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Abstract: Accurate pronunciation of speech sounds is essential in communication. As children learn
their native language, they refine the movements necessary for intelligible speech. While there is
variability in the order of acquisition of speech sounds, there are some sounds that are more complex
and are later developing. The rhotic /r/ is a later-developing sound in English, and some children
require intervention to achieve accurate production. Additionally, individuals learning English as
a second language may have difficulty learning accurate /r/ production, especially if their native
language does not have an /r/, or the /r/ they produce is at a different place of articulation. The
goal of this research is to provide a novel approach on how a knowledge-based intelligence program
can provide immediate feedback on the accuracy of productions. In the proposed approach, the
audio signals will first be detected, after which features of audio signals will be extracted, and finally,
knowledge-based intelligent classification will be performed. Based on the obtained knowledge and
application scenarios, novel features are proposed and used to classify various speaker scenarios.

Keywords: speech signal; pronunciation; knowledge; analysis; classification; features; feedback

1. Introduction of English Pronunciation
1.1. Native Speakers and Second Language Speakers

Typically, native speakers of a language can quickly identify second language learners
due to variations in the stress patterns and prosody of speech and the articulation of
individual sounds [1]. These variations occur because the language learner must overcome
interference patterns from their first language. In addition to learning which syllable must
be stressed in a word, the learner must refine and create additional phonemic categories,
focusing on acoustic characteristics of sounds that may not have been distinctive in their first
language. Once the learner can hear the acoustic differences between the new phonemes,
they must determine the articulatory placements required to pronounce them. This is not
an easy task, and characteristics of the native and second language can make it even more
difficult. A study indicates that it is challenging to change the accent of non-standard
English speakers, even after engaging in a 10-month full-time English class [2]. Further,
not all phonemes are created equally, with some being more frequent cross-linguistically,
making them easier for language learners to incorporate in their speech. Other phonemes
may be articulatorily complex or may be acoustically very similar to or distinct from other
sounds in their native phonetic inventory, making them more challenging to incorporate in
their phonemic repertoire [3].

1.2. Method to Pronounce Phonetic /r/

In English, there are two main methods to produce the /r/, and while the location of
the tongue is very different between the two, the resulting sound is similar. One method
of production is referred to as bunched. The back of the tongue is lifted, thereby putting
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the sides of the tongue in line with the back teeth. The middle of the tongue’s back is
lower and the air flows to build the resonance across this groove. The tip of the tongue
will point upwards or stay down. The second method is considered a retroflex. The tip of
the tongue is elevated and curves backward behind the tooth ridge while the back of the
tongue remains low [4].

When it comes to Asian languages, pronunciation of the English /r/ is challenging
because /r/ is not common in these languages. For example, in Japanese, there are five
characters in the Romanization of Japanese “ra, ri, ru, re, ro.” In Japanese, /r/ and /l/
are allophones in free variation, meaning they can be substituted with each other without
changing the meaning of the words. Thus, Japanese speakers do not need to focus on the
acoustic distinctions between /r/ and /l/ because they are not distinct phonemic categories;
/li/ and /ri / can both be understood as “ri.” When Japanese speakers learn English, they
are challenged to reconfigure their underlying representations of sound categories and
differentiate /r/ and /l/ when speaking English and ignore the distinction when speaking
Japanese. The complexity of production and many phonetic contexts of the American
English /r/ make accurate production challenging even after years of speaking English.

1.3. Speech and Language Disorder and Assessment

Speech disorders can affect pronunciation, which influences their everyday lives.
While distortion errors may not affect the understanding of speech as severely as omission
or substitution, it does not mean distortion errors should be ignored, because they can result
in negative academic [5] as well as emotional and social consequences in children [6,7].

Further, while the cause of the delay is not always known, there are other diagnoses
that indicate intervention is necessary before the child even starts to speak. For example,
children with hearing loss are deprived from the acoustic signal. Without amplification,
they will have extreme difficulty creating the phonemic categories of their language. Thus,
early intervention is critical [8].

Because some children with speech sound errors also have a language impairment [9],
diagnosis of a speech sound disorder typically occurs after a comprehensive speech-
language evaluation. The evaluation will consist of a hearing test and an oral-peripheral
test to rule out organic causes for the speech errors. A variety of standardized assessments
will be utilized to test the child’s understanding and use all of the domains of language:
semantics (vocabulary), syntax (word order), morphology (base words, prefixes, and suf-
fixes), phonology (sound system) and pragmatics (social communication). A conversational
speech sample will allow for voice and fluency to be screened as well as additional conver-
sational speech-language analyses to be completed. Common articulation and phonology
measures extracted from the conversational speech-language sample are phonetic and sylla-
ble inventories, as well as a calculation of percent consonants correct (PCC). An important
component of all speech sound evaluations is stimulability testing, which will indicate
if the individual has the capacity to produce the sound with perceptual, instructional, or
tactile cueing [10].

