

Electronics 2023, 12, 2077. https://doi.org/10.3390/electronics12092077 www.mdpi.com/journal/electronics

Article

Development and Experimental Validation of Control
Algorithm for Person-Following Autonomous Robots
J. Enrique Sierra-García 1,*, Víctor Fernández-Rodríguez 2, Matilde Santos 3,* and Eduardo Quevedo 1

1 Department of Electromechanical Engineering, University of Burgos, 09006 Burgos, Spain;
equevedo@ubu.es

2 Mova Traffic Engineering, INDRA, 28108 Madrid, Spain
3 Institute of Knowledge Technology, Complutense University of Madrid, 28040 Madrid, Spain
* Correspondence: jesierra@ubu.es (J.E.S.-G.); msantos@ucm.es (M.S.)

Abstract: Automatic guided vehicles, in particular, and industrial autonomous mobile robots, in
general, are commonly used to automate intralogistics processes. However, there are certain logistic
tasks, such as picking objects of variable sizes, shapes, and physical characteristics, that are very
difficult to handle fully automatically. In these cases, the collaboration between humans and auton-
omous robots has been proven key for the efficiency of industrial processes and other applications.
To this aim, it is necessary to develop person-following robot solutions. In this work, we propose a
fully autonomously controlling autonomous robotic interaction for environments with unknown
objects based on real experiments. To do so, we have developed an active tracking system and a
control algorithm to implement the person-following strategy on a real industrial automatic-guided
vehicle. The algorithm analyzes the cloud of points measured by light detection and ranging (LI-
DAR) sensor to detect and track the target. From this scan, it estimates the speed of the target to
obtain the speed reference value and calculates the direction of the reference by a pure-pursuit al-
gorithm. In addition, to enhance the robustness of the solution, spatial and temporal filters have
been implemented to discard obstacles and detect crossings between humans and the automatic
industrial vehicle. Static and dynamic test campaigns have been carried out to experimentally vali-
date this approach with the real industrial autonomous-guided vehicle and a safety LIDAR.

Keywords: industry 4.0; person-following robot; autonomous vehicle; AGV; control; experimental
validation

1. Introduction
Automatic guided vehicles (AGVs) and industrial autonomous mobile robots stand

out for their efficiency and versatility in industrial applications [1]. They are autonomous
transport vehicles commonly used to replace conveyors and manual industrial trucks in
the industrial sector in order to automate the intralogistics processes. They have become
even more relevant in the Industry 4.0 framework due to the flexible manufacturing par-
adigm it entails [2]. These autonomous industrial vehicles provide flexibility, determin-
ism, traceability, and enhance the quality of industrial processes [3,4].

However, there are certain logistic tasks that cannot be or are very difficult to fully
automate. For instance, the picking of different parts in racks separated in a workspace.
The complexity comes, on the one hand, from the perception abilities required to detect
the objects in the rack, sometimes even partially or totally occluded by other objects; on
the other hand, from the difficulty of grasping elements of different sizes, shapes, and
physical properties. The latter is especially complex in the case of deformable or delicate
objects [5].

In these cases, the collaboration between humans and autonomous robots is key in
order to carry out these jobs. Humans can perform high-value tasks that are difficult to
automate, such as component selection and picking, and the robot can focus on lower-

Citation: Sierra-García, J.E.;

Fernández-Rodríguez, V.;

Santos, M.; Quevedo, E.

Development and Experimental

Validation of Control Algorithm for

Person-Following Autonomous

Robots. Electronics 2023, 12, 2077.

https://doi.org/10.3390/

electronics12092077

Academic Editors: Elías Revestido

Herrero, Victor M. Becerra and

Francisco Jesus Velasco

Received: 25 February 2023

Revised: 21 April 2023

Accepted: 26 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Electronics 2023, 12, 2077 2 of 35

value tasks, such as towing the goods. For this purpose, the autonomous robot must be
able to follow the human operator while executing the logistic tasks.

This ability is very useful in many fields and use cases. For instance, a follower cart
that transports heavy tools and measurement instruments for a technician, or in hospitals
in order to transport medicines and medical devices, or even in supermarkets, autono-
mously driving the shopping trolley. The latter can be especially useful for people with
reduced mobility. Thus, the importance of developing human-following autonomous ro-
bots.

In this work, we propose the control architecture and control algorithm for a person-
following AGV. The approach can be adapted for any type of AGV or any autonomous
robot, no matter the kinematics. In this paper, the control proposal has been experimen-
tally validated on a real hybrid differential tricycle AGV [6] of the ASTI Mobile Robotics
company.

The control approach exploits the cloud of points measured with a LIDAR sensor. It
allows obtaining the position of the target to be tracked, although other sensing techniques
could have been used, such as ultra-wide-band (UWB) [7]. Spatial and temporal filtering
has been implemented to discard and avoid undesired obstacles in the surroundings of
the target. Indeed, one of the problems of this application is the presence of objects that
may cross the path between the sensor and the target. They cause the system to follow
them instead of the target and produce unexpected behaviors. To avoid it, a crossing de-
tector has been developed. If the system detects a crossing of something, it waits for a
while to check if the crossing is temporal, in which case it continues with the previously
registered target, or if a time threshold is exceeded, then it cancels the tracking for the sake
of safety. In addition, a speed controller calculates the speed reference, and the well-
known pure pursuit algorithm is used to obtain the direction.

As detailed in the state of the art, there are some other previous works related to
human-following robots. However, we have tested the approach with a hybrid differential
tricycle robot; thus, we have not found equivalent data to perform a numeric comparison.
From the qualitative perspective, as the main innovations, it is possible to remark: the
dynamic tracking cone to differentiate the target from the surrounding, the crossing de-
tector, the integration of the tracking with the pure pursuit, and the implementation in a
hybrid mobile robot.

The rest of the paper is structured as follows. Related works are presented in Section
2. Section 3 explains the model of the AGV and its kinematic equations. The architecture
of the control system is detailed in Section 3. Section 4 is dedicated to the study of the
person-following algorithm and the generation of the control references for the robot. The
results obtained during the static and dynamic experimental tests are discussed in Section
5. Finally, the paper ends with the conclusions and future works.

2. Related Works
People-following is a well-known problem in robotic autonomous navigation. It has

a wide range of applications in the home, industry, manufacturing, health care, entertain-
ment industry, and other settings. Different work environments and applications pose
various challenges that have been addressed in many ways. In fact, the generation of the
appropriate trajectory and the avoidance of collisions are recurring topics in different sce-
narios. To mention some works in the aerospace field, where they can be critical, in [8]
several autonomous trajectory generation algorithms for space robots are proposed, some
of them including convex optimization. Raigoza and Sands [9] augmented the previous
approach with distributed waypoints for autonomous collision avoidance. The work by
Sands [10] uses Pontryagin’s minimization of Hamiltonian systems to derive controls that
account for interaction with robot structural dynamics providing autonomous trajectories
for highly flexible space robotics. Manikandan et al. (2022) address the problem of AGV
tracking of a curve path [11]. They applied model predictive control once the curve had

Electronics 2023, 12, 2077 3 of 35

been detected. The so-called curve-aware MPC algorithm has been proven in real-time
experiments for mixed environments.

One of the required abilities of AGVs is detection. For security reasons, mainly if they
work in congested environments with human operators in the workplace, autonomous
vehicles must be able to detect any objects on the path and avoid collisions. This is an issue
address for other types of ground vehicles, as shown in the review by Islam et al., 2022. In
this case, the paper focuses on ground vehicle detection methods for the off-road environ-
ment [12]. Closer to our approach, the paper by Pires et al. (2022) develops an autonomous
navigation system for an AGV in order to detect and avoid obstacles based on the pro-
cessing of data acquired with a frontal depth camera mounted on the vehicle [13]. Zahid
and Hao (2022) developed an IoT system for an AGV prototype in an indoor industrial
environment. The study produced several significant results related to obstacle detection
of AGV with the IoT-based technology that allows flexible wireless communication
among mobile robots [14].

The paper by [15] gives a comprehensive overview of the literature on person-follow-
ing by autonomous robots. The state-of-the-art methods for perception, planning, control,
and interaction are discussed, and their applicability in varied ground, underwater, and
aerial scenarios is presented. Some of the main challenges of the robotic person-following
approaches are also discussed in the survey paper [16] from the social interactions point
of view, where the main goal is the design of socially aware person-following robots.

For what concerns terrestrial applications, classifications of the different methods are
based on the type of sensors used for perception and on the strategy used to detect the
target person, control, and interaction. According to [17], most ground applications use a
simple unicycle model that controls the robotʹs 2D motion in polar coordinates. The cho-
sen detection system should be able to find the target position and distance from the robot.
People are usually localized by means of identification of the face, legs, or whole body by
using a laser range finder or 2D imaging sensors.

Nevertheless, most of these works do not address the control of the follower robot as
part of the study. Person-following is mainly solved with two main control approaches.
The inputs to the robot are synthesized so as to control either the relative position of the
robot w.r.t. the person frame or the relative position of the person in the robot frame (per-
son frame-based control or robot-centered control) [18]. This way, the mobile robot is able
to follow the leader (human), whether in front, side-by-side, or behind the robot. The cut-
ting-edge communication-control co-design is presented in the paper by Qiao and Yuan
(2022) and applied to an AGV [19]. Indeed, this work analyzes and summarizes the exist-
ing communication–control co-design methods and shows as a challenging use case the
cloud control of an automated guided vehicle (AGV) in a future factory. The paper by [20]
covers the review of trends in person-following robot control algorithms, describing dif-
ferent methods where the robot receives input of tracking data and outputs the movement
of the robot accordingly. Moshayedi et al., 2022, propose a PID control tuned with differ-
ent techniques to adjust the difference in the speed of both sides of the robot; thus, the
robot will be able to move along the path [21]. They are simulated and tested on different
trajectories on a model of the AGV.

In [4], a hybrid controller that combines reinforcement learning-based control (RLC)
and PI regulators is applied to solve the trajectory tracking control and the longitudinal
velocity control of an AGV.

Reis et al. (2022) detect the gap in the literature on control strategies of the position
of AGVs [22]. The paper proposes a systematic literature review to investigate the research
field from the controller design perspective, and the technological tendencies of the pro-
posed solutions are revealed.

