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Abstract: The use of optimal control theory for motion planning is a challenging task. Cell mapping
offers a way to formulate combinatorial optimization problems, allowing the inclusion of complex cost
functions as well as multi-objective optimization problems. This paper presents a suboptimal solution
for a trajectory planning problem in a workspace with obstacles, for a differential drive mobile robot.
This method relies on the use of any linearization technique that allows the regularization of the
combinatorial optimization problem. We explore some classical problems in optimal control, i.e.,
distance, control effort, and navigation time), as well as the multi-objective optimization problem
(MOP). We also performed a comparison with two classical path planning algorithms, namely A∗

and RRT∗, to validate the proposed method when the multi-objective optimization problem includes
distance in the cost function, achieving a compromise of less than 2% for the worst-case scenario for
our case study.

Keywords: cell mapping algorithm (CMA); combinatorial optimization; mobile robot; multi-objective
optimization; trajectory planning

1. Introduction

Using optimal control theory for trajectory planning presents two main challenges.
Firstly, formulating and solving the problem analytically can be difficult. Secondly, compu-
tational methods can be cumbersome, and in some cases, interpreting the solution can be
obscure. Cell-mapping offers a way to pose combinatorial optimization problems that lead
to suboptimal solutions regarding the continuous original problem. Some advantages of
this approach include the ability to formulate complex cost functions and the natural evolu-
tion towards multi-objective optimization problems. Trajectory optimization algorithms for
mobile robots, aim to minimize a cost function while considering system dynamics, bound-
ary conditions, and additional constraints [1–4]. In most cases, the trajectory planning
problem can be viewed as the open loop solution of an optimal control problem, where
the cost function may include several criteria such as distance, time, control effort, energy,
safety, or their combination. The boundary conditions represent the initial and final states,
while the constraints may relate to the physical implementation (speed, acceleration, and
jerk), the workspace (obstacles and boundaries), and the nature of the task (autonomy,
regulations, and comfort) [5–7].

In the motion control stage, the trajectory planned earlier is used as a reference. This
requires navigation systems capable of locating the mobile robot in relative or absolute coor-
dinates over time. Ultimately, the control system is designed to allow the robot to follow the
reference trajectory provided by the planner [8–12]. The literature on trajectory planners
highlights several open problems, such as generalizing methods for known and partially
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known or unknown environments; lack of adaptation and non-robust behavior of con-
ventional techniques [13]; high computational costs [14,15]; long routes [16,17]; trajectory
generation without considering vehicle kinematic and dynamic constraints [18–22]; and
complex environments [23]. In [24], a comparative analysis of intelligent and conventional
methods for path planning is presented.

Optimization problems in trajectory planning can be organized into continuous and
combinatorial categories, based on the nature of the mathematical objects and numerical
methods [25]. In the literature, there are different algorithms that solve the optimization
problem for path planning, including Dijkstra’s algorithm, RRT*, and A*. The first is an
exhaustive method that finds the shortest path in a discretized space by searching for
the shortest path in a graph. The second is a modification of the RRT algorithm, which
is based on the random expansion of trees in continuous configuration spaces. As the
tree is constructed, a cost function that considers distance is implemented, and when the
algorithm finds the path that minimizes this function, it stops [26]. The third is a heuristic
search method that finds the shortest route between two nodes in a discretized space. The
quality of the found path depends on the selected heuristic function [27]. In this work, we
propose a direct connection between combinatorial and cell mapping methods.

Cell mapping was proposed by C. S. Hsu in the 1980s [28], as an attempt to find
efficient and practical ways to determine the global behavior of strongly nonlinear systems.
The basic idea behind it, is to consider the state space as a collection of a large number of
cells, where each cell is taken as a state entity. So far, two types of cell mappings have been
investigated: simple and generalized. In simple cell mapping [29], each cell has a single
image cell, whereas in generalized mapping [30,31], a cell has many image cells, with a
given probability distribution between them. Each cell mapping has its own mathematical
structure. For the case studies in this paper, simple cell mapping (SCM) is implemented,
since there is a single image cell for the dynamical system, given a specific input with
given initial conditions. Cell mapping methods are currently of interest to the scientific
community due to recent developments in high-performance computing systems and the
proliferation of large-scale data. In [32], a mathematical description of the cell mapping
method and various engineering applications are presented. As outlined in the book, the
cell mapping algorithm (CMA) is currently applied to solve nonlinear algebraic equations,
multi-objective optimization problems [33,34], optimal controller design, global analysis of
nonlinear dynamics, and other applications, such as the search for solutions in optimization
problems, as shown in [35], and nonlinear controller design [36].