1.4. Purpose and Proposed Work

The current project aims to evaluate the effectiveness of using signal processing and
pattern recognition in remediating /r/ mispronunciation. A crucial aspect of addressing
/r/ errors is training individuals to perceptually distinguish between correct and incorrect
productions. Once individuals can differentiate between the two, they can start modifying
their tongue movements to approximate accurate /r/ pronunciation. Speech-language
pathologists play a crucial role in guiding individuals on how to move their tongue correctly
and provide feedback on the accuracy of their production. They may also assign homework
to facilitate practice and reinforce new motor movements. However, practice may prove
counterproductive if the speaker continues to produce the sound incorrectly, thereby
increasing the habitual nature of the distorted sound.
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To address this challenge, a pronunciation analysis and classification system is proposed
to provide individuals with immediate feedback on their productions, enabling them to
identify inaccuracies and make necessary modifications. In this project, we propose using
speech signal processing, analysis, and pattern recognition techniques to classify pronunciation
accuracy. We plan to use /r/ as the pilot study to demonstrate the feasibility of using advanced
signal processing and pattern recognition approaches to improve speech production.

Similar to automatic speech recognition (ASR), the proposed analyzing/classifying
system includes speech detection, pattern or feature extraction, and classification parts.
However, the objective of ASR is to figure out the contents embedded in the speech wave-
form, whereas the purpose of this study is to identify correct and incorrect pronunciation.
Therefore, the typical features used for ASR cannot be directly used without modification.
To address this issue, we propose engineering new features for this task.

The mechanism for generating speech in humans involves a complex interaction
between various biological structures, including the lungs, larynx, vocal cords, and artic-
ulators. The process begins when air is exhaled from the lungs and passes through the
larynx, where it causes the vocal cords to vibrate when producing voiced sounds. These
vibrations produce a sound wave that travels up the throat and into the mouth (and nose
for nasal sounds), where it is shaped into speech sounds by the movement of the tongue,
lips, and other articulators. Different speech sounds are created by manipulating the shape
of the vocal tract. The movement of the articulators create different filters that modify the
sound wave. In order to capture the collaboration and the changes of those structures.
We propose the Pitch and Partials Amplitude Gradient (PPAG) feature, which tracks the
changes in the fundamental frequency and its harmonics in their magnitude, capturing the
subtle variations in the process of speech sound production.

Achieving correct pronunciation requires the precise collaboration of all the biological
systems in time and space, resulting in the production of an accurate acoustic waveform. In
contrast, incorrect pronunciation arises from errors in one or more of these systems, or from
incorrect collaboration among them, resulting in the production of an inaccurate waveform.
Incorrect wave forms can differ from one another in terms of their position, momentum,
and energy, and are characterized by different probabilities. In contrast, correct wave forms
are similar to one another and are produced with greater probability when all the biological
systems are properly calibrated and functioning together. These observations suggest
that the production of speech may be best understood as a complex quantum mechanical
process, where the correct pronunciation corresponds to the quantum state with the highest
probability, resulting from the coherent interaction of multiple physical systems. To explore
this hypothesis further, we propose borrowing the concept of the Schrödinger equation to
model the phenomenon of speech production. We designed the second innovative feature,
a speech wave function-based probability amplitude (SWPA) feature from speech signals.

This paper is organized as follows: Section 2 describes the speech sound detection
methods; Section 3 reviews the typical features used for ASR; Section 4 proposes innovative
features based on calculating the gradients of the pitch, its partials from speech signals, and
SWPA features based on wave function; Section 5 presents the classifiers for recognizing
the correctness of the speech signals. The experiments and results are shown in Section 6.
Section 7 concludes this paper.

2. Speech Signal Detection

Speech signal processing has been a dynamic and constantly evolving field for a
couple of decades now. It involves a range of techniques and methods for analyzing,
manipulating, synthesizing, interpreting, and recognizing speech signals. Some of the main
areas of speech signal processing include speech analysis, speech synthesis, speech coding
and compression, speech enhancement, speech recognition and transcription, speaker
identification and verification, and language modeling and understanding.

Speech processing has a wide range of real-world uses in diverse aspects of our
everyday lives, including communications, consumer electronics, education, entertainment,
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and healthcare services. For example, speech recognition is used in virtual assistants,
speech-to-text transcription is used for dictation and subtitling, speech processing is used
in telecommunications and call centers, and speech therapy uses real-time feedback and
guidance to help individuals with speech disorders. Additionally, speech processing is used
in biometric identification, forensic analysis, and in education to teach foreign languages
and improve pronunciation. In entertainment, speech processing is used in voice acting
and dubbing, as well as creating synthetic voices for characters in movies and video games.
Overall, speech processing has a broad range of applications and continues to play an
increasingly important role in our daily lives as technology advances.