In [23], a Lyapunov globally asymptotically stable controller is proposed, where the
human user velocity is also taken into account to modify the controller gains. It also ad-
dresses the extended kinematic and the inverse kinematics model-based controller for the
differential-drive mobile robot. A non-linear controller is proposed in [24] focused on the

Electronics 2023, 12, 2077 4 of 35

so-called jack-knife effects to avoid the limitation of classical control laws regarding the
robot’s non-holonomy and the difficulty of estimating the personʹs orientation. In [25], the
robot follows the operator from behind by feeding decentralized proportional or PID con-
trollers with relative and translational errors to the robot. Petrov et al. (2021) address the
control of an autonomous mobile robot when it is following a person in front of him. Using
a leader–follower formation approach combined with a look-ahead concept, a human-ro-
bot kinematic model in error coordinates with respect to a local Cartesian coordinate sys-
tem is developed [26]. Non-linear feedback control is designed using local information
from the onboard sensor for the relative human–robot position and orientation. An adap-
tive control is proposed to estimate the unknown human linear and angular velocities.

The paper by Oh-hara, 2022, presents an image-based control for a person following
a mobile robot [27]. Based on the estimate of the lowest positions of both feet of a tracked
person through particle filters based on color invariances, authors control the velocity of
the robot. They define an analytic control law using the image coordinates so it coincides
with the target point.

The longitudinal control scheme of a person following a robot usually aims at keep-
ing a specified distance during the following. It could be approached with classical regu-
lators, such as PID [28], or with more sophisticated or intelligent techniques. In [29], an
intelligent control based on fuzzy logic is proposed. It makes use of a laser range finder
mounted on a wheeled mobile robot to detect and follow a person’s legs while keeping a
safe distance. The fuzzy system has two inputs, the relative velocity of the robot to the
person’s legs and the difference between the relative distance and the safe distance. The
output is the needed acceleration of the robot. Another fuzzy logic control strategy is pro-
posed in [30] to obtain the appropriate velocity of the following robot. The gap between
the person and the robot is used, and the longitudinal direction is obtained. In [31], the
challenges of the person-following robot longitudinal control are summarized, including
reverse, gap range, no imitation, and the leader personʹs periodic/random movement.
Then the person-following robot longitudinal control based on the data of the bar-laser-
perception device is presented.

Finally, in [32], a contactless control system for an automatic guide vehicle (AGV) is
developed. The AGV is designed using a tricycle drive system. Using a depth camera, the
AGV is programmed to be able to follow human movements without marking or direct
contact.

So, as far as we know, the human-following approach is not so common in the indus-
try environment, and the related literature does not usually include AGVs, nor address
the control problem for these vehicles in the follower configuration.

3. Model of the System
The here proposed human-following controller can be implemented in any type of

AGV or any autonomous robot. However, in this work, we have used a hybrid tricycle
and differential tow AGV. This type of hybrid autonomous guided vehicle is widely used
in the industry. The traction unit works as a differential mobile robot. This traction unit is
linked to the body by an axle on which it pivots. Thus, the kinematics of the AGV body
follows the movement of a tricycle robot. Figure 1 shows a schematic representation of
this hybrid AGV.

Electronics 2023, 12, 2077 5 of 35

Figure 1. Schematic representation of the AGV. The traction unit works as a differential mobile robot
and is linked to the body by an axle on which it pivots. Thus, the kinematics of the AGV body follows
the movement of a tricycle robot.

The kinematic model of the AGV is described by Equations (1)–(3). These equations
are explained in more detail in [33,34]. 𝑥ሶ௛ = ௏ಽା௏ೃଶ cos(Φ௛), 𝑦ሶ௛ = ௏ಽା௏ೃଶ sin(Φ௛), Φሶ ௛ = ௩ೃି௩ಽ௅೓ (1)

𝑥ሶ௕ = 𝑣௛cos(𝛾)cos(Φ௕), 𝑦ሶ௕ = 𝑣௛cos(𝛾)sin(Φ௕), Φሶ ௕ = ௩೓௅್ sin(𝛾) (2)

𝑣௛ = ට𝑥ሶ௛ଶ + 𝑦ሶ௛ଶ = 𝑣௅ + 𝑣ோ2 (3)

where (𝑥௛, 𝑦௛, Φ௛) and (𝑥௕, 𝑦௕, Φ௕) denote the position (m) and orientation (rad) of the
body and the traction unit, respectively. The variable 𝑣௛ (m/s) is the longitudinal velocity
of the traction unit, 𝐿௛ (m) is the distance between the wheels in the traction unit, 𝐿௕ (m)
is the distance between the rear wheels and the center of the traction unit, 𝑣௅ is the linear
velocity of the left wheel, and 𝑣ோ is the linear velocity of the right wheel.

Normally, in these types of AGV, the control references are 𝑣௅ and 𝑣ோ. However, in
the AGV used in the experiments, there is an embedded controller for the wheel speed
and a control interface such that the external references are the longitudinal velocity 𝑣௥௘௙
and the direction, 𝛾௥௘௙, as shown in Figure 1. These external references (𝑣௥௘௙, 𝛾௥௘௙) are
internally transformed into wheel speed references by (4)–(6). 𝑤௥௘௙ = Kp୵൫𝛾௥௘௙ − 𝛾൯ + Kd୵ 𝑑൫𝛾௥௘௙ − 𝛾൯𝑑𝑡 + KI୵ න൫𝛾௥௘௙ − 𝛾൯ 𝑑𝑡 (4)

𝑣௅ೃಶಷ = 𝑣௥௘௙ − 𝑤ோாி ∙ 𝐿௛2 (5)

𝑣ோೃಶಷ = 𝑣௥௘௙ + 𝑤ோாி ∙ 𝐿௛2 (6)

The parameters of the model are summarized in Table 1.

Electronics 2023, 12, 2077 6 of 35

Table 1. Parameters of the model. (𝒙𝒉, 𝒚𝒉) Position of the Traction Unit (𝑥௕, 𝑦௕) Position of the body of the AGV Φ௛ Orientation of the traction unit in the intertial frame Φ௕ Orientation of the body of the AGV in the intertial frame 𝛾 Angle of the traction unit in the AGV reference frame 𝛾௥௘௙ Reference for the angle of the traction unit 𝑉௅ Longitudinal velocity of the left wheel 𝑉ோ Longitudinal velocity of the right wheel 𝑣௛ Longitudinal velocity of the traction unit 𝐿௛ Length of the traction unit 𝐿௕ Distance between the rear wheels and the traction unit
(Kp୵, Kd୵, KI୵) Gains of the PID 𝑣௥௘௙ Reference for the longitudinal velocity 𝑣௅ೃಶಷ Reference for the velocity of the left wheel 𝑣ோೃಶಷ Reference for the velocity of the right wheel

4. Description of the Control Architecture
Figure 2 shows the hardware control architecture. A safety LIDAR gives a cloud of

points to an embedded computer. This computer oversees the detection of the target, per-
forms the tracking algorithm, and obtains the control references sent to the AGV. Depend-
ing on the AGV type, the control references can be given as pairs (direction, velocity),
(angular velocity, longitudinal velocity,) or (left velocity, right velocity). In this work, we
use an AGV that is controlled by the direction and the speed. In turn, the AGV provides
information to the embedded computer about its current velocity. If this information is
not available, for instance, in the case the AGV is not equipped with encoders, this speed
could be estimated from the previous speed references.

Figure 2. General hardware architecture. The LIDAR generates the point cloud that is sent to the
embedded computer, which runs the person-following algorithm. The embedded computer sends
the direction and velocity reference to the AGV.

The software configuration of the person-following system is shown in Figure 3. The
point cloud obtained by the LIDAR goes to the module in charge of the spatial and tem-
poral filtering. This module selects the correct samples of the lidar for the right-tracked
target. It is composed of a tracking cone (spatial filter) and a crossing detector that acts as

Electronics 2023, 12, 2077 7 of 35

a temporal filter. Both are further explained in Section 4. The crossing detector also gen-
erates a signal to trigger the safety brake, 𝑐ௗ, if a crossing is detected.

Figure 3. Software control architecture. The SW architecture is composed of spatial and temporal
filtering, a pure pursuit algorithm that calculates the direction, and the speed controller that obtains
the velocity reference. In addition, a safety brake is implemented to decelerate the AGV if an object
is too close.

The position of the target detected, P(x,y), feeds the input of the pure pursuit algo-
rithm and the speed controller. Pure pursuit generates the reference of the direction, 𝛾௥௘௙,
for the AGV. The speed controller also receives the position of the target in the previous
iteration. The current position and the previous one are used to estimate the speed of the
target. Then the pure pursuit calculates the speed reference for the AGV to follow the
target, 𝑣௦௖. When the AGV is working, this speed reference is used as a reference for the
AGV, 𝑣௥௘௙ (switch of Figure 3 in the upper position).

In case the distance to the target is below the safety distance or when a crossing is
detected (𝑐ௗ = 1) the safety brake module triggers the safety stop, 𝑠௕ = 1 . This event
changes the switch to the down position, then the speed reference given by the safe decel-
eration ramp, 𝑣௦௥, is used, and the AGV stops in a controlled way. It is important not to
confuse this stop managed by the human-following controller with the stop commanded
by the AGV safety system. Indeed, to ensure that both safety systems coexist well, it is
necessary to set the safety distance of the human-following architecture larger than the
safety distance of the safety device embedded in the AGV.

5. Human-Following Algorithm
5.1. General Description

The flowchart of the person-following algorithm is shown in Figure 4. It is structured
in two phases: detection and tracking. It starts with the detection, and once a target is
detected and confirmed, it moves to the tracking phase.

Electronics 2023, 12, 2077 8 of 35

Figure 4. Flowchart of the human-following algorithm. The left part of the flowchart is the target
detection phase; when the user confirms the tracking target, the algorithm proceeds to the target
tracking phase. The system remains in this phase as long as no object obstructs the LIDAR.

During the initialization of the process, the industrial computer where the algorithm
is running must establish a connection with the lidar sensor to receive the scans. Then the
algorithm waits to detect a target in the initial tracking cone. As it is explained in the next
section, during the detection phase, the range of the detection cone is [− గସ , గସ]. Samples
outside this range are initially filtered.

Once a target is detected, the system requests confirmation from the operator before
tracking the target. If the operator declines the tracking, the process ends; otherwise, the
algorithm goes on to the tracking phase. Usually, there is no need for two persons to do
this, the followed human and the operator. In industrial workspaces, it is expected that
people use an app to see the objects perceived by the AGV and confirm that he/she is the
correct tracking target. After this confirmation, the application sends a command to the
AGV to start the tracking process. This can be observed in Figure 4.

