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Abstract: In this paper, a novel AI-based power reserve control strategy is proposed for photovoltaic
(PV) power generation systems participating in the frequency regulation (FR) of microgrids. The
proposed strategy uses a frequency response module to determine the target power reserve ratio of
the PV system based on microgrid frequency deviation, as well as a power reserve control module
to obtain the target duty cycle, which is input to the BOOST converter. The use of artificial neural
networks (ANN) in the power reserve control module enables the PV system to work at a specified
power reserve ratio, producing appropriate power and mitigating frequency fluctuations in the
microgrid. Additionally, a deep reinforcement learning (DRL) algorithm is employed as the decision
maker for variable step-size control and initial power reserve ratio determination. Simulations were
performed to validate the effectiveness of the proposed method, demonstrating a significant reduction
in average frequency deviation by 72.36% when subjected to random variations in irradiance intensity
and load conditions. Overall, the proposed AI-based power reserve control strategy has good
potential for practical applications in real-world microgrids, promoting the absorption of new energy
led by PV and reducing the phenomenon of light abandonment.

Keywords: photovoltaic; microgrid; frequency regulation; power reserve control; AI; artificial neural
networks; deep reinforcement learning

1. Introduction

In recent years, the economic and environmental benefits of photovoltaic (PV) technol-
ogy have made it increasingly popular for power generation in microgrids [1,2]. However,
the integration of a large number of PV sources has also introduced a new threat to the
operational safety and stability of microgrids. These challenges arise primarily from three
aspects: (i) the volatile and random output of PV sources negatively impacts the power
balance of microgrids [3,4], and unbalanced active power in microgrids causes deviations
from the standard operating frequency; (ii) as PV power generation systems (PV systems)
do not respond to frequency deviations in the microgrid, the frequency regulation (FR)
capacity, mainly provided by synchronous generators in microgrids, is occupied, and
the frequency regulation ability of microgrids is thereby reduced [5]; and (iii) the use of
inverters instead of synchronous generators diminishes the overall inertia of microgrids [6],
limiting their inherent ability to overcome frequency disturbances. The combination of
these factors significantly reduces the frequency stability of microgrids with high PV pen-
etration rates [7], which results in poor power quality for users and poses challenges to
the reliable and consistent functioning of power system equipment. Therefore, there is an
increasing operational demand for PV systems to participate in FR, especially in small-sized
and isolated microgrids with high PV penetration rates [8,9].
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To participate in FR, PV systems need to control a portion of the active power to
mimic frequency regulation capacity [10]. Three main approaches are currently available:
(i) installation of energy storage devices [11,12]; (ii) application of a synchronverter, also
known as a virtual synchronous generator (VSG) [13,14]; and (iii) utilizing power reserve
control, which makes the PV operating point deviate from the maximum power point
(MPP) [15–22]. However, extensive performance analyses of a variety of energy storage
devices in microgrid environments have concluded that energy storage systems are not eco-
nomically feasible due to their shorter lifespan and higher investment cost compared with
PV system components [23]. Furthermore, the possibility of deriving frequency regulation
from PV systems without energy storage has been explored [24]. Therefore, it is desirable
for PV systems to provide up- and downregulation of active power in high-penetration
applications without relying on energy storage. Meanwhile, VSG-based approaches are
more appropriate for creating a brand-new PV inverter system with modifications to both
hardware and software [14]. Despite their commendable performances, these approaches
are not economical for grid-following PV plants that are already in operation on a large
scale. As a result, power reserve control is a more practical approach for grid-following PV
plants on a large scale. Considering the above-mentioned aspects, this study centers on the
utilization of the power reserve control approach as the primary methodology.

The critical task of power reserve control is to accurately determine a suitable operating
point for the PV system, which requires obtaining sufficient information on the characteristic
curve of the PV array under a given condition. The ways to realize this can be divided
into two categories: direct measurement and real-time estimation. As an example of the
former category, ref. [15] used a master PV system operating in maximum power point
track (MPPT) mode to measure the maximum available power (MAP), which was then used
by slave PV systems to control the operating point. Nevertheless, this approach is limited
to large-scale PV plants with uniform component conditions and necessitates the use of a
communication system. Other methods belonging to the former category, such as those
described in [16,17], made PV systems operate alternatively in MPPT mode and power
reserve control mode, with MAP measured and utilized in the same way. However, these
two methods result in excess energy on DC-link capacitors, causing the DC-bus voltage to
exceed the limit. Additionally, the methods in the first category often determine the target
operating point according to the relationship between the target PV power and MAP, which
increases the risk of sacrificing operational stability as the P-V curve is not monotonic, and
operating on the left side of a P-V curve is an unstable state for a PV system [18].

The latter category, which is more common in the literature, involves determining the
operating point of the PV systems by estimating important properties of the P-V charac-
teristic curve. In [19], a voltage offset was added directly to the voltage of MPP, denoted
as Vmp, under standard test conditions (STC) to achieve a quantitative deviation from the
MPP. However, this method lacks consideration of changes in external conditions, resulting
in decreased accuracy when tracking the target operating point. In [20], the mathematical
relation between the current of the PV array and irradiance intensity, cell temperature, and
voltage of the PV array was approximated by off-line curve fitting. In [21], a simplified PV
array model was utilized to estimate the P-V characteristic curve under a given external
condition by substituting the value of irradiance intensity and cell temperature into the
model. In [5], the parameters of a quadratic curve were estimated by employing the least
squares method on a substantial number of measurement samples collected around a set of
operating points, resulting in enhanced robustness of the approach in the presence of noise.
However, the nonlinearity and susceptibility to external environmental influences of the
PV characteristic curve limit the accuracy of the methods proposed by these three studies
when tracking target operating points, which compromises the frequency support ability of
PV systems. Additionally, more precise methods are being researched and developed. One
such method proposed in [22] involved iteratively solving the single-diode mathematical
model of the PV array using the Newton–Raphson method to obtain information near the
current operating point, allowing for determination of the necessary adjustment direction
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of the operating point. However, this iterative solution is computationally intensive and
time-consuming, rendering it difficult to provide timely frequency support during severe
fluctuations in the microgrid. Another method proposed in [10] estimated the target volt-
age offset from Vmp through iterative calculation, while a variable-step strategy gradually
moved the PV operating point to the target. However, the convergence speed of this
approach needs improvement, and some key parameters were determined through manual
experience, such as the initial power reserve ratio, which hindered the maximization of the
balance between the frequency support ability of PV systems and the utilization rate of solar
energy. In summary, the methods belonging to the second category overcome the harsh
application conditions of the first category and avoid the risk of operational instability, but
they also face new challenges in balancing tracking accuracy and computational speed.

