
Citation: Guevara, I.H.; Margaria, T.

MazeGen: A Low-Code Framework

for Bootstrapping Robotic Navigation

Scenarios for Smart Manufacturing

Contexts. Electronics 2023, 12, 2058.

https://doi.org/10.3390/

electronics12092058

Academic Editors: Juan M. Corchado,

Byung-Gyu Kim, Carlos A. Iglesias,

In Lee, Fuji Ren and Rashid Mehmood

Received: 15 March 2023

Revised: 17 April 2023

Accepted: 21 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MazeGen: A Low-Code Framework for Bootstrapping Robotic
Navigation Scenarios for Smart Manufacturing Contexts
Ivan Hugo Guevara * and Tiziana Margaria

Confirm Centre, University of Limerick, V94 C928 Limerick, Ireland
* Correspondence: ivan.guevara@ul.ie

Abstract: In this research, we describe the MazeGen framework (as a maze generator), which
generates navigation scenarios using Grammatical Evolution for robots or drones to navigate. The
maze generator uses evolutionary algorithms to create robotic navigation scenarios with different
semantic levels along a scenario profile. Grammatical Evolution is a Machine Learning technique
from the Evolutionary Computing branch that uses a BNF grammar to describe the language of the
possible scenario universe and a numerical encoding of individual scenarios along that grammar.
Through a mapping process, it converts new numerical individuals obtained by operations on the
parents’ encodings to a new solution by means of grammar. In this context, the grammar describes
the scenario elements and some composition rules. We also analyze associated concepts of complexity,
understanding complexity as the cost of production of the scenario and skill levels needed to move
around the maze. Preliminary results and statistics evidence a low correlation between complexity
and the number of obstacles placed, as configurations with more difficult obstacle dispositions were
found in the early stages of the evolution process and also when analyzing mazes taking into account
their semantic meaning, earlier versions of the experiment not only resulted as too simplistic for
the Smart Manufacturing domain, but also lacked correlation with possible real-world scenarios, as
was evidenced in our experiments, where the most semantic meaning results had the lowest fitness
score. They also show the emerging technology status of this approach, as we still need to find
out how to reliably find solvable scenarios and characterize those belonging to the same class of
equivalence. Despite being an emerging technology, MazeGen allows users to simplify the process of
building configurations for smart manufacturing environments, by making it faster, more efficient,
and reproducible, and it also puts the non-expert programmer in the center of the development
process, as little boilerplate code is needed.

Keywords: smart manufacturing; machine learning; evolutionary computing; navigation scenarios

1. Introduction

Robotic Navigation Scenarios are configurations with obstacles and objects, such as
walls, tables, machines, production lines, etc., in a typically delimited or enclosed space,
that enable us to test different types of requirements over a spatial model. This model
approach gives the possibility to find a cost-effective solution and to reach preliminary
conclusions for decision-making on two relevant categories of problems: how to efficiently
navigate a given space, and how to design a space, e.g., by appropriately placing objects,
in such a way that effective and efficient navigation is possible. Several examples can be
found in research with interesting setups in robotics. In [1], the authors successfully place
“virtual obstacles” in the navigation scenario, which is linked to the real-world robotic
scenario, to prevent the robot from taking a tentative route and force it instead to looking
for an alternative route, in order to guide it to a safer path. In [2], another solution for a
simulated environment to test robotic models foresees a high-fidelity 3D simulator that
models real-world crowd behavior, sensor noise, frictions, and delays of the robot, to close
the sim-to-real gap. There are “hybrid approaches”, where the real-world setup is combined

Electronics 2023, 12, 2058. https://doi.org/10.3390/electronics12092058 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12092058
https://doi.org/10.3390/electronics12092058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7927-129X
https://orcid.org/0000-0002-5547-9739
https://doi.org/10.3390/electronics12092058
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12092058?type=check_update&version=2


Electronics 2023, 12, 2058 2 of 18

with the simulated one, as in [3]: to test an agricultural autonomous robot system, different
images were stitched together into a 20 m-long strip, which tried to replicate rows of the
crop, and were used as a texture added to the ground plane in the simulator. In this context,
the advent of more powerful machine learning models opens new opportunities within
the Smart Manufacturing field: it enables finding optimal unseen solutions for robotic test
navigation controllers on smart agents [4], bringing contextual intelligence to supply chains
by minimizing running costs to successfully manage inventory [5], or finding the most
efficient disposition using elements such as obstacles, middle/corners walls and the goal
involved in the landscape [6].

There are also some interesting use cases such as [7], developing a framework for steer-
ing fault diagnosis, a hybrid model using a model-based residual generator, and a Support
Vector Machine algorithm. The model also has the possibility to deal with undersampled
data, employing a LDA method (linear discriminant analysis) to form a balanced training
dataset and an optimization method called Grey Wold Optimizer (GWO), which improves
the classification accuracy. The proposed method obtained a higher G-mean than the ones
derived with a benchmark in eight tests out of seventeen datasets and was also applied to
fault diagnosis of the field data for a vehicle steering actuator, also outperforming bench-
mark methods for all three kinds of faults. Additionally, [8], using evolutionary algorithms,
an optimization approach based on the PSO algorithm, investigated a tuning problem of
PID controller parameters for a CAN-based DC-motor system. The corresponding upper
bound is obtained by analyzing the CAN-induced delay, in order to tune the parameters
of the PID controller, and we can also cite [9], using a novel approach for battery EOL
(end-of-life) prediction. The novel approach uses a KF (Kalman filter), which applies to the
available partial battery degradation data, without depending on the empirical degradation
model and only on the virtual degradation rate and acceleration. Then, the prediction is
executed through an iterative GPR (Gaussian Process Regression) with a moving sliding
window. The results show the novel approach outperforms the traditional one from two
perspectives: the predicted value is closer to the true one and the proposed method has a
smaller range of prediction uncertainty.