While in the tracking phase, the algorithm calculates the circumference arc required
to reach the target. Then it obtains the nearest target position within the tracking cone to
track the movement of the object and to detect if an obstacle has crossed between the target
and the lidar. If there is a crossing, it stops and checks if it is an instantaneous or a perma-
nent crossing. If the obstacle remains after the crossing threshold time, the program ends.
Otherwise, if the crossing disappears, the algorithm calculates the speed and the direction
references and calculates the circumference arc again to the next point. This process is
carried out continuously until a permanent crossing is detected or the operator decides to
stop the tracking.

The operation of the human-follower robot described in Figure 4 can be formalized
by Algorithm 1. In this algorithm, 𝑟𝑒𝑎𝑑𝐿𝐼𝐷𝐴𝑅() is a function that gives the measurements
of the LIDAR in polar coordinates [𝑟, 𝜃] , where 𝑟 denotes the distances, and 𝜃 repre-
sents the angles. The function 𝑓𝑖𝑙𝑡𝐶𝑜𝑛𝑒 is the filtering cone; it receives the distances and
the angles measured by the LIDAR and filters them to obtain the measures that belong to
the tracking cone. This is further explained in Section 5.2.1. The function 𝑔𝑒𝑡𝑀𝐼𝑁() cal-
culates the closest point [𝑟௠௜௡, 𝜃௠௜௡] of the filtered point cloud, [𝑟௙, 𝜃௙] . The function 𝑝𝑜𝑙𝑎𝑟2𝐶𝑎𝑟𝑡()transforms polar coordinates to cartesian coordinates, and it is used to cal-
culate the position of the closest point in cartesian coordinates [𝑥௠௜௡, 𝑦௠௜௡]. The function

Electronics 2023, 12, 2077 9 of 35

𝑔𝑒𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛() shows the detected position to the user and requests confirmation for
the tracking.

The crossing detection is implemented by the function 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛() , that
generates the crossing condition, 𝑐𝑑, and updates the latest position, 𝑟௢௞, if there has not
been an obstruction. The elapsed time 𝑡௖ௗ is used to measure the duration of the LIDAR
obstruction. This is further explained in Section 5.2.3. The velocity reference and direction
reference are obtained by the functions 𝑢𝑝𝑑_𝑉𝑟𝑒𝑓 and 𝑢𝑝𝑑_Υ𝑟𝑒𝑓, respectively. They are
detailed in Sections 5.3.1 and 5.3.3. Finally, the function that updates the detection cone is
called 𝑢𝑝𝑑ୡ୭୬ୣ (see Section 5.2.2).

Algorithm 1 Human-following algorithm 𝒄𝒐𝒏𝒇 ← 𝑭𝑨𝑳𝑺𝑬 𝒕𝒄𝒅 ← 𝟎 𝒄𝒐𝒏𝒆 ← [−𝟒𝟓, 𝟒𝟓]

While {𝒕 < 𝑻𝒆𝒙𝒆𝒄}{%Detection phase
 While {𝒄𝒐𝒏𝒇 = 𝑭𝑨𝑳𝑺𝑬}{
 [𝒓, 𝜽] ← 𝒓𝒆𝒂𝒅𝑳𝑰𝑫𝑨𝑹()
 [𝒓𝒇, 𝜽𝒇] ← 𝒇𝒊𝒍𝒕𝑪𝒐𝒏𝒆(𝒓, 𝜽, 𝒄𝒐𝒏𝒆)
 [𝒓𝒎𝒊𝒏, 𝜽𝒎𝒊𝒏] ← 𝒈𝒆𝒕𝑴𝑰𝑵(𝒓𝒇, 𝜽𝒇)
 [𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏] ← 𝒑𝒐𝒍𝒂𝒓𝟐𝑪𝒂𝒓𝒕(𝒓𝒎𝒊𝒏, 𝜽𝒎𝒊𝒏)
 𝒄𝒐𝒏𝒇 ← 𝒈𝒆𝒕𝑪𝒐𝒏𝒇𝒊𝒓𝒎𝒂𝒕𝒊𝒐𝒏(𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏)
 [𝒙𝒐𝒍𝒅, 𝒚𝒐𝒍𝒅, 𝒓𝒐𝒌] ← [𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏, 𝒓𝒎𝒊𝒏]

 }endWhile
 While {𝒕𝒄𝒅 < 𝑻𝒄}{ %Tracking phase
 [𝒓, 𝜽] ← 𝒓𝒆𝒂𝒅𝑳𝑰𝑫𝑨𝑹()
 [𝒓𝒇, 𝜽𝒇] ← 𝒇𝒊𝒍𝒕𝑪𝒐𝒏𝒆(𝒓, 𝜽, 𝒄𝒐𝒏𝒆)
 [𝒓𝒎𝒊𝒏, 𝜽𝒎𝒊𝒏] ← 𝒈𝒆𝒕𝑴𝑰𝑵(𝒓𝒇, 𝜽𝒇)
 [𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏] ← 𝒑𝒐𝒍𝒂𝒓𝟐𝑪𝒂𝒓𝒕(𝒓𝒎𝒊𝒏, 𝜽𝒎𝒊𝒏)
 [𝒄𝒅, 𝒓𝒐𝒌] ← 𝒄𝒓𝒐𝒔𝒔𝒊𝒏𝒈𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏(𝒓𝒐𝒌, 𝒓𝒎𝒊𝒏)
 If 𝒄𝒅 = 𝟏 then
 𝒗𝒓𝒆𝒇 = 0
 𝒕𝒄𝒅 = 𝒕𝒄𝒅 + ∆𝒕
 Else{

 𝒕𝒄𝒅 ← 𝟎
 𝒗𝒓𝒆𝒇 ← 𝒖𝒑𝒅_𝑽𝒓𝒆𝒇(𝒙𝒐𝒍𝒅, 𝒚𝒐𝒍𝒅, 𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏)
 𝒗𝒓𝒆𝒇 ← 𝒖𝒑𝒅_𝚼𝒓𝒆𝒇(𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏)
 𝒄𝒐𝒏𝒆 ← 𝒖𝒑𝒅_𝐜𝐨𝐧𝐞(𝜽𝒎𝒊𝒏)
 }EndIf
 𝒙𝒐𝒍𝒅 ← 𝒙𝒎𝒊𝒏
 𝒚𝒐𝒍𝒅 ← 𝒚𝒎𝒊𝒏

 }endWhile
 }endWhile

The detection cone is initially set to cover 90° centered at 0°, from −45° to 45°. The
crossing time counter is initialized to 0. The algorithm is divided into two parts. First, it
measures the closest point and waits for confirmation from the user. This is done contin-
uously until the confirmation is received, and then it starts the tracking phase. In this sec-
ond phase, it first obtains the closest point and checks whether this point is a crossing
object or not. If it is a crossing object, the AGV stops and updates the crossing time counter.
In the next iteration, it measures the closest point again and checks if the crossing persists.
If the crossing event takes longer than Tc, the tracking phase finishes and goes back to the
detection phase. On the other hand, when no crossing is detected, the crossing time coun-
ter is reset, and the control references and the tracking cone are updated.

Electronics 2023, 12, 2077 10 of 35

5.2. Target Detection, Filtering, and Tracking
5.2.1. Target Detection

When the algorithm starts, it must detect the object or person to be tracked. To do so,
the algorithm performs an initial sweep and compares all distances obtained. The algo-
rithm identifies the target as the point closest to the lidar.

It is noteworthy to clarify that during the object detection phase, a filter is applied to
reduce the scan range of the lidar. The laser has a sweeping range of 270°, which, in the
case of our setup, only leaves the rear of the AGV uncovered (the scanning device is a
safety lidar). However, for object detection and tracking, we must consider that the object
to be tracked will be mainly and most of the time in front of the AGV. This way, we can
reduce the cone to 90° around the front of the scan during the object detection phase. This
filtering is represented in Figure 5.

Figure 5. Spatial filter applied during the target detection phase. The tracking cone during this phase
measures 90°. On the sides of this tracking cone, the objects are considered obstacles.

When the human (target) is detected by the system, the human operator must con-
firm that he/she wants to be followed by the AGV. This confirmation is key to avoiding
the AGV following undesired people or objects.

The adjustment of the angle of the field of vision, 𝛼௙௢௩, must consider the clearance
to the lateral obstacles, sୡ. If this angle is not well configured, the LIDAR could perceive
the lateral obstacles closer than the human target and would not follow the human. The
following Figure 6 shows the situation when the AGV must track a human in the presence
of lateral obstacles in the surroundings.

Electronics 2023, 12, 2077 11 of 35

Figure 6. Diagram that relates the constraints of the angle of the field of vision and the safety clear-
ance to the obstacles. The distance to the obstacles must be larger than the look-ahead distance.

The distance to the obstacle is denoted as 𝑙௢. In this situation, in order to enable hu-
man tracking, the condition 𝑙௢ > 𝑙௔௛ must be satisfied. By performing some trigonomet-
rical operations, it is possible to obtain the constraint of the field of vision. 𝑙ௗ > 𝑙௔௛ => (wୠ + sୡ)cos ቀπ2 − 𝛼௙௢௩2 ቁ > 𝑙௔௛ => 𝛼௙௢௩ < π − 2acos ቈ(wୠ + sୡ)𝑙௔௛ ቉ (7)

In our case, the width of the AGV is 50 cm, so wୠ = 25 cm. If we consider a safety
clearance of 𝑠௖ = 50 cm, the field of vision constraint is 𝛼௙௢௩ < 97.18°. As we have used
an angle of 90°, the field of vision meets the constraint.

From another perspective, by operating the previous equation, it is also possible to
obtain the minimum safety clearance for a given field of vision. sୡ > 𝑙௔௛ cos ቀπ2 − 𝛼௙௢௩2 ቁ − wୠ (8)

5.2.2. Target Tracking
Once the target has been detected, the system must follow it, avoiding mistaking it

for other possible objects within the detection field. With this aim, in this approach, we

Electronics 2023, 12, 2077 12 of 35

have reduced the detection cone even further than shown in Figure 5. Even more, the de-
tection cone moves with the object. This dynamic spatial filtering is based on three main
assumptions:
• The human to be tracked has a detectable thickness greater than 10 cm;
• The human to be tracked does not move at too high a speed; we can assume that it is

not higher than 1.5 m/s;
• The laser has a scanning frequency of 30 ms, so it performs about 33.3 scans per sec-

ond.
According to these assumptions, when the target moves at the maximum speed of

1.5 m/s, it travels 4.5 cm during a lidar sweep, that is 30 ms. Therefore, it does not make
sense to search for the object outside this range of motion. In this way, we reduce the
detection field to the objectʹs surroundings. However, to consider a certain clearance, we
extend this margin to 20 cm per scan. For a proper operation, the distance between the
legs of the worker and other objects must be larger than 4.5 cm. The previous assumptions
have been specified for human-following robots; however, they could be updated to fol-
low other different tracking targets.