To address the limitations of previous methods, a novel approach that leverages
artificial intelligence (AI) has been proposed for power reserve control in PV systems
participating in the FR of microgrids. This innovative approach overcomes the drawbacks
of poor timeliness associated with the time-consuming solution of accurate mathematical
equations and insufficient accuracy brought about by rough methods. The strategy begins
with collecting the frequency deviation of the microgrid and utilizing a frequency response
module to determine the target power reserve ratio of the PV system based on the measured
frequency deviation. The decision-making process for determining the initial power reserve
ratio is entrusted to a deep reinforcement learning (DRL) algorithm. Subsequently, a power
reserve control module is employed to obtain the target duty cycle, where the DRL-based
strategy facilitates intelligent variable step size, and the target duty cycle is then fed into
the BOOST converter. With this control mechanism, the PV system is able to operate at the
specified power reserve ratio, ensuring the generation of appropriate power and mitigating
frequency fluctuations in the microgrid.

The major contributions and innovations of this paper are stated as two aspects:

(i) A new AI-based power reserve control strategy is proposed for PV systems partici-
pating in the FR of microgrids, which effectively reduces the frequency deviation of
microgrids with high PV permeability.

(ii) A novel variable step-size strategy for BOOST converter duty cycle based on DRL is
proposed, which allows PV systems to quickly converge to specified operating points
even in the face of fluctuations in the external environment and load.

The remainder of this paper is structured as follows. Section 2 puts forward the control
strategy for a PV power generation system participating microgrid FR. Section 3 proposes
the DRL-based strategies for duty cycle variable step-size and optimal initial power reserve
ratio selection. Section 4 presents the simulations and analysis of the results, and Section 5
concludes the paper with the key findings.

2. Frequency Regulation Strategy for PV Systems Based on Power Reserve Control
2.1. Basic Control Strategies for PV Power Reserve

As shown in Figure 1, a microgrid containing PV units can be simplified to a simple
system consisting of only a PV system, a synchronous generator, and a load. It is worth
mentioning that to accurately simulate frequency deviation caused by power imbalance
in the microgrid, the idealized power grid initially connected to the PV system should be
replaced with an equivalent load and a synchronous generator (SG) with limited capacity.
The power transmitted by the PV system and the SG to the load is PPV and PG respectively,
and the power on the load is PD. Ignoring the network loss, the following relationship can
be obtained:

PG + PPV = PD (1)

when the power of PV or load fluctuates, (1) can be rewritten as

∆PG + ∆PPV = ∆PD (2)
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Figure 1. A simplified microgrid model.

SGs will spontaneously participate in FR, and the output power will respond to
changes in frequency [25]. The power–frequency static characteristic curve is shown in
Figure 2, where fN and PGN refer to the standard frequency of the grid and the rated power
of the SG, respectively. The relationship between the frequency deviation ∆ f and the output
power change ∆PG is shown in Equation (3).

∆PG = −kG∆ f (3)

where kG is the droop coefficient of the SG set by the power plant.
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According to (2) and (3), when the power of PV and load fluctuate, the frequency
deviation of the system is

∆ f =
∆PD − ∆PPV

−kG
(4)

It can be seen from (4) that the variability of both PV power and load can accumulate
and affect the microgrid frequency, resulting in a higher maximum frequency deviation
than that observed in the microgrid without PV power generation. Nevertheless, if PV
systems can mitigate their inherent volatility and respond to the grid’s frequency deviation
alongside conventional power generation units, the impact of PV integration on microgrid
frequency can transition from negative to positive. In light of (3), the power–frequency
static characteristics of a PV system can be defined as

∆PPV = −kPV∆ f (5)
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Substituting (5) into (4) yields

∆ f =
∆PD

−(kG + kPV)
(6)

A comparison between (4) and (6) reveals that if a PV system exhibits an FR response
similar to that of an SG, the system’s frequency deviation can be further reduced when
subjected to load and external environment fluctuations.

This study focuses on a two-stage three-phase PV system and proposes a frequency
regulation strategy, as shown in Figure 3. The strategy employs a new “frequency loop”
composed of a frequency response system, power reserve control system, and BOOST
converter. This loop, along with a dual-loop control system consisting of a “voltage loop”
to maintain bus voltage stability and a “current loop” to maintain voltage and current in
phase, creates a control system that enables the participation of PV systems in microgrid
frequency regulation.
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The measured grid-side voltage frequency is fed to the frequency response module by
the phase-locked loop (PLL). The frequency response module then calculates the degree of
frequency deviation and outputs the power reserve ratio d for the PV system to the power
reserve control module. Upon receiving the signal, the power reserve control module
utilizes an algorithm to adjust the duty cycle of the BOOST converter to the target, thus
achieving control of the PV system’s output power, which alleviates the power imbalance
in the microgrid.