In our particular use case, we use a machine learning technique from the branch of
Evolutionary Computing called Grammatical Evolution (GE) [10–12] that uses elements
from Evolutionary Algorithms to provide novel and original solutions. GE uses the fol-
lowing approach to find the optimal solution according to specified criteria: It begins by
creating a set of random individuals, called a population, that is described by integer arrays.
The set of rules for the structure of the solutions are described by a Backus–Naur Form
grammar (BNF) [13]. The algorithm converts the initial population (the integer arrays) into
new solutions through a mapping process that uses the BNF grammar and the modulo
MOD operator. The final result is a new population where different solutions are derived
from the grammar and thus conform to its rules. In order to find the optimal solution,
each population needs to go through an evolutionary process where genetic operators
(mutation, crossover, selection) are applied to some of the individuals, and some individ-
uals are discarded. This way, more genetic variation is brought among the individuals
of successive population generations. A fitness function guides the search for better so-
lutions by defining a metric to measure each individual. This evaluation also produces
metadata about the evolutionary process, allowing us to see whether the fitness improves
or becomes worse. GE has been successfully applied to different domains, e.g., design,
architecture, and engineering [14], where individuals are synthesized to form different
engineering design solutions, search-based software engineering [15] optimizing run-time
performance in the regular expression language, program synthesis [16] automatically
generating caching algorithms, sports analytics [17] predicting matches for the Six Nations
Rugby, animation [18] to different simulated animals, design of a cryptographically secure
pseudo-random number generator [19], the evolution of complex digital circuits with Sys-
temVerilog [20] and optimizing combinational logic circuits [21]. Given these successful
use cases, we aim to deliver a novel solution for automatically generating maze scenarios



Electronics 2023, 12, 2058 3 of 18

that can be used in the Smart Manufacturing environment and can help us to define the
best disposition of things within a space, in order to have an efficient and cost-effective
navigation solution.

To accomplish this, we developed a tool called PyGEVO [22], capable of empowering
non-expert people and building powerful experiments with little programming experience,
having sufficient high-level abstractions instead of boilerplate code to rely on and, also,
is already tested, documented and ready to be used. Regular programming tools solve
difficult problems and converge to possible solutions, but there still exist some key issues
required to be addressed, such as (1) the development of heterogeneous architectures,
where researchers might deal with highly-complex software architectures, making them
prone to bugs and errors. (2) Good programming skills are needed to build the software
ecosystems and (3) edge-cutting technologies tend to have little support, which may lead to
unexpected behaviors in the system. We believe low-code programming is a great approach
for anyone to easily bootstrap difficult tasks with little effort, that is why the contributions
and highlights of this article can be summarized as follows:

1. Design and development of a machine learning low-code tool (PyGEVO) to bootstrap
experiments in a more straightforward way.

2. A novel approach to automatically generate navigation mazes through evolutionary
algorithms, allowing customized restrictions and the selection of different criteria.

3. Integration with a 2D graphical framework (Kivy) to visualize the state of the mazes.

2. Materials and Methods
2.1. Choosing Our Figures

We start by defining the building blocks that will compose our mazes: an angle,
a square, an E-shape, and an L-shape, which are simple geometric shapes acting as obstacles
for the navigation robot. Although there are no restrictions in terms of shape type, as it
is quite straightforward to create them within the Kivy framework, we chose that set of
figures because it was easy to represent them: an angle requires two lines with the same
starting point but different ending positions, the square only four lines aligned, the e-
shape three parallel lines and one crossing vertically and the L-shape two lines with the
same disposition as the square. All these figures were made with the Kivy framework,
by defining the disposition of the lines and concatenating them to create the corresponding
figure, if needed.

2.2. Describing the Maze Components: The BNF Grammar

Having defined the figures composing our mazes, we added them into the BNF gram-
mar and additionally, we allow composed figures, where a composed figure has a (possibly
infinite) set of simple obstacles. Its number is limited in practice by the hyperparameters
we indicate for the experiment. The Grammatical Evolution approach uses grammar in
BNF form to describe the possible alternatives in terms of production. Figure 1 shows
two main rules: one for the <scenario> patterns, that foresees in this specific example five
different alternatives, and one for <composedFigures>, which consist of four different
simple obstacles followed by a <scenario> again. The two productions are in fact mutually
recursive. This grammar describes in a synthetic way all the possible sets of obstacles a
scenario may contain, which are the language it generates. BNF grammars are in fact the
standard format to describe programming languages in Computer Science: from simple to
complex ones such as Java and C, they have a BNF description. In this context, the entire
space of solutions will be defined by the different derivation rules, describing a tentative
solution space. The meta-operator OR separates patterns, here written as |, and the alter-
natives can be enumerated, e.g., from left to right, and we use here the enumeration index
as an integer that plays a role in the encoding of the individuals and mapping of the rules
to solutions. BNF grammars can be recursive, and in this case, we see that each production
has one or more patterns that “call” the other production. The BNF, which is a core tool
for the construction of compilers for programming languages, is also a validator of the



Electronics 2023, 12, 2058 4 of 18

syntactic correctness of the programs, as each correct program must be generable along the
grammar of its programming language. BNFs are thus excellent representations to do both
structure-guided synthesis and structure-guided validation/testing.

Figure 1. Evolutionary process for GE.