As the laser makes a circular scanning, the perimeter of the circular sector scanned
grows with the distance. However, the number of samples scanned only varies with the
angular range; it is not affected by the distance. Therefore, if a target is detected by 𝑛
samples of the lidar at a certain distance, it will be detected by 𝑛/2 samples if the distance
is doubled. That is, the number of samples scanning the target is inversely proportional
to the distance. From another perspective, the distance between two consecutive samples
grows with the distance; thus, the measurement error also grows. Indeed, if the distance
is large enough, the detected target could disappear between two samples (Figure 7right).
On the other hand, if the target approaches the lidar, we must increase the detection cone
if we want the target to be totally covered by the scan (Figure 7left).

Figure 7. Change in the detection cone with the distance (left) and object disappearing between
samples (right). When the distance grows, the probability that a target disappears between the sam-
ples also grows.

In order to avoid false readings, it is necessary that several samples simultaneously
scan the target. We have set the number of samples to detect the target to 5. Thus, if the
target measures 10 cm, then the minimum distance between samples is 2 cm.

Electronics 2023, 12, 2077 13 of 35

The capacity to differentiate two objects that are very close depends on the distance
between two lidar samples, so it is possible to obtain the distance between samples, 𝑑௦, as
a function of the distance 𝑟 from the center of the lidar (9).

𝑑ௌ(𝑟) = ቀ2 ⋅ 𝜋 ⋅ 𝑟 ⋅ 34ቁ𝑁௦௣௦ (9)

where 𝑁௦௣௦ is the number of samples per scan (a technical parameter of the LIDAR), and 𝑟 is the distance from the LIDAR to the object. Considering the perimeter of the circum-
ference, the angular range of the lidar (270°), and that in the experimental implementation, 𝑁௦௣௦ = 1080, at 1 m this distance 𝑑ௌ is 0.43 cm. So, the LIDAR would be able to distinguish
two objects even if the distance between them is smaller than 4.5 cm.

From this equation, it is possible to check that if we want to obtain a distance between
samples less than 2 cm, the radius must be less than 4.583 m, i.e., around 4 m. At this
distance from the lidar, the distance between samples is 𝑑ௌ = 1.7453 cm, so we need 11.46
samples to cover 20 cm. To guarantee some clearance, we set this value to 20 samples.

We defined the minimum distance from the lidar as 1 m so the AGV is able to brake
in time if an obstacle appears. At 1 m, the distance between samples is 𝑑ௌ = 0.436 cm; thus,
to cover a displacement of 20 cm, it is necessary to have 45.83 samples, which we round
to 50 to simplify the calculations.

Considering these values, it is possible to draw a function that represents the evolu-
tion of the samples that we must consider in the detection cone with respect to the distance
from the lidar (Figure 8). The lowest limit is (1, 50), and the highest limit is (4, 20); these
two points are linked by a straight line.

Figure 8. Variation of the number of samples in the detection cone with the distance. When the
distance is smaller than 1 m or larger than 4 m, the number of samples in the cone is kept constant.
Between these values, the number of samples decreases.

Figure 8 can be mathematically described by (10):

𝑛௦(𝑟) = ൝50, 𝑟 ≤ 1−10 ⋅ 𝑟 + 60, 1 < 𝑟 < 420, 𝑟 ≥ 4 (10)

As the target can move in both directions, the width of the detection cone at a distance 𝑟 is given by 2𝑛௦(𝑟) in a number of samples.

Electronics 2023, 12, 2077 14 of 35

The algorithm selects the target to track (the closest point to the lidar), denoted by (𝑠௠௜௡, 𝑟௠௜௡), where 𝑠௠௜௡ is the number of samples, and 𝑟௠௜௡ is the distance to the target.
The distance 𝑟௠௜௡ is used in (8) to obtain 𝑛௦. This 𝑛௦ value allows it to obtain the range
of the detection cone in samples [𝑠௠௜௡ − 𝑛௦, 𝑠௠௜௡ + 𝑛௦]. Using this dynamic spatial filter,
we can keep tracking the target even if an obstacle appears closer to the laser than the
selected target, for example, when passing near a wall (Figure 9)

Figure 9. Tracking of the target when passing near obstacles. The tracking cone moves with the
target. The width of the tracking cone measured in LIDAR samples is 2𝑛𝑠. This tracking approach
allows us to move near obstacles without considering them as tracking targets.

This tracking process is performed by the algorithm every scanning cycle, i.e., about
33.3 times per second at maximum speed, so ensuring that the target is not missed.

In addition to the tracking cone, a further step has been taken to prevent the laser
from missing the target in case of an object crosses between the laser and the target, the
cross detector.

5.2.3. Crossing Detection
One of the main problems that can be found while tracking a target is that an obstacle

crosses between the AGV detection cone and the target. So far, the algorithm is vulnerable
to this possibility since it could detect this obstacle as the closest object to track. Fortu-
nately, this event can be detected and filtered. This is represented in Figure 10.

Electronics 2023, 12, 2077 15 of 35

Figure 10. Crossing detection. When an obstacle appears between the LIDAR and the
target, the crossing detection is triggered. This happens if the difference between dis-
tances is larger than 𝑑௖.

Considering that the AGV always keeps a safe distance from the target, we can as-
sume that the crossing will not occur closer than that distance to the target. Then, if the
algorithm perceives a difference between two consecutive scans larger than a certain dis-
tance 𝑑௖, and the detected point is closer to the lidar, there is a high probability that an
object has crossed. This behavior is similar to a low pass filter, and it can be formalized by
(11).

[𝑐𝑑(𝑡𝑖), 𝒓𝒐𝒌(𝑡𝑖)] = ቊ[1, 𝑟𝑜𝑘(𝑡𝑖−1)], 𝑟𝑜𝑘(𝑡𝑖−1) − 𝑟𝑚𝑖𝑛(𝑡𝑖) > 𝑑𝑐[0, 𝑟𝑚𝑖𝑛(𝑡𝑖)], 𝑜𝑡ℎ𝑒𝑟𝑐𝑎𝑠𝑒 (11)

When this happens, the best alternative is to stop the AGV to avoid any collision.
However, there may be occasions when the crossing is only momentary or the laser gives
a false positive. To solve that, a standby mode that is activated when a crossover is de-
tected is included in the algorithm. When so, the AGV will slow down, but the program
will continue to search for the original target it was following. Once the obstacle has
passed, the search for the target continues within the detection cone, comparing the dis-
tances obtained with those before the crossing. If the target has not moved more than 𝑑௖,
the program will recognize it again as the target to follow and will continue to run nor-
mally. During the experimental tests, the distance 𝑑௖ was set to 20 cm.

When a crossing happens, it may cause the crossing object to be considered the orig-
inal tracking target. To solve it, our algorithm defines a configurable crossing time param-
eter, 𝑇௖. This way, if this obstruction time is less than 𝑇௖, the crossing obstacle is consid-
ered a momentary crossing or a false positive. In this case, the tracking of the initial target
continues. However, if the crossing time is longer than 𝑇௖ the algorithm stops, and the
user must start the tracking process again. This is done for safety reasons as if the lidar is
obstructed for a long period, the initial tracking target could have changed its position or
been replaced by an unexpected object. All the variables and parameters that are used in
target tracking are shown in Table 2. With this safety mechanism, we avoid following un-
desired crossing targets. This procedure is presented in the flowchart of Figure 4.

Electronics 2023, 12, 2077 16 of 35

Table 2. Variables and parameters used in target tracking. 𝐬𝐜 Safety Clearance 𝛼௙௢௩ Angle of the field of view 𝑙௔௛ Look-ahead distance wୠ Half of the widht of the AGV 𝑁௦௣௦ Total number of samples of the LIDAR 𝑛௦(𝑟) Variation of the number of samples in the detection cone with
the distance 𝑠௠௜௡ LIDAR Sample of the closest point 𝑑௖ Minimum distance to detect a crossing event 𝑇௖ Maximum crossing time, if the crossing takes longer than Tc the

tracking phase finishes 𝑟௢௞ Last distance to obstacle before the crossing event 𝑐ௗ Crossing detection, when it values 1 there is a crossing object

5.3. Generation of Control References for Velocity and Direction
5.3.1. Position

When generating a trajectory, the first point to be considered is the coordinate system
in which it is located. In this application, we work with two coordinate systems simulta-
neously: a general coordinate system called absolute, 𝑆଴, and a relative coordinate system
that will vary with the movement of the AGV, 𝑆ோ. both in Cartesian coordinates, although
polar coordinates are also used for certain operations.

The UAM-05LP safety lidar measures distances and transmits these data in a format
similar to polar coordinates, but instead of providing the angle in radians, the device in-
dicates the sample number 𝑖 of the lidar sweep. Knowing from the specifications that the
UAM lidar takes 1080 samples per sweep and that its reading range is 270°, it is possible
to convert it to polar coordinates (12): 𝑘௦ = 270°1080 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 0.25°/𝑠𝑎𝑚𝑝𝑙𝑒 = 0.0043 𝑟𝑎𝑑/𝑠𝑎𝑚𝑝𝑙𝑒 (12)

𝛼(𝑖) = 𝑖 ∙ 𝑘௦ (13)

Then, multiplying 𝑘௦ by the sample index 𝑖 given by the lidar, it is possible to ob-
tain the angle 𝛼(𝑖) associated with the sample 𝑖 , and thus the polar coordinates (𝑑(𝑖), 𝛼(𝑖)). Now, we need to transform them from polar to Cartesian using the simple
expressions (14,15): 𝑥(𝑖) = 𝑑(𝑖) ∙ cos (𝛼) (14) 𝑦(𝑖) = 𝑑(𝑖) ∙ 𝑠𝑒𝑛(𝛼) (15)

where 𝑑(𝑖) is the distance obtained by the laser at sample 𝑖, and (𝑥, 𝑦) are the already
transformed Cartesian coordinates. With these coordinates, every point 𝑝(𝑖) detected by
the lidar is located in the relative system 𝑆ோ. However, to get the position in the absolute
coordinate system 𝑆଴ , it is necessary to perform one more transformation.