2.2. Determination Method of Power Reserve Ratio Based on the Frequency Response Module

Power imbalance is the primary reason for grid frequency deviation. To enable a PV
system to participate in power system frequency regulation, it is essential to adjust its
output power in real time based on the frequency deviation. Typically, to maximize the
use of solar energy, a PV system is often controlled to operate at MPPs. However, when
the microgrid frequency is lower than the standard frequency fN and there is an urgent
need to generate more power to alleviate power shortage, the PV system already running
on MPPs cannot adjust its output power upwards. Therefore, the PV system participating
in FR should reserve a portion of MAP when the grid frequency is fN, so as to cope with
power shortages. Conversely, when the load decreases and the power overflow causes the
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frequency to increase, the PV system should correspondingly reduce the output power to
minimize the frequency deviation of the microgrid.

This article introduces the power reserve ratio d to describe the level of power gen-
eration of a PV system, which is defined as the percentage of the difference between the
maximum power and actual power of the PV system and the maximum power ratio, as
shown in Equation (7).

d =
Pde
Pm

=
Pm − P

Pm
(7)

where Pm and P are the maximum and actual output power of the PV system, respectively,
and Pde is the reserved PV power.

Based on the analysis above, it is important to determine the initial power reserve ratio
d0 of the PV system when the grid frequency is stable at fN. If the initial power reserve ratio
is too low, the PV system’s range of power variation in response to microgrid frequency
fluctuations will be limited, resulting in suboptimal results for the participation of PV
systems in FR. Conversely, if the initial power reserve ratio is too high, the power emitted
by the PV system when the frequency deviation is zero will be far lower than MAP, leading
to a waste of solar energy. Therefore, d0 should be a parameter requiring sophisticated
calculation, and the method for its value determination is explained in Section 3.3.

As shown in Figure 4, the curve represents the relationship between the frequency
deviation rate and the power reserve ratio. Point B corresponds to the case where the
microgrid frequency is at the standard frequency ( f = fN), and the PV system should
maintain a power reserve ratio of d = d0. The PV power plant specifies the maximum
frequency deviation that a PV system participating in frequency regulation can accept,
recorded as (∆ f )max . If f ∈ [ fN − (∆ f )max, fN + (∆ f )max ] is satisfied, the microgrid can be
restored to the standard frequency using only the PV system; otherwise, extra approaches
are required to assist with frequency regulation. Point A represents the case where the
grid frequency is below the adjustable lower limit, i.e., f < fN − (∆ f )max , and the PV
system should work at the MPP to output as much power as possible to alleviate the power
shortage, so the power reserve ratio at point A is d = 0. Similarly, the right side of point C
corresponds to the circumstance where the frequency is higher than the adjustable upper
limit, i.e., f > fN + (∆ f )max , and the output power of the PV system should be reduced.
According to the linear relationship of the first-order function, the corresponding power
reserve ratio at point C will be twice the initial power reserve ratio. The corresponding
power at point C can be obtained by

PC = Pm

(
1− 2d0

)
(8)

It is evident that the y-intercept of this linear function is d0, and its slope kde can be
expressed as follows:

kde =
yA − yB

xA − xB
=

0− d0

−(∆ f )max/ fN − 0
=

fN

(∆ f )max
(9)

Therefore, the functional expression of the curve of frequency deviation–power reserve
ratio in Figure 4 is

d =


0, f < fN − (∆ f )max

kde
f− fN

fN
+ d0, fN − (∆ f )max ≤ f ≤ fN + (∆ f )max

2d0, f < fN + (∆ f )max

(10)

P control is differential control, while PI control is zero differential control. If only
P control is used here to achieve power reserve, although the frequency deviation will
be greatly reduced, it still cannot bring the grid frequency back to the standard power
frequency, so PI control should be used for adjustment. The control method shown in
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Figure 5 coordinates the application of PLL, which samples the frequency of the grid,
a saturation module, which sets the threshold value of frequency deviation within the
adjustable range, as well as PI control. Use the frequency of the collected grid-side voltage
to calculate the target value d* of the power reserve ratio of the PV system according to (10),
so as to perform the remaining power reserve control. The parameters of PI control in the
frequency response module are set as follows: Kp = 55 and Ki = 12.
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2.3. Determination Method of BOOST Converter Duty Cycle Based on the Power Reserve
Control Module

To ensure operational stability, PV systems are typically controlled to operate on the
section of the P-V curve located on the right side of the MPP. It can be proved that the
P-V curve on the right side of MPP monotonically decreases, and the derivative of P with
respect to V also exhibits monotonicity for P. Therefore, each P value on the right side of
MPP corresponds to a unique value of (dP/dV), as depicted in Figure 6a. Equation (7)
reveals that there is a linear relationship between the output power P and the power reserve
ratio d of the PV system. As a result, the derivative of P with respect to V must also have
a one-to-one correspondence with the power reserve ratio d, as illustrated in Figure 6b,
which is under the standard test condition (STC, G = 1000 W/m2, T = 25 ◦C).

Hence, Equation (11) can be employed to express the implicit function that relates
(dP/dV) to d. By utilizing this function expression, the target value of (dP/dV) can be
obtained by substituting the target power reserve ratio d*. The solution to the implicit
function h(·) is elaborated in Section 2.4.

(
dP
dV

)
*
= h(d*) (11)
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If the PV system is controlled to operate at the target operating point on the P-V curve,
where the tangent slope equals the target value (dP/dV)∗, the power reserve ratio of the
operating point will reach the target value, i.e., d = d∗. Since the frequency of the microgrid
fluctuates, the target power reserve ratio d∗ also varies, and hence (dP/dV)∗ cannot be
constant. To ensure the PV system operates at the target operating point, a parameter k∆(t)
is defined as the difference between the tangent slope of the operating point and the target
value. Therefore, we can express the parameter as

k∆(t) =

∣∣∣∣∣∆PPV(t)
∆VPV(t)

−
(

dP
dV

)*

t

∣∣∣∣∣ (12)

where t is the current time stamp, ∆PPV(t) = PPV(t)− PPV(t− 1) represents the difference of
PV power between the current and the last time stamp, and ∆VPV(t) = VPV(t)−VPV(t− 1)
is that of PV voltage.