The use of optimal control theory for trajectory planning presents challenges in terms
of formulating and solving problems analytically, as well as with computational methods
and interpretation of solutions. However, cell-mapping offers a way to pose combinato-
rial optimization problems that lead to suboptimal solutions regarding the continuous
original problem. This approach allows for complex cost function formulation and evolu-
tion towards multi-objective optimization problems. Trajectory optimization algorithms
for mobile robots seek to minimize a cost function while considering system dynamics,
boundary conditions, and additional constraints. The literature on trajectory planners
highlights several open problems, including lack of adaptation and non-robust behavior
of conventional techniques, high computational costs, and trajectory generation without
considering vehicle kinematic and dynamic constraints, among others. In this paper, the
authors propose a trajectory planner that uses a cell mapping algorithm to solve a multi-
objective optimization problem with minimum control effort, distance, and navigation time,
providing an alternative solution to these challenges. The proposed method is detailed in
Section 2, with results presented in Section 3, and a comparison in distance of the paths
generated by four different methods: combinatorial optimization using CMA for minimum
distance, the multi-objective combinatorial optimization problem using CMA, the shortest
path search algorithm A∗, and the optimized version of the rapidly exploring random tree
RRT∗ sampling method. Finally, Section 5 presents some conclusions and future work.
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2. Materials and Methods
2.1. Optimal Trajectory Planning Problem

The optimal trajectory planning problem for mobile robots can be defined as:{
min J

subject to: ẋ = f (x, u, t), x(t0) = x0, x(t1) = x1, u(t) ∈ U
, (1)

in this equation, u(t) is a control within an action space U, that is required to take the mobile
robot from the initial state x0 to a target state x1. x1 belongs to a subset of target states
XG ⊂ X. f represents the state transition equation, and J is the cost function that needs to
be minimized [24]. Obtaining an analytical solution for the problem in Equation (1) is often
difficult, so it is convenient to use a suitable discretization technique to obtain suboptimal
solutions using computational algorithms. The following subsection presents a numerical
approximation to the optimal trajectory planning problem.

2.2. Cell Mapping Algorithm for Trajectory Planning

In this section, the CMA is adapted, to discretize the state space of the trajectory
planning problem. For this method, it is convenient to start with a linear dynamic model,
which can be obtained using analytical or machine learning methods. To employ the CMA
in the construction of reference paths for robot motion, we propose the following steps:

1. Generate an equally spaced grid for the state space, i.e., position and velocity. Note
that the position and velocity constraints of the mobile robot define the boundaries of
the grid. At this point, it is also possible to include obstacles or forbidden cells in the
grid.

2. Define a set of constant values that can be applied to the dynamic model of the mobile
robot. These elements represent constant control actions when applied for the cell
mapping method.

3. Decide on the apply time of the control actions that best aligns with the construction
of the grid.

4. Build and store the cell mapping weighted graph from a cost function, by applying
every control action for each cell in the grid.

In the proposed CMA algorithm, all possible images of a cell are linked in the graph,
and in this sense, they are considered neighbors of a cell. If the destination cell is outside the
initial state space grid, or is a forbidden cell, then this image is automatically discarded. The
cell-to-cell mapping, or simply the cell mapping problem, can be defined mathematically
by Equation (2)

x(k + 1) = C(x(k), µ), (2)

where x(k + 1) is the image of x(k), C represents the cell mapping which embeds the
dynamical model of the system, and the parameter vector µ is applied. The cell mapping
may depend on the step k, but in this work, we consider a stationary dynamical system
where C does not explicitly depend on k, as is done in [28].

The evolution of the system given in Equation (2), is applied for each cell in the state
space, using different control signals. Upon completion of the evolution, data structures
are generated with distance information between node x(k) and x(k + 1), as well as the
time spent in the evolution and the control signal applied. Any other performance index,
such as control effort, energy, etc., can be naturally included in the computation, in order to
approximate the solution for different optimization problems.