Speech signals are non-stationary, meaning that many algorithms designed for station-
ary signal processing cannot be directly applied to speech without modification. However,
research has shown that for short time intervals of 10–30 milliseconds (ms) in length,
speech signals can be viewed as stationary signals for certain applications [11]. Addi-
tionally, speech signals contain voiced, voiceless, and silent portions, each with different
short time characteristics such as power and frequency. Therefore, speech detection and
segmentation are widely used in speech signal processing.

Typically, the first step in speech signal processing is speech signal detection, followed
by segmentation and other processing steps such as speech coding, feature extraction,
and more.

2.1. Short-Time Energy

Short-time energy (STE) is one of the most popular methods for speech detection, as
the voiced portion of speech typically has a higher STE, while the voiceless component has
a significantly lower STE, and the silent portion has the lowest STE. Additionally, STE can
be used to determine the beginning and ending points of each word.

STE is defined as the average of the squared values of a signal’s samples within a given
window. The mathematical representation of a window may be defined as follows [12]:

STE =
1
N

N−1

∑
m=0

[W(m)x(n−m)]2 (1)

where w(m) is the window coefficient correspond, m is the sample index, and N is the
length of a window.

A normalized STE > 0.07 was set as a threshold to remove the silent portion, such as
whispering and breathing. The second threshold was set as 0.14 seconds in duration in
order to remove some impulsive voiced artifact such as a cough or sneeze.

2.2. Short-Time Magnitude

Additionally, the short-time magnitude is commonly used as a time-frequency repre-
sentation for audio signals, and usually used to detect speech signals as well, particularly
when a signal has a wide dynamic range. Short-time magnitude is described as follows [12]:

Mn =
∞

∑
m=−∞

|x(m)|w(n−m) (2)

with |x(n)| denoting the signal’s magnitude,

3. General Feature Extraction for Speech Signals

Speech features refer to the characteristics of the speech signal that are extracted and
analyzed to represent the speech signal in a more concise and meaningful way. These
features are used in various speech processing applications such as speech recognition,
speaker identification, and speech synthesis. Some commonly used abstract-based features
in speech signal analysis include Linear Predictive Coding (LPC), Linear Predictive Cepstral
Coefficients (LPCCs), the Mel-frequency Cepstrum Coefficient (MFCC), and Bark Frequency
Cepstral Coefficients (BFCCs).
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3.1. Linear Predictive Coding (LPC)

Linear predictive coding (LPC) is a common technique used for speech coding and
speech recognition. It models the spectral envelope of speech using a linear predictive
model and represents it in digital form [13].

A LPC algorithm computes a vector of coefficients which presents an all-pole filter [14].

H(z) =
1

1−∑M
i=1 aiz−i

(3)

where ai are the LPC coefficients, and M is the order of the filter.
A speech sample can be predicated by using a linear combination of the past M

speech samples

x̂(n) = a1x(n− 1) + a2x(n− 2) + . . . + aMx(n−M) =
M

∑
i=1

aix(n− i) (4)

An autocorrelation method is used to calculate the LPC coefficients ai because it is
capable of minimizing the prediction error. The autocorrelation for a speech signal is

R(k) =
1
N

N−1

∑
n=0

x(n)x(n− k) (5)

where k is the sample delay interval, and N is the number of speech samples used for
evaluating. Then, the LPC coefficients can be calculated by solving equation

M

∑
i=1

aiR(k− i) = R(k) (6)

3.2. Linear Predictive Cepstral Coefficients (LPCCs)

The cepstrum is a series of numbers that can be used to describe a single frame of an
audio signal. The cepstrum can be used in pitch monitoring and speech recognition.

Linear predictive cepstral coefficients (LPCCs) are the modified version of LPC co-
efficients in the cepstral domain. The cepstral sequence function is an estimate of the
“envelope” of the signal [15].

3.3. Mel-Frequency Cepstrum Coefficient

The Mel-frequency Cepstrum Coefficient (MFCC) is a widely used cepstral feature
in speech processing and interpretation. It represents the short-term power spectrum of
a sound by applying a linear cosine transform to a log power spectrum on a nonlinear
Mel-scale of frequency [15].

The calculation of the MFCC typically involves the following steps: pre-emphasis
of the high frequency portion, segmentation of the signal into short-duration frames,
multiplication of the frames with a desired window, calculation of fast Fourier transform,
application of a Mel filter bank, and calculation of discrete cosine transform, as shown in
Figure 1 [16]. This procedure is similar to the human auditory system’s perception, which
is more sensitive to low-frequency components.