Before the commencement of the algorithm, certain parameters need to be preset,
including the initial value D(0), step-size ∆D, and initial change direction of duty cycle. It
is worth mentioning that the choice of step size is crucial in determining the performance
of operating point control. A small step size may lead to accurate tracking but may result
in slow convergence and long computation time. On the other hand, a large step size may
result in fast convergence but may lead to oscillations and instability. Therefore, a variable
step-size strategy is preferred to balance the trade-off between accuracy and convergence
speed. The variable step-size strategy for the BOOST converter is described in Section 3.2.

During the iteration, if k∆ becomes larger than the previous value, the direction
of movement of the duty cycle should be changed, and vice versa. The duty cycle is
continuously adjusted until the target duty cycle D* is reached, i.e., the change in k∆ during
the iteration is less than the preset threshold ε. At this stage, the PV system operates
at a point on the P-V curve where the tangent slope equals the target value (dP/dV)∗.
Algorithm 1 presents the pseudocode of the power reserve control strategy.
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Algorithm 1: Pseudocode of the power reserve control strategy

Set the initial value D(0), step-size ∆D, and initial change direction for duty cycle and the change
threshold ε

Set t = 0, k∆(0) = 0, k∆(1) = +∞
while True do

t = t + 1
if |k∆(t)− k∆(t− 1)| > ε do

Sample VPV(t), IPV(t), PPV(t) = VPV(t)× IPV(t)
∆PPV(t) = PPV(t)− PPV(t− 1), ∆VPV(t) = VPV(t)−VPV(t− 1)
Calculate d∗(t) at time t by (10) and using the frequency response module presented in
Figure 5
Obtain (dP/dV)*

t at time t according to (11)
Calculate k∆(t) by (12)
if k∆(t) > k∆(t− 1) do

Make the adjustment direction of the duty cycle opposite: (∆D)t = −(∆D)t−1
else if k∆(t) ≤ k∆(t− 1) do

Keep the adjustment direction of the duty cycle: (∆D)t = (∆D)t−1
end if
Adjust the duty cycle: D(t) = D(t− 1) + (∆D)t

end if
if the PV system no longer participates in microgrid frequency control do

break while
end if

end while

2.4. Solution of Function Expression of (dP/dV) = h(d)
Figure 6b depicts the functional relationship between (dP/dV) and d, represented by

(dP/dV) = h(d), for a single PV module operating under STC. It is worth noting that this
expression is dependent on environmental factors and the number of PV modules present
in the system.

When the number of PV modules in the PV array changes, the function h(·) will be
scaled accordingly. The relationship between the function for the PV array composed of
ns modules connected in series and np modules connected in parallel and the functional
expression of a single module is as follows:

dParray

dVarray
=

d
(
nsnpPmodule

)
d(nsPmodule)

=
nsnp

ns

dPmodule
dVmodule

= np
dPmodule
dVmodule

(13)

where Pmodule and Vmodule represent the power and voltage values of a PV module and
Parray and Varray of a PV array composed of PV modules.

When changes occur in the external environment of the PV system, such as variations
in irradiance intensity and cell temperature, the expression of the function h(·) is also
affected. The generally employed approach involves combining the mathematical model
of PV array and (7) and using the Newton–Raphson method to obtain the expression of
h(·) through iterative process. An alternative and more efficient method is to develop
a simplified PV cell model, which simplifies the mathematical model of PV array into a
transcendental equation set comprising five equations and combines it with (7) to obtain
the expression of h(·). However, the former is limited by a long computational time owing
to the continuous iterative solution of the transcendental equation, whereas the latter
has a reduced computational accuracy, and even though it has improved computational
efficiency, it still requires solving equations repeatedly at every moment. Therefore, a
better approach is to use existing operating data efficiently for accurate and efficient fitting.
Curve fitting using the least squares method is a data-driven approach to solving functional
relationships, but inappropriate functional forms can lead to insufficient fitting accuracy
or overfitting due to the unknown form of the simplified fitting expression. Thus, this
study employs artificial neural networks (ANN) to fit the function (dP/dV) = h(d), which
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can achieve higher accuracy and computational efficiency even without knowledge of the
specific expression [26].

The structure of ANN is shown in Figure 7. In our problem, the values of G, T, and d
are all able to influence the output value of (dP/dV) = h(d). Therefore, G, T, and d are set
as the input of the ANN and the value of (dP/dV) as the output.
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The steps for solving the functional expression of (dP/dV) = h(d) using ANN are
as follows:

(i) Set multiple combinations of irradiance intensity and cell temperature and test a
single PV module under each combination, respectively. The duty cycle of the BOOST
converter is continuously adjusted while collecting the following parameters of the
PV module under each given external condition: power P, voltage V, and current I.
The corresponding value of (dP/dV) can be obtained by calculating ∆P/∆V, and d
can be calculated by (7). Thereby, numerous sets of {G, T, d, (dP/dV)} are recorded
as the sample dataset.