Algorithm 1 details how CMA is used to construct the graphs of the entire state space.
Here, cell(x0) corresponds to the cell containing x0. To avoid dimensional growth in the
graph links, it is advisable to track parameters such as cell size, control actions, and time
evolution of the dynamic model.
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Algorithm 1: CMA for mobile robots in R2.
Result: Gt, Gu, Gd
i10 = cell(x0);
i11 = cell(x1);
i1 = i10;
ts = 1 ;
while i1 ≤ ncellsx do

Compute and update links weights;
Gt(i10, i11)← ts;

Gt(i10, i11)← 1
2

U2;

Gt(i10, i11)← d(p(i10, i11));
i1 = i11;

end

2.3. Combinatorial Optimization Problem Using CMA

The optimization problem is proposed in Equation (3), in which one seeks to minimize
a cost function F, that may be subject to different parameters.

min F,
subject to: q̄(k + 1) = C(q̄(k), Ui),

q̄(0) = [p(0), ṗ(0)]T , q̄(n− 1) = [p(n− 1), ṗ(n− 1)]T ,
Ui = [uxi , uyi ], ux, uy = {−ū, 0, ū},

(3)

where q̄ is the state vector consisting of position (p) and velocity ( ṗ). p(i) represents a path
node with coordinates (x(k), y(k)), where p(0) is the origin position of the robot with initial
velocity ṗ(0), and p(n− 1) is the coordinate of the destination with final velocity ṗ(n− 1).
Ui is the vector of control signals applied at each node, with a length that depends on the
motion dimensions, which in this case is two.

Now we implement the cost function, with the parameters to be optimized in the robot
movement. We build a new data structure in the form of a directed graph with positive
values, where the nodes are the cells of the state space and the edges represent the costs
associated with displacement between two cells. To determine the path that minimizes the
cost function, we perform a shortest path search in the graph, using Dijkstra’s algorithm.
The following objective functions are used to solve the optimization problem in mobile
robot path planning, and the results are shown in Section 3.

Shortest distance

F = Fd = d(p(0), p(n− 1)) =
n−2

∑
k=0

pk+1∫
pk

√
1 + [ f (p)]2dp (4)

Least control effort

F = Fu =
1
2

n−2

∑
k=0

Uk
2 (5)

Least navigation time
F = Ft =

n−2

∑
k=0

ts (6)

Multi-objective problem

F = FMOP = α1F1 + α2F2 + . . . + αnFn

where, α1 + α2 + . . . + αn = 1, αi > 0
(7)
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Despite the constraints on the control signals, the optimization problem has multiple
solutions in the state space, that correspond to symmetries in the workspace or variations
in speed at the intermediate nodes. The robot would take t = (n− 1)ts seconds to complete
each of the possible paths. Formulating a multi-objective optimization problem (MOP)
reduces the multiplicity of solutions, depending on the characteristics of the cost function
and the problem dimension.

Algorithm 2 details how to solve the combinatorial optimization problem in a graph.

Algorithm 2: Shortest path algorithm in R2.

Result: shortestpath[ ]
F → Convex hull (Gt, Gu, Gd);
k0 = cell(q̄(0));
kn−1 = cell(q̄(n− 1));
shortestpath = min F(d(k0, kn−1));

3. Results

This paper addresses the problem of optimal path planning for differential drive
mobile robots. To achieve this, the authors employ the mathematical model of the dynamics
of the control point Pr of the robot, as developed in [37]. The mobile robot is depicted in
Figure 1, which provides details of the various physical parameters of the platform. The
dynamic model is presented in Equation (8), where the state vector q, comprises the linear
positions and velocities of the robot, as well as the angular positions of the robot wheels

M(q)q̈ + V(q, q̇) = E(q)τ − AT(q)λ (8)

X

Eje
 d

e s
im

etr
ía

Y'

r

b

�

x1

L

P0

Pr

X'
Y

Y1

Figure 1. Differential drive mobile robot.

The authors in [37], showed the linearization of the input–output map using feedback
linearization, as well as the nonlinear internal dynamics under look-ahead control for the
point Pr. The linear behavior of the system can be seen in Equation (9), and the internal
dynamics of the wheels are in Equation (10).