In Figure 11, we can see how the relative coordinate system 𝑆ோ, in red, moves with
the AGV, and it is different from 𝑆଴. Indeed, we must transform the points in 𝑆ோ detected
by the lidar to the absolute coordinate system 𝑆଴.

Electronics 2023, 12, 2077 17 of 35

Figure 11. Absolute and relative coordinate systems when the AGV is in the starting position (left)
and in motion (right).

This transformation between coordinate systems is done with the transformation ma-
trix. Transformation matrices reflect the displacement and rotation of the coordinate sys-
tem relative to the absolute.

Luckily, the coordinate system is two-dimensional because the laser performs two-
dimensional sweeps without moving on the vertical axis. This simplifies the calculations
by reducing the size of the matrix to 3 × 3, i.e., the rotation exclusively around the z-axis
and the translations on the x-axis and y-axis.

For each degree of freedom (translation or rotation), there exists an equation that
transforms the coordinates of the points measured in the relative system to the absolute
system (Figure 12) given by (16): 𝑋 = 𝑥 + 𝑥’, 𝑌 = 𝑦 + 𝑦’ (16)

And the rotation by (17) 𝑋 = 𝑥ᇱ𝑠𝑒𝑛 𝛽 + 𝑦ᇱ𝑐𝑜𝑠𝛽, 𝑌 = 𝑥′ 𝑐𝑜𝑠 𝛽 − 𝑦ᇱ𝑠𝑒𝑛𝛽 (17)

where (𝑋, 𝑌) denotes the coordinates of the point in 𝑆଴, (𝑥, 𝑦) is the location of 𝑆ோ in 𝑆଴, (𝑥ᇱ, 𝑦ᇱ) is the pair of coordinates of the point in 𝑆ோ, and 𝛽 represents the angle of ro-
tation.

Figure 12. Example of translation (left) and rotation (right), where X, Y is the position of the center
of the LIDAR and 𝛽 is the rotation of the LIDAR, both in the inertial frame.

Electronics 2023, 12, 2077 18 of 35

This way, by combining the two individual movements, it is possible to use a vector
approach to obtain the transformation matrix (18).

𝑇(𝑥, 𝑦, 𝛽) = ൥1 0 𝑋0 1 𝑌0 0 1൩ × ൥ cos (β) sin(β) 0−sin(β) cos (β) 00 0 1൩ = ൥ cos (β) sin(β) 𝑋−sin(β) cos (β) 𝑌0 0 1൩ (18)

𝑝ௌ଴ = 𝑇(𝑥, 𝑦, 𝛽) × 𝑝ௌோ (19)

Using (18) any point detected in the relative coordinate system 𝑆ோ can be trans-
formed into the absolute coordinate system, 𝑆଴.

Once we know how to calculate the points to follow, we will need to generate the
velocity and direction of the AGV to head toward them.

5.3.2. Reference of the Velocity
First, we estimate the speed at which the target moves, with two consecutive meas-

urements separated by a certain cycle time ∆𝑡. From these two measurements, the points 𝑃1 and 𝑃2 with relative coordinates 𝑃1 = (𝑥(𝑡௜ିଵ), 𝑦(𝑡௜ିଵ)), and 𝑃2 = (𝑥(𝑡௜), 𝑦(𝑡௜)), are
obtained, where ∆𝑡 = 𝑡௜ − 𝑡௜ିଵ.

The distance between the consecutive points is: 𝑑ଵଶ(𝑡௜) = ඥ(𝑥(𝑡௜) − 𝑥(𝑡௜ିଵ))ଶ + (𝑦(𝑡௜) − 𝑦(𝑡௜ିଵ))ଶ (20)

Once the distance has been calculated, the velocity of the objective 𝑉௢௕௝ is estimated
by dividing the distance by the time elapsed between the measurements. 𝑉௠(𝑡௜) = 𝑠𝑖𝑔𝑛 ቀඥ𝑥(𝑡௜)ଶ + 𝑦(𝑡௜)ଶ − ඥ𝑥(𝑡௜ିଵ)ଶ + 𝑦(𝑡௜ିଵ)ଶቁ 𝑑ଵଶ(𝑡௜)∆𝑡 (21)

𝑉௢௕௝(𝑡௜) = 𝑉஺ீ௏(𝑡௜ିଵ) + 𝑉௠(𝑡௜) (22)

It is also necessary to consider if the objective approaches or moves away from the
AGV. To do it, we have included the sign function in (19) that in case of approaching 𝑉௢௕௝
it will be negative, and if moving away, it will be positive. To follow the objective, we
generate a reference for the angular speed and a reference for the longitudinal speed. The
reference for the longitudinal speed considers the module of the velocity; therefore, at this
moment, we do not pay too much attention to its direction.

This speed input will feed one of the inputs of the speed controller, which is in charge
of calculating the speed of the AGV to reach the target. First, we estimate the necessary
acceleration to reach the object. We assume that, for small intervals (∆𝑡), the AGV travels
with uniform acceleration. The acceleration needed to reach the target speed in 1 s can be
then obtained from the following kinematic formula: 𝑎ோாி(𝑡௜) = ൫𝑉௢௕௝ଶ (𝑡௜) − 𝑉஺ீ௏ଶ (𝑡௜ିଵ)൯2ඥ𝑥(𝑡௜ିଵ)ଶ + 𝑦(𝑡௜ିଵ)ଶ (23)

From this reference of acceleration, it is possible to calculate the speed reference (24). 𝑉௥௘௙(𝑡௜) = 𝑉஺ீ௏(𝑡௜ିଵ) + 𝑎ோாி(𝑡௜)∆𝑡 (24)

5.3.3. Reference for the Direction
Now, to obtain the direction, we use the mathematical basis of the Pure Pursuit path-

tracking algorithm that calculates the trajectories using circumference arcs between the
current point and the next one. The idea behind this algorithm is inspired by the way
humans drive vehicles to follow a road, that is, looking ahead and changing the steering
of the vehicle to keep this point in the middle of the lane.

Electronics 2023, 12, 2077 19 of 35

The algorithm starts from a “looking ahead” distance, 𝑙௔௛, which is the next point on
the path to follow. The look-ahead distance affects the tracking behavior. A large look-
ahead distance imposes a large distance to the tracking target. To work closely with the
human worker, it would be better to have a small value. However, very small values may
create oscillations around the trajectory.

To reach the next point of the trajectory, the program will calculate the radius of the
arc that links the current position of the vehicle with the next point.

Figure 13 shows a schematic representation of the pure pursuit algorithm. The next
point to be reached has coordinates (𝑥, 𝑦), and we must find the radius 𝑟 of the circum-
ference arc that links the points (𝑥, 𝑦) and (𝑥ோ, 𝑦ோ). The origin of this circumference is the
instantaneous center of rotation (ICR), which is located at a distance 𝑟 = 𝑥 + 𝑑𝑥 from the
point (𝑥ோ, 𝑦ோ).

Figure 13. Pure pursuit algorithm schematic representation, where 𝑙௔௛ is the look-ahead distance
and 𝑑௪ is the distance between the rear wheels and the center of the traction unit. The pair (𝑥ோ, 𝑦ோ)
represents the center of the rear axle.

From Figure 13, it is possible to deduce: 𝑦ଶ + 𝑥ଶ = 𝑙௔௛ଶ (25) 𝑑𝑥 = 𝑟 − 𝑥 (26) (𝑟 − 𝑥)ଶ + 𝑦ଶ = 𝑟ଶ (27)

By manipulating (27) and substituting (25), it is possible to obtain the turning radius: 𝑟 = 𝑙௔௛ଶ2𝑥 = 𝑙௔௛2sin (𝛼) (28)

In this vehicle, considering the kinematic constraints, the steering angle 𝛾 is given
by the relationship between the distance from the front and rear wheels 𝑑௪ to the turning
radius 𝑟. Therefore, from (28) and considering the kinematic constrains, the steering angle
is obtained. 𝛾ோாி = atan ൬𝑑௪𝑟 ൰ = atan ൬2sin(𝛼)𝑑௪𝑙௔௛ ൰ (29)

It is important to set the value of the distance 𝑙௔௛ correctly; if 𝑙௔௛ is too small, the
robot will try to pass very accurately through the given points; however, the curvatures
will be very large and the robot could end up zigzagging, skidding, and even overturning

Electronics 2023, 12, 2077 20 of 35

if the speed is high. On the other hand, if 𝑙௔௛ is too large, the robot will make little effort
to follow the path; thus, it may deviate too much from the way points.

In a human-following application, it is not so important that the robot passes exactly
through the points where the human has passed. It is preferable that the robot tracks the
trajectory of the human with smooth and predictable paths. From this perspective, it is
better to manage medium-large look-ahead distances to avoid oscillations.

However, too large look-ahead distances can limit human–robot collaboration. Some
specific collaborative tasks, such as synesthetic teaching, demand very small distances as
the robot must follow the human very closely. However, other collaborative tasks, such
as in logistic applications, do not require so small tracking distances. In the latter cases,
the human can work closely with the robot to place or pick assets on/from the robot; mean-
while, the robot can stay immobile at the same location. Then, when the worker goes to
the next location to perform the picking or dropping operation, the robot follows the hu-
man operator to perform the logistic operation.

Additionally, 𝑙௔௛ is a configurable parameter of the algorithm, and it must be tuned
by the user considering the requirements of the application: the workplace space limita-
tions, the typical trajectories that the human will perform, the speed, the operation times,
etc. All the variables and parameters that have been used to generate the control references
are shown in Table 3.

Table 3. Variables and parameters for the generation of control references. 𝒂𝑹𝑬𝑭 Reference for the Acceleration 𝑉௥௘௙ Reference for the velocity 𝛾ோாி Reference for the direction 𝑉௢௕௝ Estimation of the velocity of the tracking target 𝑙௔௛ Look-ahead distance 𝑑௪ Distance between the rear wheels to the traction unit

6. Results and Discussion
6.1. Static Tests
6.1.1. Setup of the Experimental Scenario

In the first test, the aim is to measure the accuracy with which the laser obtains dis-
tances, its ability to follow the target without losing it as far as possible and to check if it
correctly detects the crossing of objects. To this end, we need a relatively large but con-
trolled space, so outdoor tests are discarded to avoid wind, animals, or other disturbances.