(ii) Normalize the sample dataset by mapping it into [0, 1].
(iii) Divide the sample dataset into training set, validation set, and test set by a ratio of

3:1:1.
(iv) Obtain candidate ANN models with different hyperparameters using manual experi-

ence and grid search methods.
(v) Train all candidate models on the training set.
(vi) Evaluate the trained candidate models on the validation set and select the optimal

ANN model.
(vii) Test the optimal ANN model on the test set.
(vii) Denormalize the output of the optimal ANN model to obtain the predictive values of

(dP/dV) and analyze them with some evaluation indicators.
(ix) When a new set {G, T, d} is given, the trained ANN model is used to calculate the

corresponding (dP/dV) of the PV module. The actual (dP/dV) value of the whole
PV array can be obtained by (13).
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3. DRL-Based Strategies for Duty Cycle Variable Step-Size and Optimal Initial Power
Reserve Ratio Selection

In Section 2, we presented a framework for integrating PV systems into the control
strategy of microgrid frequency regulation. However, there are still two outstanding
challenges that need to be addressed: (i) devising a step-size control strategy that facilitates
rapid convergence of the PV system’s operating point to the target operating point, while
ensuring accurate tracking after convergence; (ii) determining the optimal initial power
reserve ratio that maximizes the utilization of solar energy while maintaining the frequency
support capability of PV systems in microgrids. In this context, deep reinforcement learning
(DRL) holds great promise in addressing these challenges, as it possesses exceptional
decision-making capabilities that can be highly applicable in resolving these issues.

3.1. Fundamentals of Deep Reinforcement Learning

DRL is an algorithmic framework that models the mapping between environmental
states and actions, with the ultimate objective of maximizing the cumulative reward that an
agent receives through iterative trial-and-error interactions with a given environment [27].

The reinforcement learning framework comprises agents that can take a specific action
at based on the current state st, as depicted in Figure 8. Once an action is chosen at time
t, the agent receives a scalar reward rt+1 and transitions to a new state st+1, which is
dependent on both the current state and the chosen action. The policy function π(·) maps
the agent’s current state to a specific action:

π(at|st) = P(A = at|S = st) (14)

where A is the action variable referring to the entire set of possible actions that an agent
can take in a given state, and S represents the state variable, analogously.
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The state transition function p(·) characterizes the probability distribution of transi-
tioning from one state to another under a specific action:

p(st+1|st, at) = P
(
S′ = st+1

∣∣S = st, A = at
)

(15)

As illustrated in Figure 9, the Markov decision process (MDP) adheres to the Markov
property and serves as the fundamental formalism for reinforcement learning. It can be
defined as follows:
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p(st+1|s0, a0, s1, a1, · · · , st, at) = p(st+1|st, at) (16)
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During each epoch, the agent takes actions that modify its state within the environment
and receives corresponding rewards. In order to better estimate the reward value, a value
function and an optimal policy are introduced [27]. The aim is to maximize the long-term
cumulative reward beyond the current time t for a fixed time horizon that terminates at
time t. This is expressed by the payoff Ut, as shown in Equation (17).

Ut = Rt + γRt+1 + γRt+2 + · · · = ∑∞
k=0 γkRt+k (17)

where γ ∈ [0, 1] is the discounted factor, a hyperparameter to be determined.
Various algorithms are utilized to determine the optimal policy, some of which in-

volve utilizing an action-value function. The action-value function Qπ(·) is utilized to
represent the value of taking an action at in a given state st under a policy π at time t, as
demonstrated below:

Qπ(st, at) = E[Ut|S = st, A = at] (18)

Analogously, the state-value function Vπ(·) is indicative of how advantageous it is
for the agent to reach a specific state st, and it is dependent on the agent’s current policy
π(·) [27], as shown in Equation (19).

Vπ(st) = EA[Qπ(st, A)] (19)

where EA(·) stands for the expectation for all actions.
In this article, deep Q-learning is adopted to find the optimal policy function. The

Bellman equation can be utilized to express the Q-function iteratively in the Q-learning
algorithm:

Qπ(st, at) = E[Rt+1 + γQπ(st+1, at+1)|S = st, A = at] (20)

The maximum cumulative reward can be achieved by selecting the optimal policy
function π∗(·), which leads to the optimal action-value function Q∗(·), as demonstrated in
Equation (21).

Q∗(st, at) = Qπ∗(st, at) = maxπQπ(st, at) (21)

where maxπ(·) denotes the operation to obtain the maximum value by traversing all
policy functions.

Then, the next optimal action for the agent based on the given new state st+1 is
computed by

at+1 = argmaxAQ∗(st+1, A) (22)

where argmaxA(·) denotes the operation to identify the optimal action A from all possible
actions to maximize the function value.

The optimization model presented in this paper involves nonlinear objectives and
constraints. To tackle this challenge, we adopt deep Q-learning [28], which leverages the
power of deep neural networks and reinforcement learning to process large-scale data
effectively. This approach enables agent training using vast amounts of data, leading to
real-time decision making based on the current state variables and ultimately resulting
in optimal parameter setting. Specifically, the state vector S is used as the input sequence
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through the neural network, and the approximated Qπ(·) is obtained in the output layer.
The network consists of h hidden layers, each composed of u neurons, where h and u are
hyperparameters determined by the specific calculation example. In this study, the neural
network comprises four hidden layers, and the activation function used is ReLU (rectified
linear unit).

3.2. DRL-Based Optimal Strategy for Duty Cycle with Variable Step Sizes

According to Section 2.3, where the determination method of the BOOST converter
duty cycle based on the power reserve control module was introduced, the choice of duty
cycle step size is crucial in determining the performance of the power reserve control
algorithm. Using a small step size can achieve accurate tracking, but it comes at the cost
of slow convergence and prolonged computation time. Conversely, a large step size can
lead to fast convergence, but it may result in oscillations and instability. Consequently, a
variable step-size strategy is deemed preferable to balance the trade-off between accuracy
and convergence speed.

One common approach to variable step size is to use a variable step size that changes
with the PV system’s operating conditions [22]. The variable step size is typically propor-
tional to the change in the PV array’s output power or voltage. Specifically, a large step
size is used when the PV array is far from the target operating point, and a small step size
is used when the PV array is close to it. This strategy ensures adequate convergence speed
and better accuracy and avoids overshooting and oscillations. However, the general vari-
able step-size strategy has some limitations, such as inflexible adjustment time, which can
lead to suboptimal performance under changing external conditions, and finite available
step sizes, causing limited adjustment accuracy. The aforementioned limitations can have
a detrimental impact on the ability to track the desired power reserve ratio, ultimately
leading to a reduction in the overall performance of microgrid frequency regulation. In
contrast, using DRL can effectively overcome these limitations and provide more flexible
and optimized step-size decisions.