ż′ = Az′ + Bu (9)

ż′′ = w(z′, z′′) (10)

y = Cz′ (11)
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where

z =

[
z′

z′′

]
, z′ =


z1
z2
z3
z4

, z′′ =
[

z5
z6

]
,

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B =


0 0
1 0
0 0
0 1

, C =

[
1 0 0 0
0 0 1 0

]
,

w(z′, z′′) = Φ−1(z)
[

z2
z4

]
= − 1

2c2bL

[
cb sin φ− cL cos φ −cb cos φ− cL sin φ
−cb sin φ− cL cos φ cb cos φ− cL sin φ

][
z2
z4

]
,

z′ is the vector of states that contains the linear positions and velocities of point Pr of the
robot in the plane, while z′′ is the vector that contains the angular positions of the wheels.
c and b are parameters of the robot’s geometry, while L 6= 0 is the distance between the
center of mass and point Pr. φ represents the orientation of the mobile robot with respect to
the x axis of the reference frame.

3.1. Problem Description

We address the problem of optimal trajectory planning for a differential drive mo-
bile robot in a plane, building on the analysis performed for the double integrator (DI)
in [38], and the dynamic model presented in Equation (9) and developed in [37]. The
look-ahead motion control of the robot at point (Pr), is analogous to that of the DI in
the plane. We will then present different solutions to the trajectory planning problem,
including minimum distance, minimum control effort, minimum navigation time, and
multi-objective optimization.

To obtain the reference trajectories, the motion of the robot is initiated from the initial
condition of (x0, y0) = (−1,−1) and terminates at the final condition of (x1, y1) = (1, 0.5).
The initial and final velocities are both zero, i.e., (ẋ0, ẏ0) = (ẋ1, ẏ1) = (0, 0), and with a set
of control signals {−0.1, 0, 0.1} applied in the cell mapping algorithm, for a time of ts = 1 s.

3.2. Combinatorial Optimization Using CMA for Minimum Distance (Fd)

We use Dijkstra’s algorithm to find the shortest path between the initial and final
cells of the graph, constructed by means of Equation (4). The initial conditions were
described in the previous section. This generates the reference trajectory that minimizes
the distance traveled by the differential drive mobile robot. The optimization problem
has multiple solutions in the state space, corresponding to symmetries in the workspace
or speed variations at the intermediate nodes. In the path found by the algorithm, the
robot passes through different cells in the state space, increasing the navigation time due to
decreases in velocity in the x direction. In this case, the time it takes the robot to complete
the path is 12 seconds, and the distance is 2.6847 m.

Figure 2a displays the Gd data structure obtained using Algorithm 1, while Figure 2b,c
shows the state space for each of the (x, y) plane dimensions found using Algorithm 2.
Nodes 1, 7, 9, and 13 of the obtained trajectory are indicated with green, blue, cyan, and
yellow colors, respectively. Node 1 corresponds to cell 223, 881, node 7 to 276,425, node 9 to
351,341, and node 13 to 225,751. It should be noted that in Figure 2c, node 1 has three cells,
which can be explained by the fact that the initial velocity on the y-axis is zero. The robot’s
motion in the plane can be observed in Section 3.5.
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Figure 2. Data structure obtained by CMA with number of connections (nz) and state space of
combinatorial optimization problem for minimum distance.

3.3. Combinatorial Optimization Using CMA for Minimum Control Effort (Fu)

Now, the idea is to obtain a reference trajectory that requires the lowest control effort
to move the robot, from the same initial and final states. To achieve this goal, we used the
cost function presented in Equation (5). As shown in the results, the mobile robot takes 26 s
to complete the path, which is more than twice the time taken in the previous problem, and
the control effort is 0.04 u2.

3.4. Combinatorial Optimization Using CMA for Minimum Navigation Time (Ft)

Once again, we implement the CMA to obtain a reference trajectory that minimizes
the navigation time of a mobile robot. Since the total navigation time is minimized within
the adopted discretization, we used the cost function shown in Equation (6) to construct
the network. In this case, we observed that the mobile robot would take 10 s to complete
the route, which is the fastest solution within the adopted discretization.

3.5. Multi-Objective Combinatorial Optimization Using CMA (FMop)

We are now searching for the trajectory that minimizes the cost function presented
in Equation (12), for demonstration purposes we use an arbitrary weighted sum, using
the graphs computed for distance, control effort, and navigation time. If a different per-
formance is desired, it is necessary to change the weights assigned to each optimization
parameter in the cost function. Finding the values of the best-performing weights requires
the computation of a Pareto set, which is a problem outside the scope of this research at
the moment, but certainly will be considered as future work. By taking the same initial
conditions as in the previous examples, we obtain a trajectory in which the robot would
take 11 s to complete the path.