To efficiently measure the actual distances accurately but without interfering with
the measurements, a laboratory space of at most 4 × 8 m (detection range planned) is used.
A grid of one-meter square cells is drawn carefully on the floor, marking the grid inter-
sections to locate the exact meter points. Finally, as shown in Figure 13, the laser is placed
on the first row and fourth column.

A camera on a tripod focusing on the grid is used to record the process. The experi-
mental results will be compared with the ones generated by the following program. As
the target, we used the laser box since it was easy to move and had enough size to be
detected by the lidar (Figure 14).

Electronics 2023, 12, 2077 21 of 35

Figure 14. Static test environment setup. The LIDAR is in a static location, placed on the floor with-
out the AGV. The object to be detected is the box of the LIDAR. The LIDAR is represented by a
yellow square and the object by a blue one.

Finally, it is worth it to note that to obtain an accurate measurement of the distances,
the box was placed with the closest corner of the box coinciding with the cross marked on
the floor. In the case of placing the box in the center, then the side of the box is on the grid
line. This way, we ensured that the closest point coincides with the intersection points of
the grid.

6.1.2. Description of the Tests
To check the quality of object detection, these were placed on the exact points of the

grid, and the obtained real data were compared with those of the following program. For
this first test, we moved the testing object in various directions and checked the position,
velocity, and direction values obtained.

The second test assessed the ability to track a target once it is fixed and ignore other
objects placed even at a shorter distance but without crossing.

Finally, in the third test, we evaluated the algorithmʹs ability to detect the crossing of
external objects. In addition, we checked whether the program continues after a momen-
tary crossing or whether it stops when the crossing exceeds the safety time.

To illustrate these tests, in the following sub-sections, we show screenshots extracted
from the videos recorded during the tests and a diagram showing the position of the tar-
get. We also show the data extracted from the recording during the measurement and
screenshots of the information displayed on the screen by the program.

6.1.3. Position Test
We start by placing the object in position (0, 1), according to the coordinate system

set by the grid, so that the laser can detect it as the object to be tracked (Figure 15). Once
this is done, we start the execution of the program.

Electronics 2023, 12, 2077 22 of 35

Figure 15. Position test, target detection phase. The object is located in front of the LIDAR at position
(0, 1). The angle from the LIDAR to the object is 0°, and there are not any obstacles between the
LIDAR and the object. The LIDAR is represented by a yellow square and the object by a blue one.

The data obtained at this instant showed that the closest object detected was at a po-
sition in the range X=[−0.05, 0] and Y=[0.93, 0.95]. This variation is due to the fact that the
side of the box is parallel to the grid line, and at such a short distance, the laser detects all
points of the side of the box closest to the lidar at a similar distance due to its accuracy.
On the other hand, we observe a maximum variation of a couple of cm on the Y-axis. We
attribute the 5 cm error with respect to the position to the inaccurate positioning of the
box.

The log of the program shows the timestamp, the command sent to the AGV, and the
target position detected by the lidar in cartesian coordinates. The command is sent in
JSON format with three fields: “com”, “speed”, and “dir”. The field “com” indicates the
action to be executed; “VEL” means that the action is to update the speed and direction
references, and the variable “speed” stores the target speed; the field “dir” stores the target
direction. The following lines are an example of the output of the program at the date/time
indicated:

[28/06/2022 19:25:38]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: −0.04, Y: 0.93
[28/06/2022 19:25:39]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: −0.04, Y: 0.93
[28/06/2022 19:25:39]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: −0,05, Y: 0,94
Then we started to move the box backward to point (0, 2) (Figure 16).

Figure 16. Position test, moving the target to (0,2). The object is moved carefully from (0,1) to (0,2),
avoiding obstructing the LIDAR. The LIDAR is represented by a yellow square and the object by a
blue one.

The output of the program during this movement was:
[28/06/2022 19:25:46]{“com”:”VEL”,”speed”:”0,15”,”dir”:”0”},

Electronics 2023, 12, 2077 23 of 35

target position X: −0.02, Y: 1.34.
[28/06/2022 19:25:46]{“com”:”VEL”,”speed”:”0,23”,”dir”:”0”},
target position X: −0.01, Y: 1.48
[28/06/2022 19:25:46]{“com”:”VEL”,”speed”:”0,37”,”dir”:”0”},
target position X: 0.02, Y: 1.64
[28/06/2022 19:25:47]{“com”:”VEL”,”speed”:”0,49”,”dir”:”0”},
target position X: 0.01, Y: 1.76
At this point, we can observe how not only does the position on the y-axis change but

also the velocity sent to the AGV starts to increase.
Once the target is at point (0, 2), Figure 17, we can observe that the samples reflect a

position in range X∈ [−0.05,−0.01] and Y∈ [2,−2.01]. The variation in the x-axis has de-
creased. In addition, the velocity stabilizes at 0.94 m/s.

Figure 17. Position test, target at (0,2). The object is located in front of the LIDAR. The angle from
the LIDAR to the object is 0°. There are not any obstacles between the LIDAR and the object. The
LIDAR is represented by a yellow square and the object by a blue one.

Samples taken during these instants:
[28/06/2022 19:25:51]{“com”:”VEL”,”speed”:”0,94”,”dir”:”0”},
target position X: −0.01, Y: 2
[28/06/2022 19:25:51]{“com”:”VEL”,”speed”:”0,94”,”dir”:”0”},
target position X: −0,02, Y: 2,01
[28/06/2022 19:25:52]{“com”:”VEL”,”speed”:”0,94”,”dir”:”0”},
target position X: −0,04, Y: 2,01
Finally, we moved the box first to the left and then to the right to check the correct

measurement on the x-axis. When the box was moved to the left (Figure 18left), we ob-
tained a position in the range X∈ [−0.99,−1.02] and Y∈ [2.02, 2.03]. The velocity remained
stable, but the direction varied until it stabilized between −0.41 and −0.42 rad (24–25°).

Electronics 2023, 12, 2077 24 of 35

Figure 18. Position test, target at (−1, 2) (left) and at (1,2) (right). When the object is located on the
left, the angle is negative, and when it is on the right, it is positive. The sign of the direction reference
matches the sign of the angle to the target. The LIDAR is represented by a yellow square and the
object by a blue one.

When the box was moved to the right (Figure 18right), we obtained a position of X∈ [−0.99, −1] and Y∈ [2, 2.01]. In this case, the speed increased to 1 m/s which is the maxi-
mum, and the direction stabilized between 0.41 and 0.42 rad.

The following lines show the output of the program when the target was in position
(−1, 2):

[28/06/2022 19:26:22]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,41”},
target position X: −0,99, Y: 2,03
[28/06/2022 19:26:22]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,41”},
target position X: −1, Y: 2.03
[28/06/2022 19:26:23]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,42”},
target position X: −0,99, Y: 2,02
And with the target at (1, 2):
[28/06/2022 19:26:22]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,41”},
target position X: −0,99, Y: 2,03
[28/06/2022 19:26:22]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,41”},
target position X: −1, Y: 2.03
[28/06/2022 19:26:23]{“com”:”VEL”,”speed”:”0,94”,”dir”:”−0,42”},
target position X: −0,99, Y: 2,02
To finish the position tests, we bring the object along the y-axis closer to a distance of

less than 1 m (Figure 19). We observed how as soon as the object gets nearer than 2 m, the
velocity drops rapidly towards 0.

Electronics 2023, 12, 2077 25 of 35

Figure 19. Position test, moving the target closer to the lidar. The object is placed very close to the
LIDAR, so the velocity drops rapidly toward 0.

The following lines show the output of the program during this test:
target position X: −0.01, Y: 1.04
[28/06/2022 19:27:05]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: 0.02, Y: 0.95
[28/06/2022 19:27:05]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: −0.05, Y: 0.84
[28/06/2022 19:27:05]{“com”:”VEL”,”speed”:”0”,”dir”:”0”},
target position X: −0.02, Y: 0.79
In addition to these tests, we have carried out other controlled experiments with the

LIDAR placed at different positions. The resulting measures are shown in Tables 4–6 for
the different laser positions (first column). As it is possible to see in Table 4, the laser is at
–0.5, –0.5 position with 30° rotation in the z-axis. The position of the target is shown in the
column “Object position”. To define these static positions, we have considered the angles:
0°, –30°, 30°, –45°, and 45° at different distances from the LIDAR. The column “Estimated
position” indicates the absolute coordinates with respect to the origin. This estimation was
obtained with the LIDAR measurement and homogeneous transformation matrices. All
data have been measured three times, and the values of the table are the average of the
three measurements. The last column expresses the error of the estimation regarding the
real value of the coordinates.

Table 4. Static test measurements with laser located at (–0.5,–0.5,30).

Laser Position Object Position Estimated
Position Error

X [m] Y [m] Angle [°] X [m] Y [m] X [m] Y [m] X [m] Y [m]
–0.5 –0.5 30 –0.13 1.53 0.15 0.89 0.15 –0.12
–0.5 –0.5 30 –0.80 1.13 –0.63 0.88 –0.13 0.01
–0.5 –0.5 30 –0.81 0.89 –0.75 0.68 –0.05 –0.03
–0.5 –0.5 30 0.11 1.68 0.44 0.90 –0.06 0.03
–0.5 –0.5 30 0.34 1.67 0.62 0.78 –0.08 0.07
–0.5 –0.5 30 –0.98 2.36 –0.17 2.02 –0.17 0.01
–0.5 –0.5 30 –1.60 1.62 –1.07 1.70 –0.07 –0.04
–0.5 –0.5 30 0.02 2.68 0.85 1.81 –0.15 0.08
–0.5 –0.5 30 0.44 2.66 1.21 1.59 –0.20 0.17

Electronics 2023, 12, 2077 26 of 35

Table 5. Static test measurement with laser located at (0.5,0.5,–30).