To determine the variable step size of the BOOST converter, the state variables should
include the irradiance intensity, the cell temperature, the frequency deviation, the target
power reserve ratio, the operating current and voltage of the PV array, the current and
last duty cycle step sizes, and the current time stamp. Therefore, the state space can be
expressed as

S = [G(t), T(t), (∆ f )t, (d
∗)t, IPV(t), VPV(t), (∆D)t, (∆D)t−1, t] (23)

The action variable is referred to as the change in the duty cycle step size, so the action
space is

A = (∆2D)t (24)

where (∆2D)t is the change in the duty cycle step size. The duty cycle step size at the next
time stamp is determined by (∆D)t+1 = (∆D)t + (∆2D)t.

The aim of optimizing the variable step size of the BOOST converter using DRL is to
minimize the cumulative frequency deviation through an optimal action-value function
Q∗(·) learned by the agent. The performance of a given variable step-size strategy is
negatively impacted as the cumulative frequency deviation grows larger. To address this,
the problem is reformulated as a reward maximization task in the DRL framework. As a
result, the agent’s reward function can be expressed as

R = −(∆ f )t (25)

3.3. DRL-Based Optimal Strategy for Initial Power Reserve Ratio Selection

According to Section 2.2, where the determination method of power reserve ratio based
on frequency response module was introduced, the selection of the initial power reserve
ratio significantly affects the efficacy of the power reserve control algorithm. The initial
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power reserve ratio plays a crucial role in determining the level of PV system involvement
in the FR of the microgrid, as well as the portion of solar energy wasted. It is essential
to select the optimal initial power reserve ratio, taking into account both the frequency
support ability of the PV system for the microgrid and the utilization rate of solar energy.

Similar to Section 3.2, the state space and the action space can be expressed using
Equations (26) and (27):

S = [G(t), T(t), (∆ f )t, (d
∗)t, MAP(t), PPV(t), t] (26)

A = d0 (27)

The agent’s reward function can be defined as

R = −
[

(∆ f )t
(∆ f )max

+
MAP(t)− PPV(t)

MAP(t)

]
(28)

where (∆ f )max is the maximum frequency deviation allowed in the microgrid and MAP(t)
is the maximum available power of the PV system at time t. (∆ f )t/(∆ f )max denotes the fre-
quency deviation cost, indicating the extent of frequency deviation at time t.
[MAP(t)− PPV(t)]/MAP(t), also denoted as the power wastage cost, represents the de-
gree of solar energy wastage at time t. To make these costs dimensionless, both are
normalized using their own denominators. The selection of the optimal initial power
reserve ratio should take into account both costs, with the aim of minimizing their sum.
This requires a comprehensive evaluation of both factors, and the agent’s reward function
is thereby maximized.

In the strategy training process, the optimization of the variable step-size strategy is
performed at each time stamp, whereas the optimization of the initial power reserve ratio
selection strategy is carried out every ten time stamps. Thereby, the proposed AI-based
control strategy for PV systems participating in the FR of a microgrid can be illustrated
as shown in Figure 10. The training process involves using DRL to obtain the optimal
strategies of power reserve ratio selection and variable duty cycle step size. Subsequently,
the obtained parameters are applied to the power reserve control algorithm, as discussed
in Section 2, to enhance the system’s performance.
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4. Simulation Verification

To validate the effectiveness of the proposed control strategy for PV systems partici-
pating in FR, we conducted three sets of simulations. The first set examined the ability of
the power reserve control module, which utilizes ANN, in tracking a given power reserve
ratio, and we compared its performance with other methods. The second set compared
the performance of the proposed DRL-based duty cycle variable step-size strategy with
some other step-size selection methods. The last set evaluated the effect of the initial power
reserve ratio determined using DRL, as well as the overall performance of the proposed
frequency regulation strategy for the PV system.

4.1. Case 1: Evaluation of Power Reserve Control Module Using Different Methods

The accuracy and efficiency of different solution methods for tracking the target power
reserve ratio play a crucial role in determining the sensitivity and performance of the power
reserve control module. To this end, the expression for (dP/dV) = h(d) must be solved
in the power reserve control module to allow for the calculation of (dP/dV)* based on d*

when a target power reserve ratio is given. This enables the input of the corresponding
duty cycle D* into the BOOST converter. In this case, the irradiance intensity and cell
temperature were given, as shown in Figure 11a,b, and the curve of the given power
reserve ratio was also provided, as shown in Figure 12.

To evaluate the sensitivity of different solution methods in tracking d*, we employed
the curve-fitting method proposed in [20], a simplified PV model utilized in [21], the
ANN approximation method proposed in this study, and the Newton–Raphson method
used in [22], respectively. The structure of the ANN is shown in Figure 7, having two
hidden layers with eight and four neurons, respectively. The relevant parameters of the
PV array are shown in Table A1, and the duty cycle step size was temporarily set to 0.05.
The measured power reserve ratio by different tracking methods were obtained by (7).
Figure 12 shows the effect of the power reserve control modules based on different methods
of tracking d*.

From the results shown in Figure 12, it can be observed that using the Newton–
Raphson method to solve (dP/dV) = h(d) for the power reserve control module exhibits
the best tracking control effect on the power reserve ratio, with results almost consistent
with the given power reserve ratio. On the other hand, using the ANN approximation,
simplified PV model, and curve-fitting method exhibits a descending order of tracking
performance. However, the Newton–Raphson method’s high accuracy comes at the cost of
relatively complex iterative processes and long calculation times. Under severe fluctuations
of external conditions and load, this method may not be able to track the target power
reserve ratio promptly, leading to a decrease in frequency regulation performance. There-
fore, when evaluating the effects of different methods used in power reserve control, it is
necessary to comprehensively consider the accuracy of tracking the target power reserve
ratio, which can be characterized by the root mean square error (RMSE) between the given
power reserve ratio and the measured one, as well as the calculation time of different
methods, as shown in Table 1.