FMOP = 0.78 ∗ Fd + 0.2 ∗ Fu + 0.02 ∗ Ft (12)

Figures 3 and 4 show the control signals obtained for the x and y dimensions, re-
spectively, in each of the studied optimization cases. As can be seen, the maximum and
minimum values are limited by the discretization of the control signals used in the cell
mapping algorithm for the given example. Figures 3b,c and 4b,c exhibit the least amount of
switching, as they correspond to the time and control effort minimization problems, where
the former aims to maximize speed and the latter seeks to minimize control energy. In
contrast, Figures 3a and 4a, which depict the control signals’ behavior for the minimum
distance case, show a high number of switching events. This is because the robot accelerates
and decelerates at the intermediate nodes along this path. To address this issue, a cost
function with an additional to distance optimization parameter can be employed.
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Figure 3. Control signals in x-dimension for each optimization case . (a) Fd. (b) Fu. (c) Ft. (d) FMOP.
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Figure 4. Control signals in y-dimension for each optimization case. (a) Fd. (b) Fu. (c) Ft. (d) FMOP.

Figure 5 shows the robot’s motion results in the workspace, while Figures 6–9 show
the state variables of point Pr of the robot. Figures 10–13 depict the angular positions (θ1, θ2)
and angular velocities (θ̇1, θ̇2) of the robot’s wheels, the mobile platform rotation angle (φ),
and the angular velocity of rotation (φ̇) for each of the optimization cases discussed above.
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Figure 5. Position of the robot in the workspace: (a) shortest distance path (Fd), (b) least control effort
path (Fu), (c) least navigation time path (Ft), and (d) minimum MOP path (FMOP).
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correspond to nodes found by CMA and black line to the interpolation taking into account position
and velocity constraints given by CMA.
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dots (CMA) and black line (Interpolation).
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Figure 8. Robot position and velocity for minimum navigation time: (a) x, (b) y, (c) ẋ, and (d) ẏ. Red
dots (CMA) and black line (Interpolation).
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and black line (Interpolation).
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Figure 10. Position and angular velocity for minimum distance: (a) wheel position 1 = θ1 (blue) and
wheel position 2 = θ2 (red), (b) wheel velocity 1 = θ̇1 (blue) and wheel velocity 2 = θ̇2 (red), (c) robot
guidance φ, and (d) robot angular velocity φ̇.
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Figure 11. Position and angular velocity for minimum control effort: (a) wheels position = θ,
(b) wheels velocity = θ̇, (c) robot guidance φ, and (d) robot angular velocity φ̇.
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Figure 12. Position and angular velocity for minimum navigation time: (a) wheels position = θ,
(b) wheels velocity = θ̇, (c) robot guidance φ, and (d) robot angular velocity φ̇.

0 5 10
0

10

20

(a)

0 5 10
0

1

2

3

4

(b)

0 5 10
0

0.5

1

(c)

0 5 10

-0.2

0

0.2

(d)
Figure 13. Position and angular velocity for minimum MOP: (a) wheels position = θ, (b) wheels
velocity = θ̇, (c) robot guidance φ, and (d) robot angular velocity φ̇.

4. Discussion
4.1. Comparison of Trajectories Generated by the CMA

To analyze the performance of the proposed method using CMA, we present a com-
parison of the four optimization cases mentioned above (see Figure 14). We can observe
that all of the trajectories avoid obstacles. In the solution of the minimum navigation
time problem, we see the undershoot phenomenon, associated with non-minimum phase
systems for differential drive mobile robots [39]. The nature of the minimum distance
and time problems is opposite to the minimum control effort problem, and as a result,
the solutions can be significantly different. The MOP solution represents a compromise
between all of the above cases.

Table 1 shows the results of the distance, control effort, navigation time, and the
multi-objective optimization for each of the trajectories generated by the CMA in the four
combinatorial optimization problems presented above. As expected, the minimum values
are on the main diagonal. When considering the combination of the three performance
criteria (distance, control effort, and time), it is found that the MOP trajectory efficiently
combines all of them, as it has a small control effort, navigation time, and distance.

Table 1. Comparison of trajectories using CMA with different cost functions.