Laser Position Object Position
Estimated
Position Error

X [m] Y [m] Angle [°] X [m] Y [m] X [m] Y [m] X [m] Y [m]
0.5 0.5 –30 –0.17 0.72 –0.01 1.04 –0.01 0.03
0.5 0.5 –30 –0.67 0.86 –0.51 0.91 –0.01 0.04
0.5 0.5 –30 –0.87 0.90 –0.71 0.84 0.00 0.14
0.5 0.5 –30 0.58 0.63 0.69 1.33 0.19 0.17
0.5 0.5 –30 0.23 0.24 0.58 0.82 –0.13 0.11
0.5 0.5 –30 0.29 1.59 –0.05 2.02 –0.05 0.00
0.5 0.5 –30 –0.67 1.81 –0.98 1.74 0.02 0.00

Table 6. Static test measurement with laser located at (0,0,0)

Laser Position Object Position
Estimated
Position Errors

X [m] Y [m] Angle [°] X [m] Y [m] X [m] Y [m] X [m] Y [m]
0 0 0 0.03 1.00 0.03 1.00 0.03 –0.01
0 0 0 –0.42 0.90 –0.42 0.90 0.08 –0.04
0 0 0 –0.64 0.78 –0.64 0.78 0.06 0.07
0 0 0 0.54 0.85 0.54 0.85 0.04 0.02
0 0 0 0.68 0.76 0.68 0.76 –0.03 0.05
0 0 0 0.11 2.03 0.11 2.03 0.11 0.00
0 0 0 –0.88 1.80 –0.88 1.80 0.12 0.06
0 0 0 –1.39 1.07 –1.39 1.43 0.02 0.01
0 0 0 1.07 1.68 1.07 1.68 0.07 0.03
0 0 0 1.45 1.45 1.45 1.45 0.03 0.03

As it is possible to observe in these tables, the estimation error is very small. We have
considered the general transformation matrix with the value of translation and rotation
according to every case. Every measure has been done three times, and the average has
been used. The measure of the real distance between the laser and the object has been
done with a laser distance meter. The largest errors appear when the angle is rotated,
which may be due to inaccuracies when the object is located at a determined angle.

To sum up, the obtained values in the experiment are highly reliable, and they con-
firm the accuracy of our calculations for different positions of the laser, the object, or even
both.

6.1.4. Tracking Test
To test the tracking, we placed the box at position (−1, 2), started the program, and

checked that it was correctly detected during the target detection phase. Then, we asked
the assistant to stand closer to the laser than the box (Figure 20), but without getting on
the path, and we checked the output data.

Electronics 2023, 12, 2077 27 of 35

Figure 20. Tracking test. The target object is located at (−1, 2). The target object is correctly detected
by the tracking cone. When an obstacle approximates the LIDAR at a closer distance, at (1,1), the
LIDAR still correctly detects the desired target thanks to the tracking cone. The LIDAR is repre-
sented by a yellow square, the object by a blue one, and the person by a pink ellipse.

The laser data still gave good values, X∈ [−0.99, −1.01] and Y∈ [2.02, 2.04]. This means
that the detection cone worked successfully, and the assistant’s position was filtered, as
expected.

6.1.5. Crossing Test
As a last validation during the static test campaign, we started with the laser

detecting the target at position (−1, 2) and asked the assistant to step between the laser and
the target. First, we performed a fast crossing in which the assistant passed without stop-
ping in front of the target. After this, a crossing test was carried out in which the assistant
remained between the target and the laser.

Figure 21 shows the output of the program when the object temporarily crosses, so
the crossing lasts a very short time. It is possible to see how the system has detected the
crossing during some samples; however, once the crossed object has passed, it detects the
target again at the same position as before.

Figure 21. Output of the program during the crossing test when the target does not remain in the
way of the lidar. In the captured image the decimal point is indicated by a comma.

On the other hand, when the object crosses in front of the laser, and it remains for a
period of time (Figure 22), the program detects it and outputs “tracking interrupted”. If
this situation persists for a long time, the program is interrupted for safety reasons, and
the operator must start the process again

Electronics 2023, 12, 2077 28 of 35

Figure 22. Crossing test, target remains in front of the lidar. The target is located at (−1,2). An unex-
pected element crosses between the target and the LIDAR, and it is detected as a crossing object.
The LIDAR is represented by a yellow square, the object by a blue one, and the person by a pink
ellipse.

6.1.6. Interpretation of Results
Based on the results of these tests, we can draw several conclusions. The calculation

of coordinates and positions varies by an average of 2−3 cm during sampling, which can
be considered an acceptable margin.

The accuracy and variation mentioned above vary very slightly, with the distance
decreasing as we move away from the laser. This may be due to the fact that the number
of samples of the object considered in a range of distances close to the lidar is greater than
those taken at a farther distance. This results in a greater likelihood of obtaining very sim-
ilar distances of the same object at different positions.

Once the object is moved to a more distant position, the velocity remains stable. This
can be explained because the program believes it has already reached the velocity of the
target, and therefore, the two systems maintain a constant distance.

The direction varies correctly with respect to the movements on the x-axis and re-
mains at 0 when the object is kept on the y-axis, so it understands that it is in front of it.

The angle obtained (24°) is slightly less than the angle formed by the distance to the
target and the y-axis (~26.5°). If we validate this data with the equation to calculate 𝛾ோாி
we observe that the result is correct, considering a look-ahead distance of 1 m and a dis-
tance between front and rear wheels of 0.5 m. 𝛾ோாி = atan ൬2sin(𝛼)𝑑௪𝑙௔௛ ൰ = atan ൬2 ∗ 0.5 ∗ 𝑠𝑒𝑛(26.5°)1 ൰ ≃ 24.04° (30)

We observed that the program is able to focus on the object it is tracking, ignoring
other objects closer to the laser as long as they do not cross.

We also checked that the crossing detection works correctly, detecting the variation
in the distance when an object is on the way. In addition, the program goes on running if
the crossing is short and stops after the crossing safety time has elapsed.

6.2. Dynamic Tests
This test was performed in the AGVs laboratory of the University of Burgos, Spain.

First, we connected a laptop where the following algorithm was running, the lidar and the
AGV through an ethernet switch and a raspberry. Figure 23 shows the architecture for the
dynamic tests. The raspberry was connected to the AGV by a CAN bus. The laptop sends
UDP frames with the direction and speed references to the raspberry, and it translates
them into CAN frames.

Electronics 2023, 12, 2077 29 of 35

Figure 23. Architecture of the dynamic tests. In the dynamic experiments, the person-following al-
gorithm runs on a laptop. A raspberry translates the velocity and direction commands to the
CANbus frames to be interpreted by the AGV. The LIDAR is connected to the laptop and to the
raspberry by a switch.

Figure 24 shows the location of these devices in the AGV.

Figure 24. Location of components in the AGV for the dynamic tests (laptop, raspberry, LIDAR, and
switch).

To perform these tests, first, the connection between all elements was checked. Then,
we sent control frames in an open loop with the AGV connected and observed how the
speed and direction were modified by the messages sent. Once the communication with
the AGV was verified, we proceeded to make the complete assembly, feeding the laser
with a 24 V output of the AGV and connecting the laser, the computer, and the raspberry
connected to the AGV using an ethernet switch.

The maximum speed was set to 0.5 m/s to easily control the AGV in case of failure
and to protect the equipment and the computer on it.

Once the connection was checked and with that architecture, we realized that the
AGV was moving in the right direction but twisting from one side to the other, trying to
correct its direction to fit the target. To reduce this zigzag, we decided to increase the look-
ahead distance from 0.5 m to 1 m, achieving a very substantial improvement in the
smoothness of the turns.

Now, we obtained a successful dynamic test in which the AGV followed the target at
low speed, correcting its heading to match that of the target but without extreme pitching.
The AGV tracked the target forward and turned with it, reversing its direction.

Figure 25 shows a compilation of images that summarizes the execution of the dy-
namic test.

Electronics 2023, 12, 2077 30 of 35

Figure 25. Dynamic test. The system detects the human target and follows it correctly for short and
medium distances. Images show the change in the direction and even a loop to change the orienta-
tion.

Electronics 2023, 12, 2077 31 of 35

Performance Evaluation of the AGV with Different Trajectories
To complement the section of the experimental results, several experiments were car-

ried out to follow a human describing different trajectories: a straight line, a square, and
a circumference. Figures 26–28 show the distance, the velocity reference, the angle to the
target, and the direction reference for these trajectories. The figures on the left show the
distance in blue and the velocity reference in red; the figures on the right show the angle
to the target in blue and the direction reference in red.

Figure 26. Result obtained when the human follows a counterclockwise square trajectory. The figure
on the left shows the distance in blue and the velocity reference in red. The figure on the right shows
the angle to the target in blue and the direction reference in red. The direction is negative because
the target is located on the left.

Figure 27. Result obtained when the human follows a counterclockwise square trajectory. The figure
on the left shows the distance in blue and the velocity reference in red. The figure on the right shows
the angle to the target in blue and the direction reference in red. The direction is positive because
the target is located on the right.

0 10 20 30 40 50 60 70 80 90 100
t[s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
dist[m]
vref[m/s]

di
st

[m
],v

re
f[m

/s
]

Electronics 2023, 12, 2077 32 of 35

Figure 28. Result obtained when the human follows a counterclockwise circular trajectory. The fig-
ure on the left shows the distance in blue and the velocity reference in red. The figure on the right
shows the angle to the target in blue and the direction reference in red. The direction is negative
because the target is located on the left.

Figures 26 and 27 represent the results for the counterclockwise and clockwise square
trajectories, respectively. In these figures, it is possible to observe that the velocity refer-
ence is related to the distance; if the distance grows, the velocity also does the same. In-
deed, the peaks in the distance curve appear also in the velocity line. These peaks come
from the steps of the human when walking. If the AGV followed a vehicle instead of a
human, these peaks would decrease as the movement became more regular. The big
jumps in the distance seem to match the edges of the square. At the beginning of the curve,
the distance is maintained, so the speed reference is zero. When the target starts moving,
the reference is updated in order to follow the target.

Another interesting result can be observed in the direction. It is possible to see how
the direction reference has a similar shape to the trajectory described by the angle of the
target but with a lower amplitude. This effect can be seen in both directions of movement.
In this curve, there are three big peaks that match the first three edges of the square. In the
counterclockwise square, the angles have a negative sign as the target is located on the left
of the AGV. In the clockwise direction, the opposite happens; the angles and the reference
are positive, as the target is located on the right of the AGV. In the beginning, the direction
is zero because the AGV starts aligned with one of the segments of the square.

Figures 28 and 29 represent the results for the counterclockwise and clockwise circu-
lar trajectories, respectively. The distance and velocity reference curves are similar to the
square case but smoother. Although the same peaks appear due to the human-walking,
the decreasing trend in the distance is more regular. It is also noticeable how the direction
reference tracks the angle of the target. These curves are quite similar but with less abso-
lute value. Unlike the square, the angle of the target does not present periodic peaks, as
the circular trajectory is more regular. In addition, for both trajectories, the sign of the
direction reference matches the direction of rotation: for clockwise is positive, and for
counterclockwise is negative.