2.3. Description of the Evolution Process

In GE terms, a maze is a tentative solution described by its genotype, consisting of an
array of integers. Each integer in the array is called a codon, in analogy to the terminology
in use for genetic information in biology. The genotype of an individual of the population
encodes, codon by codon, the sequence of pattern choices in the layered BNF that describe
that specific individual. Given a genotype, the individual it represents is generated by
successively mapping each codon to the BNF. Starting from the left, the leftmost codon is
associated with the top rule of the BNF, and the specific pattern in that rule is identified by
applying to the integer in the codon the modulo operator MODn, where n is the number of
patterns in that rule. Next, the leftmost Non-Terminals in that pattern are associated with
the next codon: the corresponding BNF rule is now examined, and the value of the codon
MODn, this rule’s n, again determines the chosen pattern for further substitution. If the
pattern has no further Non-Terminals, the substitution terminates and moves to the next
non-terminal of that pattern or higher-level patterns that still need substitutions.

Once an individual is fully generated, a fitness function is applied to it, to determine
how good it is in the context of the current population. The fitness level of each individual
within the current set of individuals determines which of them are relatively more “apt
to survive”, therefore the best individuals to be directly included in the next generation,
or used as “parents” to produce offspring through genetic recombination operations of
their genotype.

The evolution process is illustrated in Figure 2 with more detail. The genotype of the
initial population is randomly generated. Each generation starts with an initial population,
here containing individuals P0 . . . Pn, each described by their genotype. In this example,
the genotype has length 8 codons, represented as an array of integers of length 8, where
P0’s genotype is [34 10 200 80 5 70 45 43]. For each individual, as described, the leftmost
codon is associated with the first production in the grammar (here, <scenario>), which has
5 alternative patterns. Applying the respective MOD 5 operator to the integer value of
the codon determines which alternative to choose. For the individual P0, its first codon,
34, refers to the production <scenario>, which has 5 alternative patterns, thus 34 MOD 5
is computed and the 5th option <composedFigures> is chosen (As MOD counting starts
with 0, the output of a MOD 5 operation is in the range [0. . . 4].). Then, 34 MOD 5 =
4, so the 5th pattern in the rule <scenario> is chosen, which is <composedFigures>: so
it has been determined that the individual corresponding to P0 is a composed figure.
Analogously, the next codon of P0, 10, is now evaluated with regard to the production
<composedFigures>, which has 4 alternatives. Thus, 10 MOD 4 = 2, corresponding to the
3rd pattern e-shape (<scenario>), so P0 contains an E-shape obstacle and the recursion in the
grammar brings the evaluation of the next codon according to the <scenario> production.
The entire scenario is derived in a similar fashion until reaching a terminal (i.e., a simple
shape in the <scenario>). There is no more derivation and the rest of the genotype is
therefore irrelevant. In this example, P0 is a scenario containing an E-shape and an angle.



Electronics 2023, 12, 2058 5 of 18

Figure 2. Evolutionary process for GE: from the population to the individuals.

This population computation phase is followed by the evolution step, where genetic
operations are applied to the genome of the individuals selected to produce the next gener-
ation, in the hope to achieve better and improved individuals. The evolutionary process
proceeds generation by generation, identifying in the current generation its best-performing
solutions according to the fitness function, and then producing a new generation by ap-
plying the evolutionary algorithm. The algorithm will keep in the successive generation
only a percentage of the currently most apt individuals (selection), and it will also mutate
and recombine various individuals according to recombination rules. From the popula-
tion perspective, evolution will guide this way the most efficient solutions toward the
production of the final generation, which should be the fittest. The definition of fitness is
clearly central to the selection, as it encodes the notion of preference for individuals with
certain characteristics.

2.4. Defining the Experiments

To test the different grammar and fitness functions and guide the evolutionary process,
PyGEVO, the low-code novel Grammatical Evolution framework, is used. We carried out
8 experiments with different configurations as reported in Table 1. In the first place, we
defined 2 different versions of the grammar, as we can see in Figures 3 and 4. The first will
include an earlier approach, where the hyperparameters from the elements were placed
in the grammar itself, relying on the different terminals in the file. The second version of
our BNF file had a performance improvement, by placing the hyperparameters in our new
software architecture. This way PyGEVO had less I/O processing as all the objects are
stored in RAM memory or the cache, greatly improving the experiment processing.

Figure 3. First version of the grammar.

Figure 4. Second version of the grammar.



Electronics 2023, 12, 2058 6 of 18

Table 1. Experiments set up: hyperparameters and configurations for the experiments.

Hyperparameters Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 Experiment 8

Runs 15 15 15 15 15 15 15 15
Individuals 1000 5000 1000 5000 1000 5000 10,000 50,000

Genotype Size 32 32 32 32 32 32 32 32
Generations 15 15 15 15 15 15 30 30
P. Selection 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
F. Function Higher−→ better Higher −→ better Higher −→ better Higher −→ better Penalize Penalize Penalize Penalize

BNF Version v1.0 v1.0 v1.5 v1.5 v1.5 v1.5 v1.5 v1.5

Each experiment was run 15 times in order to obtain a set of tentative solutions
(in terms of the different shapes that could fit the given scenario) and results (time spent
running the experiments, consumed resources, failure, success rate, etc.), and to achieve this
way conclusions for that specific experiment. The overall population size was between 1000
and 5000 individuals in the first six examples, with a genotype of length 32, i.e., 32 integers.
Those solutions evolved through 15 generations with a selection of 10% individuals from
generation to generation. In this context, we cloned the selected individuals and applied a
genetic operation (mutation) to one subset and crossover to the other one, concatenating
both to select the aptest.

In the last two experiments, a larger population was used (10,000 individuals for
experiment 7 and 50,000 for experiment 8) and also a longer evolutionary time frame. We
added more generations (a total of 30) to see the impact it would have on the quality of
the outcomes.

