.93
2 2, 3 1, 2, 3 - 0.46 0.46 32.21
3 2, 3 1, 2, 3 - 0.54 0.54 31.32

Robot
breakdown

1 2, 3 2, 3 0.35 1.84 2.19 16.24
2 1, 3 1, 3 0.18 2.20 2.38 25.71
3 1, 2 1, 2 0.16 1.45 1.61 18.95

C
as

e
2 Block path

1 1, 2, 3 1, 2, 3 0.65 0.62 1.27 8.65
2 1, 2, 3 1, 2, 3 0.57 0.65 1.22 9.48
3 1, 2, 3 1, 2, 3 0.61 0.48 1.09 8.41

Robot
breakdown

1 2, 3 2, 3 0.34 0.22 0.56 3.71
2 1, 3 1, 3 0.25 0.37 0.62 2.80
3 1, 2 1, 2 0.47 0.30 0.77 5.12

Table 6 compares the robots used and times taken for re-planning in the previous
experiment with three robots, where each robot is given a mission failure situation. The
previous method utilizes all the robots in the multi-robot system in every re-planning
situation to construct a re-plan. As shown in Table 6, this approach utilizes all the robots,
even for simple path-blocking problems. However, our proposed method only uses the
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group of robots that have failed in a simple path-blocking problem. In case 1, if robot 1
fails, only that robot will be re-planned, and if robots 2 or 3 fail, only that group of robots
will be re-planned. In a more severe situation where a robot has failed, we re-plan using
all remaining robots. In this way, our task planner distinguishes between multi-robot
re-planning approaches based on the problem situation. If all robots need to be planned
simultaneously, as in case 2 in Table 6, our task planner generates a plan that responds to
the problem situation faster due to its efficient step-by-step task planning structure, even
though the same robots are being re-planned as in previous methods. From the re-planning
time shown in Table 6, we can see that the proposed task re-planning method outperforms
the previous method by generating plans faster.

Listing 8. Re-planning result with the previous method.

0 . 0 0 0 : ( goto_place robot2 corr idor902 corr idor903 ) [ 3 . 3 4 0 ]
0 . 0 0 0 : ( goto_place robot3 corr idor1404 corr idor2002 ) [ 3 . 3 4 0 ]
0 . 0 0 0 : ( goto_place robot1 corr idor1802 corr idor1803 ) [ 3 . 3 4 0 ]
3 . 3 4 1 : ( goto_place robot2 corr idor903 corr idor904 ) [ 3 . 3 4 0 ]
3 . 3 4 1 : ( goto_place robot3 corr idor2002 corr idor2003 ) [ 3 . 3 4 0 ]
3 . 3 4 1 : ( goto_place robot1 corr idor1803 corr idor1805 ) [ 3 . 3 4 0 ]
6 . 6 8 2 : ( goto_place robot3 corr idor2003 corr idor2001 ) [ 3 . 3 4 0 ]
6 . 6 8 2 : ( goto_place robot1 corr idor1805 corr idor1701 ) [ 3 . 3 4 0 ]
6 . 6 8 2 : ( goto_place robot2 corr idor904 corr idor1502 ) [ 3 . 3 4 0 ]
1 0 . 0 2 3 : ( pick_up robot3 corr idor2001 water ) [ 1 0 . 0 0 0 ]
. . .
3 0 . 0 4 5 : ( drop_off robot3 corr idor2101 water ) [ 1 0 . 0 0 0 ]
3 0 . 0 6 9 : ( goto_place robot1 corr idor1205 corr idor1203 ) [ 3 . 3 4 0 ]
3 0 . 0 6 9 : ( goto_place robot2 corr idor2702 corr idor2703 ) [ 3 . 3 4 0 ]
3 3 . 4 1 0 : ( goto_place robot2 corr idor2703 corr idor2704 ) [ 3 . 3 4 0 ]
3 3 . 4 1 0 : ( goto_place robot1 corr idor1203 corr idor1202 ) [ 3 . 3 4 0 ]
3 6 . 7 5 1 : ( goto_place robot1 corr idor1202 corr idor604 ) [ 3 . 3 4 0 ]
3 6 . 7 5 1 : ( goto_place robot2 corr idor2704 corr idor3302 ) [ 3 . 3 4 0 ]
4 0 . 0 9 2 : ( pick_up robot1 corr idor604 c o f f e e ) [ 1 0 . 0 0 0 ]
4 0 . 0 9 2 : ( pick_up robot2 corr idor3302 drink ) [ 1 0 . 0 0 0 ]
5 0 . 0 9 2 : ( goto_place robot1 corr idor604 corr idor1202 ) [ 3 . 3 4 0 ]
5 0 . 0 9 2 : ( goto_place robot2 corr idor3302 corr idor2704 ) [ 3 . 3 4 0 ]
5 3 . 4 3 2 : ( drop_off robot1 corr idor1202 c o f f e e ) [ 1 0 . 0 0 0 ]
. . .
9 3 . 5 2 5 : ( goto_place robot2 corr idor2404 corr idor2403 ) [ 3 . 3 4 0 ]
9 6 . 8 6 5 : ( drop_off robot2 corr idor2403 drink ) [ 1 0 . 0 0 0 ]
1 0 6 . 8 6 6 : ( del ivery_complete corr idor2101 water ) [ 0 . 0 0 1 ]
1 0 6 . 8 6 6 : ( del ivery_complete corr idor1202 c o f f e e ) [ 0 . 0 0 1 ]
1 0 6 . 8 6 6 : ( del ivery_complete corr idor2403 drink ) [ 0 . 0 0 1 ]