[ra
d]

,
re

f[ra
d]

Electronics 2023, 12, 2077 33 of 35

Figure 29. Result obtained when the human follows a counterclockwise circular trajectory. The fig-
ure on the left shows the distance in blue and the velocity reference in red. The figure on the right
shows the angle to the target in blue and the direction reference in red. The direction is positive
because the target is located on the right.

In addition to these graphical results, the performance of this approach has also been
evaluated numerically, and the corresponding metrics are shown in Table 7. The mini-
mum distance Dmin, maximum distance, Dmax, average distance, Davg, and the stand-
ard deviation of the distance Dstd, have been obtained.

Table 7. Performance evaluation for different trajectories.

Trajectory Dmin [m] Dmax [m] Davg [m] Dstd [m]
Square clockwise 0.98 1.94 1.29 0.21

Square counterclockwise 1.05 1.86 1.46 0.21
Circular clockwise 0.75 1.87 1.41 0.30

Circular counterclockwise 1.03 2.04 1.63 0.25
Straigth line (0 deg) 0.80 1.58 1.16 0.21
Straigth line (30 deg) 1.04 2.06 1.60 0.27

For all these trajectories, the average distance is between 1 and 2 m, and the maxi-
mum distance is around 2 m. This result proves that the implementation of collaborative
logistic applications with this system is feasible. As expected, the easiest movement to
follow is the 0° straight line, and the hardest is circular.

7. Conclusions and Future Works
AGVs and autonomous robots are commonly used to replace conveyors and manual

industrial trucks in the industrial sector. They commonly share their workspace with
other vehicles and humans. Indeed, Industry 4.0 and its flexible production paradigm are
promoting new human–AGV collaborative logistic use where humans perform complex
tasks, and the robot transports parts or products. In this scenario, the person-following
autonomous robot follows the operator to implement different logistic and industrial ap-
plications.

Hence, for this goal, we present in this work a control architecture and a control al-
gorithm to implement human-following autonomous robots. Although any AGV or au-
tonomous robot, regardless of kinematic setup, can use this approach, we used a tow AGV
of ASTI Mobile Robotics to empirically validate this strategy, with a scanning laser UAM-
05LT-301C as the sensor for real-time data acquisition.

The solution provides a high sensibility with a range of 2 to 5 cm, depending on the
distance. It can perform 12 scans per second and track the desired target ignoring other
elements within 30 cm of each other. Furthermore, it is able to detect a crossing element

Electronics 2023, 12, 2077 34 of 35

with a minimum detection difference of 30 cm. Static and dynamic test campaigns have
been carried out to validate the proposal.

In future works, we can highlight the validation of the proposal with other different
mobile robots, the adaption of the architecture to be used with different sensors, and the
design of other filtering mechanisms.

Author Contributions: All authors contributed equally to the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the authors upon reasonable request.

Conflicts of Interest: The authors have no relevant financial or non-financial interests to disclose.

Abbreviations
Acronyms
AGV Automated Guided Vehicle
CAN Controller Area Network
ICR Instantaneous Center of Rotation
LIDAR Light Detection and Ranging
PID Proportional Integral Derivative
RLC Reinforcement Learning based Control
UDP User Datagram Protocol (UDP)
UWB Ultra Wide Band

References
1. Echeto, J.; Santos, M.; Romana, M.G. Automated vehicles in swarm configuration: Simulation and analysis. Neurocomputing

2022, 501, 679–693.
2. Dintén, R.; López Martínez, P.; Zorrilla, M. Arquitectura de referencia para el diseño y desarrollo de aplicaciones para la Indus-

tria 4.0. Rev. Iberoam. Automática Inf. Ind. 2021, 18, 300–311.
3. Espinosa, F.; Santos, C.; Sierra-García, J.E. Transporte multi-AGV de una carga: Estado del arte y propuesta centralizada. Rev.

Iberoam. Automática Inf. Ind. 2020, 18, 82–91.
4. Sierra-Garcia, J.E.; Santos, M. Combining reinforcement learning and conventional control to improve automatic guided vehi-

cles tracking of complex trajectories. Expert Syst. 2022, e13076, 1-18. doi.org/10.1111/exsy.13076
5. Wen, R.; Yuan, K.; Wang, Q.; Heng, S.; Li, Z. Force-guided high-precision grasping control of fragile and deformable objects

using semg-based force prediction. IEEE Robot. Autom. Lett. 2020, 5, 2762–2769.
6. Sánchez, R.; Sierra-García, J.E.; Santos, M. Modelado de un AGV híbrido triciclo-diferencial. Rev. Iberoam. Automática Inf. Ind.

2022, 19, 84–95.
7. Zamora-Cadenas, L.; Velez, I.; Sierra-Garcia, J.E. UWB-based safety system for autonomous guided vehicles without hardware

on the infrastructure. IEEE Access 2021, 9, 96430–96443.
8. Sandberg, A.; Sands, T. Autonomous trajectory generation algorithms for spacecraft slew maneuvers. Aerospace 2022, 9, 135.
9. Raigoza, K.; Sands, T. Autonomous trajectory generation comparison for de-orbiting with multiple collision avoidance. Sensors

2022, 22, 7066.
10. Sands, T. Flattening the curve of flexible space robotics. Appl. Sci. 2022, 12, 2992.
11. Manikandan, S.; Kaliyaperumal, G.; Hakak, S.; Gadekallu, T.R. Curve-Aware Model Predictive Control (C-MPC) Trajectory

Tracking for Automated Guided Vehicle (AGV) over On-Road, In-Door, and Agricultural-Land. Sustainability 2022, 14, 12021.
12. Islam, F.; Nabi, M.M.; Ball, J.E. Off-road detection analysis for autonomous ground vehicles: A review. Sensors 2022, 22, 8463.
13. Pires, M.; Couto, P.; Santos, A.; Filipe, V. Obstacle detection for autonomous guided vehicles through point cloud clustering

using depth data. Machines 2022, 10, 332.
14. Zahid, M.N.O.; Hao, L.J. A Study on Obstacle Detection for IoT Based Automated Guided Vehicle (AGV). MEKATRONIKA

2022, 4, 30–41.
15. Islam, M.J.; Hong, J.; Sattar, J. Person-following by autonomous robots: A categorical overview. Int. J. Robot. Res. 2019, 38, 1581–

1618.
16. Honig, S.S.; Oron-Gilad, T.; Zaichyk, H.; Sarne-Fleischmann, V.; Olatunji, S.; Edan, Y. Toward socially aware person-following

robots. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 936–954.
17. Boschi, A.; Salvetti, F.; Mazzia, V.; Chiaberge, M. A cost-effective person-following system for assistive unmanned vehicles with

deep learning at the edge. Machines 2020, 8, 49.

Electronics 2023, 12, 2077 35 of 35

18. Tari, J.; Danès, P. Person Following from a Nonholonomic Mobile Robot with Ultimately Bounded Tracking Error. IFAC-Paper-
sOnLine 2020, 53, 9596–9601.

19. Qiao, Y.; Fu, Y.; Yuan, M. Communication-Control Co-Design in Wireless Networks: A Cloud Control AGV Example. IEEE
Internet Things J. 2022, 10(3), 2346–2359.

20. Tarmizi, A.I.; Shukor, A.Z.; Sobran NM, M.; Jamaluddin, M.H. Latest trend in person following robot control algorithm: A
review. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 169–174.

21. Moshayedi, A.J.; Li, J.; Sina, N.; Chen, X.; Liao, L.; Gheisari, M.; Xie, X. Simulation and validation of optimized PID controller
in AGV (automated guided vehicles) model using PSO and BAS algorithms. Comput. Intell. Neurosci. 2022, vol. 2022, article ID
7799654, 1-22.

22. Reis, W.P.N.D.; Couto, G.E.; Junior, O.M. Automated guided vehicles position control: A systematic literature review. J. Intell.
Manuf. 2022, 34, 1483–1545.

23. Montesdeoca, J.; Toibero, J.M.; Jordan, J.; Zell, A.; Carelli, R. Person-Following Controller with Socially Acceptable Robot Mo-
tion. Robot. Auton. Syst. 2022, 153, 104075.

24. Pucci, D.; Marchetti, L.; Morin, P. Nonlinear Control of Unicycle-Like Robots for Person Following. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3406–3411.
https://doi.org/10.1109/IROS.2013.6696841.

25. Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person Tracking and Following with 2d Laser Scanners. In Proceedings of the 2015
IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: Piscataway, NJ,
USA, 2015; pp. 726–733.

26. Petrov, P.; Georgieva, V.; Kralov, I.; Nikolov, S. An Adaptive Mobile Robot Control for Autonomous Following in Front of a
Person. In Proceedings of the 2021 12th National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria,
27–28 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4.

27. Oh-Hara, S.; Saito, K.; Fujimori, A. Person following control for a mobile robot based on color invariance corresponding to
varying illumination. IAES Int. J. Robot. Autom. 2022, 11, 33.

28. Tarokh, M.; Merloti, P. Vision-based robotic person following under light variations and difficult walking maneuvers. J. Field
Robot. 2010, 27, 387–398.

29. Shaker, S.; Saade, J.J.; Asmar, D. Fuzzy inference-based person-following robot. Int. J. Syst. Appl. Eng. Dev. 2008, 2, 29–34.
30. Jia, S.; Wang, L.; Wang, S.; Bai, C. Fuzzy-Based Intelligent Control Strategy for a Person Following Robot. In Proceedings of the

2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; IEEE: Pis-
cataway, NJ, USA, 2013; pp. 2408–2413.

31. Wang, L.; Wu, J.; Li, X.; Wu, Z.; Zhu, L. Longitudinal control for person-following robots. J. Intell. Connect. Veh. 2022, 5, 88–98.
32. Kautsar, S.; Gumilang, M.A.; Widiawan, B.; Tholabi, H.; Ariscandra, F. Contactless control system design for automatic guide

vehicle (agv) based on depth camera. Food Agric. Sci. Polije Proc. Ser. 2021, 3, 136–144.
33. Sierra-García, J.E.; Santos, M. Mechatronic modelling of industrial AGVs: A complex system architecture. Complexity 2020, vol.

2020, Article ID 6687816, 1–21.
34. Sánchez-Martinez, R.; Sierra-García, J.E.; Santos, M. Performance and Extreme Conditions Analysis Based on Iterative Model-

ling Algorithm for Multi-Trailer AGVs. Mathematics 2022, 10(24), 4783. Doi: https://doi.org/10.3390/math10244783.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