We also evaluated two fitness functions:

• The first one (Experiments 1 to 4) uses a simple criterion: the higher the number of
objects in the scenario, the better the scenario is. This criterion, however, does not
consider collisions between obstacles: some scenarios contained overlapping objects,
leading to unrealistic/unfeasible scenarios.

• The second fitness function, used in Experiments 5 to 8, adopts a hybrid approach,
penalizing objects that tend to be bigger, and thus are more likely to collide with the
rest. In these experiments, we considered invalid any solution with an element size
over 500 pixels.

2.5. Defining the Software Architecture

In order to speed up the evolutionary process, we simplified the grammar by cal-
culating the size and position of each element in a new class (RandomGenerator) and
also added a cache to look for repeated individuals. As we already mentioned, if the size
and position were part of the grammar definition, the algorithm would need more nodes
to recreate the production, making the experiment more costly in terms of computing
resources. As a consequence, many more nodes would be needed for each element in the
maze, requiring a much longer genotype, and also needing more I/O operations, therefore
making the process slower.

Instead of relying on the BNF for describing and determining these features, our soft-
ware architecture, shown in Figure 5, deals with this in a second step. The architecture of the
experimental setup uses PyGEVO to manage the BNF and the genotype-to-phenotype map-
ping, and Kivy [23], a free and open-source Python-based graphical framework, to visualize
the scenarios. Both tools are available as open source and provide good documentation
for development.

Specifically, the main orchestration occurs in a Python script, which defines the fitness
function and invokes PyGEVO. PyGEVO abstracts all the logic for the evolutionary process
and the synthesis of the phenotypes, handling the grammar-related part of the GE approach.
In this approach, a connection with a random number generator provides the number and
size generation. This simplifies the BNF grammar, which describes only the scenario struc-
ture, but not the attributes. The cache helps us to achieve better performance by managing
repeated individuals. Considering that through the entire process, random populations are
generated from a relatively short genotype, it is likely that the same genotype may occur



Electronics 2023, 12, 2058 7 of 18

multiple times. To avoid recomputations, the cache stores the genotype/phenotype pairs
that have been already produced, and the successive times the precomputed phenotype is
directly retrieved. Finally, a Scenario Builder bridges the phenotypes coming from PyGEVO
and the Kivy framework, providing a translation into the visualization language supported
by the graphical library. As soon as phenotypes are derived, they are translated into Kivy
code and placed into a proper log. To this aim, we created a simple Domain Specific Language
for the ScenarioBuilder interface, to easily handle the creational part of the elements.

Figure 5. Software architecture: PyGEVO (left) and Kivy (right).

2.6. Defining the PyGEVO Code

As we already mentioned, PyGEVO exhibits an easy and straightforward way to
define experiments in a few lines of code. As we can evidence in Figure 6, four lines of code
are enough to create and execute the experiment (except the optional lines for measuring
time). To accomplish this, some necessary steps are needed:

1. Install PyGEVO: we can install the python simply by typing pip install pygevo.
2. Define the grammar file: establishing the universe of solutions available for the

evolutionary process.
3. Define a fitness function: a piece of Python code defining the criteria to evaluate in

each case, or also use a built-in one.
4. Define the hyperparameters: In this case, we defined numberIndividuals (as the number

of random individuals to create), individualSize (as the number of codons for each
individual), generations (number of times the population will be processed), porcentS-
election (percentage of individuals will be selected to perform genetic operations),
fileSave (whether we want to save the result in a file or not) and order established to
show the individuals (sorted or not, reverse).

5. Create the necessary python objects (pop, population and algo).
6. Run the experiment using the evolveWithGE_v1() method. All the individuals will be

contained in a collection called evolvedPop.

The result will contain the evolved solutions with three properties populated: fitnessS-
core (the score given by the fitness function), phenotype (the solution in terms of the BNF),
and genotype (the “DNA” from the individual, represented by an array). In order to simplify
the workflow, we will be able to find the maze structure in the phenotype property in Kivy
format. This way we will be able to execute and see the 2D maze generated by the ML
agent using the Kivy framework, just by passing the parameter we need and visualizing
our solutions.



Electronics 2023, 12, 2058 8 of 18

Figure 6. Piece of code using PyGEVO.

3. Results

This section shows the results of the described experiments, using a subset of the
mazes generated by the ML agent.

3.1. Solutions from the ML Agent

The solutions provided by the ML agent during the evolutionary process are very di-
verse. The produced mazes consist of several types of figures with different shapes, widths,
and sizes. The shapes consist mostly of lines, angles, L-shapes and e-shapes displayed in a
scenario, greatly differing in characteristics. As a first approach for the PyGEVO-based ML
agent, and despite showing randomness and a lack of semantic meaning in the position
of each figure, the collection of outcomes shows that this is a good first approach for the
framework, enabling further improvement in the next versions.

Figures 7–10 show scenarios 1 to 4 and we can appreciate the following configurations:

• Scenario 1 consists in 16 elements (7 l-shapes, 1 angles, 8 lines).
• Scenario 2 consists in 16 elements (3 l-shapes, 2 angles, 7 e-shapes, 4 squares).
• Scenario 3 consists in 14 elements (3 squares, 4 l-shapes, 3 angles, 4 e-shapes).
• Scenario 4 consists in 12 elements (3 l-shapes, 3 angles, 3 squares, 3 e-shapes).

The same ones are driven by a configuration with low restrictions. In the next pages,
we will describe the decision-making process to improve the scenarios, as well as the
performance and semantic meaning.

Figure 7. Scenario 1–16 elements.