Table 1 shows that the performance of the ANN approximation method surpassed the
power reserve control methods tested to different degrees, considering both the accuracy
and speed of tracking a given d*. Therefore, in the subsequent simulations, the ANN
approximation method was used in the power reserve control module.
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Figure 11. The given conditions: (a) irradiance intensity for Cases 1 and 2; (b) cell temperature for
Cases 1 and 2; and (c) load power for Case 2.
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Table 1. Effects of different methods used in power reserve control strategy.

Method
RMSE Calculation Time Total Reduction

Value (%) Reduction (%) Value (ms) Reduction (%) Value (%) Ranking

Curve-fitting method 1.28 0 38.46 86.68 86.68 4
Simplified PV model 0.63 50.78 33.47 88.40 139.18 2
ANN approximation 0.26 79.68 43.87 84.80 164.48 1

Newton–Raphson method 0.12 90.63 288.64 0 90.63 3

Note: For RMSE reduction, the benchmark is “curve-fitting method”, and for calculation time reduction, the
benchmark is “Newton–Raphson method”. The value of total reduction is the sum of RMSE reduction and
calculation time reduction.

4.2. Case 2: Evaluation of DRL-Based Duty Cycle Variable Step-Size Strategy

As discussed in Section 3.2, the conventional approach of determining the duty cycle
step size for the power reserve control strategy has notable limitations. The variable step-
size method proposed by [10] takes into consideration both convergence speed and stability
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accuracy, making it a better alternative to the fixed step-size method. However, whether it
involves selecting a disturbance step size from a set of available step sizes or introducing a
scaling coefficient to compress the step size, these methods have shown satisfactory results
in MPPT algorithms but still have significant room for improvement when dealing with
FR scenarios with external environmental and load fluctuations. Therefore, this case study
aims to compare the frequency stabilization effects of three control strategies under various
external disturbance conditions in the microgrid: MPPT control, power reserve control
based on the variable step-size algorithm proposed by [10], and power reserve control
using the variable step-size strategy proposed in this paper.

In this case, a simplified microgrid model was used, which consisted of a PV system,
a synchronous generator, and a load, as shown in Figure 1. The standard frequency of
the microgrid was 50 Hz. The MPP of the PV system under STC was set to 100 kW, and
its relevant parameters were shown in Table A1. The synchronous generator was a diesel
generator with an initial power output of 200 kW, and its parameters are presented in
Table A2. The load had an initial power of 300 kW. The fluctuation of external environment
and load is shown in Figure 11, and the initial power reserve ratio was set to 20%. Addi-
tionally, the hyperparameters of the deep Q-learning agent for the power reserve control
system are set as follows: the discount factor γ was 0.9, the data sampling size was 256,
the experience pool size was 106, the network parameter learning rate α was 0.0001, and
the Adam optimizer was used to update the network weights. The simulation platform
employed Python software and a i5-8250U computing unit to construct and validate the
simulation model.

Figure 13 presents the simulation results. Initially, when only the synchronous gen-
erator participated in FR, the frequency fluctuation of the microgrid was high. Then, the
power reserve control strategy proposed in this article was applied to the PV system to
achieve FR. The variable step-size FR strategy proposed by [10] was employed, resulting
in a significant reduction in frequency fluctuation, as evidenced by the area of the blue
shaded portion in Figure 13. Subsequently, the DRL-based variable step-size FR strategy
proposed in this article was used, which led to a further decrease in frequency fluctuation,
as indicated by the area of the green shaded portion.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24 
 

 

 

Figure 13. Microgrid frequencies using different step-size strategies. 

These results demonstrate the efficacy of the power reserve frequency regulation con-

trol using the DRL-based variable step-size strategy proposed in this article, and this var-

iable step-size strategy is used in the next set of simulations. 

4.3. Case 3: Evaluation of DRL-Based Optimal Power Reserve Ratio Selection Strategy 

Based on the discussion in Section 3.3, the initial power reserve ratio is a critical factor 

that determines the extent to which PV systems can participate in the FR of a microgrid, 

as well as the portion of wasted solar energy. The optimal initial power reserve ratio 

should consider both the frequency support ability of the PV system for the microgrid and 

the utilization rate of solar energy. However, manual experience is often used to deter-

mine the initial power reserve ratio, meaning that it is selected from a limited set of can-

didate numbers, resulting in a deviation from the optimal value and a limit to the capacity 

of the PV system to provide maximum frequency support or to achieve optimal solar en-

ergy utilization. 

In this case, the irradiance intensity curve and load power curve were provided with 

a random fluctuation, as depicted in Figure 14, while the cell temperature was maintained 

at 25 °C. The allowed maximum frequency deviation was ∆𝑓 = 0.2 Hz. 

  

0 10 20 30 40 50 60 70 80

49.8

49.9

50.0

50.1

50.2

F
re

q
u

en
cy

 (
H

z)

Time (s)

 f1: Without PV participating in FR

 f2: FR (conventional variable step size)

 f3: FR (DRL-based variable step size)

 fn: Standard frequency

Figure 13. Microgrid frequencies using different step-size strategies.



Electronics 2023, 12, 2075 18 of 22

Upon analysis, it was observed that when the PV system did not participate in FR,
the average frequency deviation was 0.0809 Hz. After employing the variable step-size
FR strategy proposed by [10], the frequency deviation decreased by an average of 0.0301
Hz, which is a 62.87% reduction compared with the previous case. Furthermore, the
frequency deviation decreased by an additional average of 0.0224 Hz, which represents a
reduction of 9.49% and 72.36%, respectively, compared with the previous cases where the
variable step-size FR strategy proposed by [10] and the PV system were not involved in
FR, respectively.