Path Optimization Criterion Distance (m) Effort (u2) t (s) MOP Cost

1 Distance 2.6847 0.16 12 2.3661

2 Control Effort 2.9023 0.04 26 2.7918

3 Time 2.7702 0.18 10 2.3709

4 MOP 2.6862 0.14 11 2.3432
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Figure 14. Planned trajectories using CMA with Fd, Fu, Ft, and FMOP .

4.2. Comparison of Different Trajectory Planners

We now present a comparison of the distance of the paths generated by four different
methods: (a) combinatorial optimization using CMA for minimum distance, (b) multi-
objective combinatorial optimization problem using CMA, (c) the shortest path search
algorithm A∗, and (d) the optimized version of the rapidly exploring random tree (RRT∗)
sampling method. This comparison is only based on distance, as the classical algorithms
implemented generate paths only based on position. Figure 15 shows the four solutions in
the case of a mobile robot moving as per the described problem.
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Figure 15. Comparison of trajectory planners.
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Table 2 shows the distance generated by each of the paths. The planner that generates
the path with the shortest distance is RRT∗, which does not take into account the dynamics,
while the planner based on the CMA does. The CMA with Fd, presents oscillations in the
intermediate speeds, increasing the navigation time compared to the CMA with FMOP. The
latter delivers a route with good performance in terms of speed profiles, navigation time,
distance, and control effort.

The A∗ planner is implemented because it is one of the most widely used classical
methods in the literature, and is known for generating short trajectories that avoid obstacles.
However, for this example, the algorithm finds a solution to the distance optimization
problem that is not the minimum of the problem, according to the selected heuristic function.
Moreover, this method does not take into account the others parameters of the path: time,
control effort, and energy consumption.

When comparing the planners in terms of percentage, with the RRT∗ algorithm taken
as a reference, it is found that the CMA with Fd generates a path that is 1.69% longer, while
the CMA with FMOP generates a path that is 1.75% longer. Additionally, the CMA takes into
account velocity profiles, the time vector for the mobile robot, and incorporates dynamic
parameters of the robot, to obtain better performance in path tracking.

Table 2. Comparison of trajectories of a robot’s motion in the plane.

Path Planner Distance (m)

1 RRT∗ with maximum distance of connection 0.8 m 2.6400

2 A∗ 2.6604

3 CMA with Fd 2.6847

4 CMA with FMOP 2.6862

5. Conclusions

The use of optimal control theory for motion planning is a difficult task. Cell mapping
offers a methodology to formulate combinatorial optimization problems, allowing the
inclusion of complex cost functions, as well as multi-objective optimization problems.
The proposed method allows the transformation of continuous optimization problems
into discrete optimization problems. With this, suboptimal solutions are obtained, which
depend on the discretization of the adopted cell.

The cell mapping algorithm (CMA) can be systematically used to plan trajectories
for mobile robots navigating complex spaces with obstacles, provided that these robots
are represented by a linear mathematical model. One of the advantages of using the
CMA, is that it optimizes not only the distance criterion but also additional parameters,
such as navigation time and control effort. By generating graphs that combine different
optimization criteria in the objective function, the CMA algorithm enables us to find the
shortest path in the resulting data structure. In this paper, a comparison was made of the
distance optimization criterion, which resulted in a path that was only 2% longer than the
path generated by the state-of-the-art rapidly exploring random tree star (RRT∗) algorithm.
For future work, we intend to use other path planning algorithms, to compare the energy
consumption and navigation time obtained by the CMA.

The complexity involved in constructing the CMA lies in the discretization of the state
space, as well as in selecting the set of control signals to be used. For future work, we intend
to explore dynamic discretization methods, similar to QuadTree, to optimize the number
of cells. We also intend to change the way of computing each of the simulations, taking
advantage of the geometry of the problem and also employing parallelization techniques.

The proposed methodology, utilizing CMA, can be applied to formalize optimization
problems in mobile robot trajectory planning with various cost functions, such as minimum
energy, maximum safety, minimum total variation, jerk minimization, and smoothness,
as well as multi-objective problems that combine these functions. This is in contrast to
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the classical methods studied in this paper, which only optimize distance, and provide
position vectors for constructing the route. The use of CMA enables the inclusion of more
complex cost functions, making it a more versatile and powerful tool for mobile robot
trajectory planning.
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