Electronics 2023, 12, 2058 9 of 18

Figure 8. Scenario 2–16 elements.

Figure 9. Scenario 3–14 elements.

Figure 10. Scenario 4–12 elements.

3.2. Performance Measurement from the ML Agent

The experiments using the first version of the BNF (numbers 1 and 2) were the ones
taking most of the time: eight days for the first using 1000 individuals and twelve days
for the one using 5000. The performance increased drastically once we moved to the
next grammar version, taking two days in total for experiments 3 to 8. Empiric evidence
showed no big difference in terms of performance between BNF v1.5 without penalization
vs. BNF v1.5 with the fitness function penalizing big objects (greater than 500 px), so
we decided to show them as one. In total, we spent twenty-two days running all eight



Electronics 2023, 12, 2058 10 of 18

experiments (Datasets and graphics can be found in: https://github.com/IvanHGuevara/
Results-MDPI-MazeGen (accessed on 11 April 2023)), as detailed in Figure 11.

Figure 11. Time spent by experiment—Comparison of the different BNF grammars.

To analyze the fitness score evolution, as we can see in Figure 12, we took a subset
of solutions of the 15 runs from each experiment, a total number of 93 individuals for
each one, and generated a mean fitness score to have a significant metric. In the case of
the first version, the mean fitness score obtained was 4, the worst scenario presented due
to the quality of the mazes and the time spent developing them. The second grammar
version (v1.5) improved, not only by reducing the time of the evolutionary process but also
increased the mean fitness score up to 12. Despite this result, and as we already mentioned,
the second grammar file also had issues by allowing big objects (more than 500 pixels) to
appear in the scenarios, which is why we created a different fitness function that penalized
those objects. We managed to reduce the appearance of these ones, but at the same time,
the mean fitness score was reduced to almost 10.

Figure 12. Fitness function projection depending on the grammar version.

3.3. Limitations of MazeGen 1.0

The work done with MazeGen in its first version produced important results: it is
a novel approach for recreating smart manufacturing environments, significant perfor-
mance improvements were achieved by caching repeated solutions, and the developed
software architecture succeeded to improve the grammar mappings and to integrate a
graphical framework.

However, there are issues that need to be addressed in order to use it as a real-world
2D tool:

• The scenarios are abstract, they lack a useful connection with real-world scenarios,

https://github.com/IvanHGuevara/Results-MDPI-MazeGen
https://github.com/IvanHGuevara/Results-MDPI-MazeGen


Electronics 2023, 12, 2058 11 of 18

• The use of simplistic geometric figures to represent obstacles is not directly related
to the smart manufacturing ecosystem, although walls, benches, bounding boxes,
and angles of incidence for trajectories connect well with the shapes we chose,

• The fitness function has a simplistic criterion (the higher the number of elements,
the better the maze), which is useful to test performance, but even in the modified
form of Experiments 5 to 8 is still raw.

In order to partially address these limitations, we are developing a second version of
the system: MazeGen 2.0.

4. Improving Delivery of Smart Manufacturing Scenarios: MazeGen 2.0

In MazeGen 2.0, we changed the grammar and the figures in the respective scenarios.
The initial grammar had a triangle, a square, an e-shape, and an l-shape as basic forms,
and included recursion to allow scenarios with possibly infinite recursive figures. The
second grammar, shown in Figure 13, describes more directly the smart manufacturing
application domain addressed in the Confirm Research Centre. The scenario elements
are now a cobot (Figure 14), a router (Figure 15), a vertical wall (Figure 16), a production
line (Figure 17), a horizontal wall (Figure 18) and the recursive forms of each. They are
still represented in the Kivy graphical framework, in order to simplify the development
of the figures, but we are considering moving to sprites in order to also allow a dynamic
movement of the figures.

Figure 13. New grammar defining realistic environment.

Figure 14. Triangle representing the cobot.

Figure 15. Blue square representing the router.



Electronics 2023, 12, 2058 12 of 18

Figure 16. Vertical wall.

Figure 17. Production line represented in blue.

Figure 18. Horizontal wall.

4.1. A New Fitness Function: Penalizing Overlapped Objects

We modified the criteria for the fitness function: this third version will take into
account overlapping figures. As mentioned in Section 1, the first version of the fitness
function (Equation (1)) considered the sum, only of the number of times that figure appeared
(indicated by ft(Figi)), trying to generate figure-rich scenarios: the more figures the maze
had, the better. It was not aware of overlapping geometric figures, which is an essential
trait for producing realistic scenarios. We improved that fitness function (Equation (2))
by considering the number of overlapping elements (Noverlap) and subtracting from the
total number the number of overlaps multiplied by a coefficient (Kfig), that is right now
0.5. The intention is to heavily penalize the occurrence of overlapping figures. By choosing
(Kfig) = 0.5, no scenarios with overlaps can be better than those without. Figure 19 illustrates
this property: the two scenarios shown to have the same number of figures, but the left one
overlaps and the right one does not. With the first fitness function, their fitness score (Gt) is
4 for both scenarios. With the new definition of fitness, the non-overlapping scenario has
still a fitness score of 4, but the fitness of the scenario with overlaps drops to 2.5.