Listing 9. Re-planning result with the proposed method.

0 . 0 0 0 : ( goto_place robot1 corr idor1802 corr idor1803 ) [ 3 . 3 4 0 ]
3 . 3 4 1 : ( goto_place robot1 corr idor1803 corr idor1805 ) [ 3 . 3 4 0 ]
. . .
3 3 . 4 1 0 : ( goto_place robot1 corr idor1203 corr idor1202 ) [ 3 . 3 4 0 ]
3 6 . 7 5 1 : ( goto_place robot1 corr idor1202 corr idor604 ) [ 3 . 3 4 0 ]
4 0 . 0 9 2 : ( pick_up robot1 corr idor604 c o f f e e ) [ 1 0 . 0 0 0 ]
5 0 . 0 9 2 : ( goto_place robot1 corr idor604 corr idor1202 ) [ 3 . 3 4 0 ]
5 3 . 4 3 2 : ( drop_off robot1 corr idor1202 c o f f e e ) [ 1 0 . 0 0 0 ]
6 3 . 4 3 3 : ( del ivery_complete corr idor1202 c o f f e e ) [ 0 . 0 0 1 ]

5. Conclusions and Implications
5.1. Summary of the Literature

This paper presented an extended semantic knowledge and hierarchical planning
method for multi-robot systems. The proposed method defined the knowledge of pos-
session and occupancy for multi-robot systems based on the TOSM; it also integrated the
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knowledge into the task model to define a high-level constraint task model; based on the
defined content, the planner with a step-by-step planning structure generated efficient
multi-robot task plans in complex environments; and the re-planning strategy for task fail-
ure situations effectively coped with the problem situations. The proposed method verified
the validity of the semantic knowledge and the efficient task planning and re-planning
performance through simulation experiments.

5.2. Theoretical Implications

The advancement of robots in the future will require the use of rules and cognitive
information. The proposed method generates a task plan to perform given missions
by understanding the semantic representation. It solves the problem that may occur in
the multi-robot environment based on semantic representation rather than numerical
representation so that the system does not generate incorrect plans. Our approach was the
only one that understood knowledge, such as the influence between robots, the occupancy
of places, and the possession of objects to generate task plans without problems. We believe
that our approach will lead to future semantic knowledge-based robotic autonomous
systems, which can be extended to humanoids that can embody human behavior or robots
in complex outdoor urban environments.

5.3. Managerial Implications

Information such as cognition and rules are necessary to utilize robots precisely.
However, the multi-robot system based on much semantic information has slow task
planning performance. In that case, it is difficult to utilize robots due to the overall delay
of the robot system and slow cyclical plan generation. From this viewpoint, the proposed
task planning method has fast performance even when including the semantic knowledge
of multiple robots, enabling the robot system to operate quickly and respond quickly to
problem situations. Therefore, we think that the proposed task planning structure can be
widely used in systems that manage multiple robots based on semantic knowledge.

5.4. Future Research Points

The proposed method has a few weaknesses in working in a real-world environment.
Real-world environments may have irregularities and robots with different specifications,
and task planning that responds to the changing environment in real time is also required.
Nevertheless, our task planning structure can be extended in various ways, including
semantic knowledge-based constraints. Thus, we can respond to this by adding additional
definitions of environment and robot characteristics to the multi-robot mission model.
Therefore, our future work focuses on extending the proposed multi-robot planning method
to perform missions by cooperating with heterogeneous robots in a real-world environment.
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