These results demonstrate the efficacy of the power reserve frequency regulation
control using the DRL-based variable step-size strategy proposed in this article, and this
variable step-size strategy is used in the next set of simulations.

4.3. Case 3: Evaluation of DRL-Based Optimal Power Reserve Ratio Selection Strategy

Based on the discussion in Section 3.3, the initial power reserve ratio is a critical factor
that determines the extent to which PV systems can participate in the FR of a microgrid,
as well as the portion of wasted solar energy. The optimal initial power reserve ratio
should consider both the frequency support ability of the PV system for the microgrid
and the utilization rate of solar energy. However, manual experience is often used to
determine the initial power reserve ratio, meaning that it is selected from a limited set
of candidate numbers, resulting in a deviation from the optimal value and a limit to the
capacity of the PV system to provide maximum frequency support or to achieve optimal
solar energy utilization.

In this case, the irradiance intensity curve and load power curve were provided with a
random fluctuation, as depicted in Figure 14, while the cell temperature was maintained at
25 ◦C. The allowed maximum frequency deviation was ∆ f = 0.2 Hz.
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In the first step, we simulated the selection of initial power reserve ratio using manual
experience. The value of the initial power reserve ratio d0 was varied from 0% to 50% in
5% intervals. The cost of frequency deviation and power waste were calculated based on
simulated operating data for each value of d0. The costs were then added to obtain a cost
function value for a limited number of power reserve ratios. The cost function value is
shown in Figure 15. The optimal initial power reserve ratio was determined to be 25%,
with the corresponding frequency deviation cost, power waste cost, and total cost being
15.56%, 24.98%, and 40.62%, respectively.
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Subsequently, the proposed DRL-based optimal initial power reserve ratio selection
strategy was employed to facilitate the participation of the PV system in the FR of the
microgrid. The optimized initial power reserve ratio was determined to be 23.14%, which
resulted in a frequency deviation cost of 16.11%, a power waste cost of 23.14%, and a
total cost of 39.25%. It is noteworthy that the total cost is lower than that of the initial
power reserve ratio selected through manual experience. Compared with the selection
method based on manual experience, which may suffer from extensive interval division
and incorrect judgment in worse scenarios, the DRL-based optimal initial power reserve
ratio selection strategy provides superior performance in terms of the ability to participate
in the FR of the microgrid.

5. Conclusions

This study proposed a novel AI-based power reserve control strategy for PV systems
participating in the FR of microgrids, which overcomes the limitations of traditional meth-
ods based on accurate mathematical equations or simplified PV models. The proposed
strategy starts by collecting the frequency deviation of the microgrid and uses a frequency
response module to determine the target power reserve ratio of the PV system. Then, a
power reserve control module is employed to obtain the target duty cycle, which is fed
to the BOOST converter to control the PV operating point. The proposed control strategy
enables the PV system to work at a specified power reserve ratio, producing appropriate
power to mitigate frequency fluctuations in the microgrid.
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The effectiveness of the proposed method was validated through simulations, high-
lighting its potential for practical applications in real-world microgrids. The results show
that the ANN approximation outperformed other methods in the power reserve control
module for target PV operating point tracking. Moreover, the proposed DRL-based strategy
for variable step size surpassed the conventional method in reducing frequency deviations
by 73.36% and 62.87%, respectively, when facing fluctuations in the external environment
and load. Additionally, the use of DRL for the selection of the optimal initial power reserve
ratio outperformed the use of manual experience in terms of the integrated degree of
frequency deviation and solar energy wastage. Overall, the AI-based power reserve control
strategy for PV systems participating in the FR of a microgrid demonstrated satisfactory
performance in reducing frequency deviation, which is crucial for improving the frequency
support capacity of PV systems, promoting the absorption of new energy led by PV systems,
and reducing the phenomenon of light abandonment.
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Appendix A

The output characteristic equation of a PV cell can be expressed mathematically, as
shown in Equation (A1). In this study, the 1STH-215-P PV cell of Soltech Company is used,
and the parameters in (A1) are listed in Table A1.

I = np Isc − np Is

(
exp

[
q
(
V/ns + IRs/np

)
AkTc

]
− 1

)
−

Vnp/ns + IRs

Rp
(A1)

Table A1. Parameters in the mathematical model for the solar PV array [29].

Symbol Parameter Name Value Unit

q The electron charge 1.60× 10−19 C
k The Boltzman constant 1.38× 10−23 J/K
A The ideality factor 1.72 -
Ki The temperature coefficient 1.70× 10−3 A/K
G The irradiance Given W/m2

Ta The ambient temperature Given K
Tr The reference temperature 298.15 K

Tc(T) The cell temperature Ta + 0.028G− 1 K

Iscr
The reference short circuit current

at Tr
3.30 A

Isc The short circuit current G[Iscr + Ki(Tc − Tr)] A
Ior The reverse current at Tr 19.97× 10−6 A
Is The diode saturation current Ior(Tc/Tr)

3×eqEg(1/Tr−1/Tc)/(kA) A
Rsh The shunt resistance 313.40 Ω
Rs The series resistance 0.39 Ω
np The number of cells in parallel 9 -
ns The number of cells in series 21 -
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Table A2. Parameters of the thermal synchronous generator.

Symbol Parameter Name Value Unit

Pc Total capacity 3 MW
kd Droop coefficient 15 −
Tg Governor time constant 0.2 -
Fr Reheat coefficient 5 -
Tr Reheat time constant 0.2 -
Tt Turbine time constant 0.2 -
H Rotor inertia constant 4 -
D Damping coefficient 1 −
fn Standard frequency 50 Hz
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