Gt =
n

∑
i=1

ft(Figi) where ∀n, i ∈ N (1)

G′t =
n

∑
i=1

ft(Figi)− (K f ig ∗ Noverlapped) where ∀n, i ∈ N (2)

4.2. Preliminary Results for MazeGen 2.0

MazeGen 2.0 is still an ongoing work and under development, but we have already
obtained preliminary results and some insights about the new approach taken into consid-
eration. As shown in Figures 20 and 21, respectively, metrics did not improve with the new
configuration as the time spent is higher than BNF v1.5 and the fitness score in the same
range as the first version of the grammar, meaning a significant score decrease with fewer
possibilities of having more figures in the scenario. Both decisions are realistic for the kind
of use cases we are concerned with, but as seen in Figures 22–25, MazeGen 2.0 requires
some work to produce scenarios with more figures and intersections. This is mainly caused
by two major changes: (1) the use of the new fitness function that penalizes, not only big
figures (greater than 500 px), but individuals with overlapping figures, and (2) carrying out
experiments with an individual size of 16, which naturally generates fewer figures.



Electronics 2023, 12, 2058 13 of 18

Gt = 1(triangle) + 2(lines) + 1(square) = 4 Gt = 1(triangle) + 2(lines) + 1(square) = 4

G
′
t = 1(triangle) + 2(lines) + 1(square)− (3 ∗ 0.5) = 2.5 G

′
t = 1(triangle) + 2(lines) + 1(square)− (3 ∗ 0.5) = 2.5

Figure 19. An overview of both approaches with the different fitness functions is presented.

Figure 20. Time spent metric taking into consideration the new grammar version.

Figure 21. Fitness per population metric taking into consideration the new grammar version.



Electronics 2023, 12, 2058 14 of 18

Figure 22. Scenario 1–4 elements.

Figure 23. Scenario 2–4 elements.

Figure 24. Scenario 3–6 elements.

Figure 25. Scenario 4–5 elements.



Electronics 2023, 12, 2058 15 of 18

A central question is to determine the size of the initial population needed in order
to provide good solutions. Penalizing the overlapping individuals causes a good part
of the generated population to be filtered out, thus progressing fewer individuals to the
next generation. For this reason, we need to consider several strategies: a larger initial
population starting with more individuals helping to compensate for the larger loss while
going through the evolutionary process or injecting during the evolutionary process itself a
random set of individuals to see whether or not it improves the score.

Another question concerns how to best handle the fact that the penalizing fitness
function tends to lead to solutions whose elements occupy less space. Scenarios with big
elements (such as the production line or the walls) tend to have overlapped, so individuals
with smaller figures are more likely to survive. This effect decreased the shape and size
variety, and therefore the semantic coverage of the overall solution. This discovery is
leading us to rethink again the fitness function, in order to deliver more balanced solutions
in terms of the number of figures and the diversity of elements. The current fitness
function has improved, but still does not satisfy real-world use cases for maze generation.
In fact, as of today, the ML agent is not yet capable of figuring out which maze, in a smart
manufacturing environment, is a more cost-effective solution than another. By cost-effective
we mean that, given 2 scenarios, the more cost-effective has the most efficient configuration
if we want to implement it in a real-world use case. The cost-effectiveness question is
relevant in practical cases: for example, given a maze with 15 production lines and another
one with 5, which one is most cost-effective in terms of geometric figures in order to
produce a certain amount of assets?

5. Conclusions

The automatic generation of maze scenarios through Evolutionary ML is a novel
way to face the construction of smart manufacturing mazes, providing variety in terms of
geometric figures and entirely delegating to the algorithm the design and semantic sense of
each building block disposition. We can summarize our achievements as follows:

1. Successfully created a flexible low-code framework (PyGEVO) to deliver an easy way
to create difficult evolutionary computing experiments.

2. In terms of graphics, we delivered a first version using rudimentary figures (an
l-shape, an e-shape, a square and an angle) with no correlation with the elements
commonly used in the industry 4.0. Then, we modified the grammar version and
created more representative figures such as a router, production line and two types of
walls (vertical and horizontal).

3. In terms of logic, we improved our fitness function by first penalizing big objects
obstructing other figures (greater than 500 px) and then penalizing overlapping figures.
We were able to produce more meaningful and realistic distributions.

4. Improved performance, generating scenarios with more semantic meaning. In the
beginning, was hard to find a balance between grammar expressiveness and com-
putational effort, then we developed a flexible solution efficient enough to deliver a
consistent solution in a reasonable time and a software architecture to easily handle
the interaction between the 2D graphics engine and the ML algorithm.

The evolutionary process delivers several novel types of configurations, including
unseen configurations that can help when testing a controller algorithm. However, despite
the work done, the fitness function still requires some fine-tuning to achieve the possibility
to target some complexity (e.g., having the chance to define an easy, medium or hard maze
configuration and target that configuration inside a scenario), as well as making solvable
the scenario itself (e.g., how can we know if the scenario itself is solvable?).

In the context of the Confirm Smart Manufacturing research centre, a national SFI
research centre headquartered at the University of Limerick, we developed several use cases
that solve several problems occurring in the manufacturing industry, adding flexibility
and configurability to traditional on-site activities. For example, we enabled the remote
programming and configuration of a cobot arm (collaborative robot) [24] through an



Electronics 2023, 12, 2058 16 of 18

intuitive web application that communicates with and sends commands to the robot
through a Domain Specific Language based on the robot’s native API. In [25], we established
a novel way to develop and deploy IoT applications through Model-Driven Development
approaches. Creating the respective Domain Specific Language, we used the DIME and
Pyrus application development platforms to develop an application that connects a range of
heterogeneous technologies, including sensors using the EdgeX middleware platform [26]
and a data analytics pipeline. We built this way innovative Low-code applications without
needing full coding expertise nor requiring a mastery of the underlying runtime platform
technologies. This way of handling complex domains through Domain Specific Language
was already practiced in [27], where we showed how to implement controllers for robots
using an abstract MDD approach based on APIs turned into a DSL.

This is conceptually very similar to the approach taken in MazeGen, where the gram-
mars are an abstract DSL of the "language" of elements in our scenarios, and where Maze-
Gen and PyGEVO themselves can be transformed into a DSL for the definition and opti-
mization of Mazes. This approach will enable in the future a uniform definition of robot
behaviours, navigation tools, and obstacle landscapes by means of respective DSLs that
co-exist within the same model driven, generative application development platforms.

In terms of scalability and hierarchy, we intend to pursue a feature-based approach
similar to the successful approach developed originally by [28] in the context of Intelligent
Network telecommunication applications.

In the context of our MazeGen, the next steps include filtering only valid scenarios,
increasing the fitness score maintaining the semantic meaning of the mazes and finally
also to avoid unnecessary collisions between the different figures. This work can also be
extended to other kinds of robotic domains, such as the synthesis of robotic controllers
for simulated environments [29] or also automatically synthesize collective behaviors
for autonomous robots (evolutionary robotics) [30,31] but in the meantime, these steps
represent a big challenge for the future work of MazeGen.

Author Contributions: Conceptualization, I.H.G. and T.M.; methodology, I.H.G. and T.M.; software,
I.H.G.; validation, I.H.G. and T.M.; formal analysis, I.H.G.; investigation, I.H.G.; resources, I.H.G.;
data curation, I.H.G.; writing—original draft preparation, I.H.G. and T.M.; writing—review and
editing, I.H.G. and T.M.; visualization, I.H.G.; supervision, T.M.; project administration, T.M.; funding
acquisition, T.M. All authors have read and agreed to the published version of the manuscript.

Funding: This project received funding from Science Foundation Ireland (SFI) under Grant Number
16/RC/3918 (CONFIRM Centre) and 2094-1 (Lero, the Software Research Centre).

Data Availability Statement: https://github.com/IvanHGuevara/PyGEVO and https://github.
com/IvanHGuevara/Results-MDPI-MazeGen (accessed on 11 April 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

BNF Backus-Naur Form
ML Machine Learning
GE Grammatical Evolution
NT Non-Terminals
SIB Service-Independent Building Block

https://github.com/IvanHGuevara/PyGEVO
https://github.com/IvanHGuevara/Results-MDPI-MazeGen
https://github.com/IvanHGuevara/Results-MDPI-MazeGen


Electronics 2023, 12, 2058 17 of 18

References
1. Ravankar, A.; Hoshino, Y. Virtual obstacles for safe mobile robot navigation. In Proceedings of the 2019 8th International Congress

on Advanced Applied Informatics (IIAI-AAI), Toyama, Japan, 7–11 July 2019; pp. 552–555.
2. Liang, J.; Patel, U.; Sathyamoorthy, A.J.; Manocha, D. Crowd-steer: Realtime smooth and collision-free robot navigation in densely

crowded scenarios trained using high-fidelity simulation. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 4221–4228.

3. Ponnambalam, V.R.; Fentanes, J.P.; Das, G.; Cielniak, G.; Gjevestad, J.G.O.; From, P.J. Agri-cost-maps-integration of environmental
constraints into navigation systems for agricultural robots. In Proceedings of the 2020 6th International Conference on Control,
Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; pp. 214–220.

4. Naredo, E.; Ryan, C.; Guevara, I.; Margaria, T.; Urbano, P.; Trujillo, L. General controllers evolved through grammatical evolution
with a divergent search. In Proceedings of the GECCO, 2020, Cancun, Mexico, 8–12 July 2020; pp. 243–244.

5. Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and
future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [CrossRef]

6. Guevara, I.; Margaria, T. Mazegen: An evolutionary generator for bootstrapping robotic navigation scenarios. In Proceedings of
the 37th International Manufacturing Conference, Irish Manufacturing Council, Athlone, Ireland, 7–8 September 2021.

7. Shi, Q.; Zhang, H. Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets.
IEEE Trans. Ind. Electron. 2020, 68, 6248–6256. [CrossRef]

8. Qi, Z.; Shi, Q.; Zhang, H. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC
motor subject to stochastic delays. IEEE Trans. Ind. Electron. 2019, 67, 5637–5646. [CrossRef]

9. Meng, J.; Yue, M.; Diallo, D. A degradation empirical-model-free battery end-of-life prediction framework based on Gaussian
process regression and Kalman filter. IEEE Trans. Transp. Electrif. 2022, Early Access. [CrossRef]

10. Neill, M.O.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
11. Ryan, C.; Collins, J.J.; Neill, M.O. Grammatical evolution: Evolving programs for an arbitrary language. In Proceedings of the

European Conference on Genetic Programming, Paris, France, 14–15 April 1998; pp. 83–96.
12. O’Neill, M.; Ryan, C. Automatic generation of caching algorithms. Evol. Algorithms Eng. Comput. Sci. 1999, 30, 127–134.
13. Backus, J.W.; Bauer, F.L.; Green, J.; Katz, C.; McCarthy, J.; Naur, P.; Perlis, A.J.; Rutishauser, H.; Samelson, K.; Vauquois, B.; et al.

Revised report on the algorithmic language ALGOL 60. Comput. J. 1963, 5, 349–367. [CrossRef]
14. Fenton, M.; Byrne, J.; Hemberg, E. Design, architecture, and engineering with grammatical evolution. In Handbook of Grammatical

Evolution; Springer: Berlin/Heidelberg, Germany, 2018; pp. 317–339.
15. Cody-Kenny, B.; Fenton, M.; Ronayne, A.; Considine, E.; McGuire, T.; O’Neill, M. A search for improved performance in

regular expressions. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017.
[CrossRef]

16. Chennupati, G.; Azad, R.; Ryan, C.; Eidenbenz, S.; Santhi, N. Synthesis of Parallel Programs on Multi-Cores. In Handbook of
Grammatical Evolution; Springer: Berlin/Heidelberg, Germany, 2018; pp. 289–315.

17. O’Neill, M.; Brabazon, A.; Fagan, D. An exploration of grammatical encodings to model six nations rugby match outcomes.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 4429–4436.

18. Murphy, J.E. Applications of Evolutionary Computation to Quadrupedal Animal Animation; University College Dublin: Dublin,
Ireland, 2011.

19. Ryan, C.; Kshirsagar, M.; Vaidya, G.; Cunningham, A.; Sivaraman, R. Design of a cryptographically secure pseudo random
number generator with grammatical evolution. Sci. Rep. 2022, 12, 8602. [CrossRef] [PubMed]

20. Tetteh, M.; Dias, D.M.; Ryan, C. Grammatical Evolution of Complex Digital Circuits in SystemVerilog. SN Comput. Sci. 2022,
3, 188. [CrossRef]

21. Youssef, A.; Majeed, B.; Ryan, C. Optimizing combinational logic circuits using Grammatical Evolution. In Proceedings of the
2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 23–25 October 2021; pp. 87–92.

22. Guevara, I.; Gonzalez, L. PyGEVO (0.1). 2021 . Available online: https://github.com/IvanHGuevara/PyGEVO (accessed on
11 April 2023).

23. Mathieu , V.; Gabriel, P.; Akshay, A.; Matthew, E.; Alexander, T.; Richard, L.; Peter, B.; Sebastian, A.; Terje, S.; Ilya, C.; et al.
Kivy; Version 2.0.0; Zenodo: Honolulu, HI, USA, 2020. Available online: https://zenodo.org/record/5097751 (accessed on
10 February 2023).

24. Margaria, T.; Schieweck, A. The Digital Thread in Industry 4.0. In Integrated Formal Methods. IFM 2019. Lecture Notes in Computer
Science; Ahrendt, W., Tapia Tarifa, S., Eds.; Springer: Cham, Switzerland, 2019; Volume 11918. [CrossRef]

25. Chaudhary, H.A.A.; Guevara, I.; John, J.; Singh, A.; Margaria, T.; Pesch, D. Low-Code Internet of Things Application Development
for Edge Analytics. In Internet of Things. IoT through a Multi-Disciplinary Perspective. IFIPIoT 2022. IFIP Advances in Information and
Communication Technology; Camarinha-Matos, L.M., Ribeiro, L., Strous, L., Eds.; Springer, Cham, Switzerland, 2022; Volume 665.
[CrossRef]

26. EdgeX Foundry: The Preferred Edge IoT Plug and Play Ecosystem—Open Source Software Platform. Available online: https:
//www.edgexfoundry.org/ (accessed on 10 February 2023).

http://doi.org/10.1080/00207543.2018.1530476
http://dx.doi.org/10.1109/TIE.2020.2994868
http://dx.doi.org/10.1109/TIE.2019.2934030
http://dx.doi.org/10.1109/TTE.2022.3209629
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1093/comjnl/5.4.349
http://dx.doi.org/10.1145/3071178.3071196
http://dx.doi.org/10.1038/s41598-022-11613-x
http://www.ncbi.nlm.nih.gov/pubmed/35597791
http://dx.doi.org/10.1007/s42979-022-01045-9
https://github.com/IvanHGuevara/PyGEVO
https://zenodo.org/record/5097751
http://dx.doi.org/10.1007/978-3-030-34968-4_1
http://dx.doi.org/10.1007/978-3-031-18872-5_17
https://www.edgexfoundry.org/
https://www.edgexfoundry.org/


Electronics 2023, 12, 2058 18 of 18

27. Jorges, S.; Kubczak, C.; Pageau, F.; Margaria, T. Model Driven Design of Reliable Robot Control Programs Using the jABC. In
Proceedings of the Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe’07),
Tucson, AZ, USA, 26–29 March 2007; pp. 137–148. [CrossRef]

28. Jonsson, B.; Margaria, T.; Naeser, G.; Nyström, J.; Steffen, B. Incremental requirement specification for evolving systems. Nord. J.
Comput. 2001, 8, 65–87.

29. Urbano, P.; Naredo, E.; Trujillo, L. Generalization in maze navigation using grammatical evolution and novelty search. In
Proceedings of the Theory and Practice of Natural Computing: Third International Conference, TPNC 2014, Proceedings 3,
Granada, Spain, 9–11 December 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 35–46.

30. Ferrante, E.; Duéñez-Guzmán, E.; Turgut, A.E.; Wenseleers, T. GESwarm: Grammatical evolution for the automatic synthesis of
collective behaviors in swarm robotics. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
New York, NY, USA, 6–10 July 2013; pp. 17–24.

31. Sobania, D. ; Rothlauf, F. Challenges of program synthesis with grammatical evolution. In Proceedings of the Genetic Program-
ming: 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Proceedings 23, Seville, Spain, 15–17 April 2020;
Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 211–227.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/EASE.2007.17

	Introduction 
	Materials and Methods
	Choosing Our Figures
	Describing the Maze Components: The BNF Grammar
	Description of the Evolution Process
	Defining the Experiments
	Defining the Software Architecture
	Defining the PyGEVO Code

	Results
	Solutions from the ML Agent 
	Performance Measurement from the ML Agent
	Limitations of MazeGen 1.0

	Improving Delivery of Smart Manufacturing Scenarios: MazeGen 2.0
	A New Fitness Function: Penalizing Overlapped Objects
	Preliminary Results for MazeGen 2.0

	Conclusions
	References