Figure 1. MFCC diagram.
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The transfer function that maps the frequency to the Mel-scale frequency can be
expressed as follows [17]:

Mel( f ) = 2595log10(1 +
f

700
) (7)

Figure 2 shows the nonlinear Mel-frequency curve.

Figure 2. Frequency to Mel-scale frequency curve.

Generally, high frequency components in speech signals get attenuated during propa-
gation and transmission. To compensate for this loss, a high pass Finite Impulse Response
(FIR) filter is typically used. The rational transfer function for this filter is shown as (8)

y(n) = x(n)− αx(n− 1) (8)

where α = 0.9 to 1.0.
After pre-emphasis, the signal is divided into many short frames during the framing

process by applying different windows that can reduce frequency leakage [18].
Fast Fourier Transform(FFT): discrete-time Fourier transform converts a speech signal

from the time domain to its frequency domain [19]. It is shown as (9).

Y(k) =
n

∑
j=1

x(j)Wn(j− 1)(k− 1) (9)

where,
Wn = e(−2πi)/n

In the Mel-frequency analysis, a bank of triangular filters is used to compute the power
spectrum. Each filter is a triangle-shaped band pass filter with decreasing magnitude
towards its edges. The central frequency of each filter is distributed according to the Mel-
scale. After passing the signal through the filter bank, the output values are converted to a
logarithmic scale to obtain the logarithmic power spectrum [20]. The logarithm formula
used for this purpose is

Lm = log(
N−1

∑
k=0
|Y(k)|2Hm(k)), 0 ≤ m ≤ M (10)

where N is the number of discrete Fourier transform points, and M is the MFCC order.
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The last step is using discrete cosine transform (DCT) to transfer the logarithmic power
spectrum from a Mel-scaled frequency domain back into its time domain [21]. Equation (11)
represents the procedure.

Cm(k) =

√
2
N

N

∑
n=1

Lm(n)
1√

1 + δk1
cos(

π

2N
(2n− 1)(k− 1)) (11)

For a signal x of length N, and with δ the Kronecker delta, k is the order of the
coefficient [22].

3.4. Bark Frequency Cepstral Coefficients (BFCCs)

This technique employs the concept of Bark Frequency Cepstral Coefficients (BFCCs),
which is a pitch-perception-based feature extraction process used to classify voice fea-
tures [23]. The Bark-scale has a scaling factor that is modified by multiplying the initial
frequency scale. The formula for converting the frequency to Bark is:

Bark( f ) = 13arctan(0.00076 f ) + 3.5arctan((
f

7500
)2) (12)

In BFCCs, filter banks are used in the Bark-scale, and the overall procedure is similar
to that used in MFCCs, except for the filter bank transition from the Mel-scale to the
Bark-scale.

4. Innovative Features
4.1. Pitch and Partials Amplitude Gradient Feature

We have proposed an innovative feature that enables the tracking of amplitude changes
in the fundamental frequencies of speech signals. This algorithm calculates the first-
order temporal derivatives of the fundamental frequency and its harmonics, creating a
new feature.

4.1.1. Fundamental Frequency and Its Harmonics for Speech Signal

To prepare the speech signal for analysis, we first conduct pre-emphasis and framing.
Next, we applied a Hamming window to reduce frequency leakage [24].

w(n) = 0.54− 0.46 cos(2π
n
N
) (13)

Following the fast Fourier transform of the signal, the amplitude of the pitch and
partials can be obtained by analyzing the spectrum of the signal in one frame. We selected
the 10 most significant frequencies, sorted them from low to high, and generated a two-
dimensional amplitude-frequency matrix, as shown in matrix (14). The matrix contains the
amplitudes a1 . . . a10 and their corresponding frequencies f1 . . . f10, which are sorted from
small to large. 

a1 f1
a2 f2
...

...
a10 f10

 (14)

4.1.2. Derivation

During articulation, muscles supporting the articulators (e.g., the lips, tongue, and
vocal cords) move, resulting in the production of speech sounds, and the amplitude of
each frequency in the speech signal changes accordingly. Therefore, the pronunciation
procedure can be monitored by inspecting the amplitude changes. Based on this, we
propose a hypothesis that when people pronounce the same phoneme, the amplitude in
each frequency has the same trend of change.
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To track and quantify this trend, we reshape the amplitude-frequency matrix into a
one-dimensional vector and combine all the vectors generated in different frames together.
Then, we take the derivative of the amplitude to obtain the derivation matrix. As shown
in matrix (15), every column (superscript) represents the elements in the same frame, and
every row (subscript) represents elements in the same pitch frequency. Here, n is the
number of frames, and dt is the step size used in the framing process, which is relatively
short in our case.

d
dt


a(1)1 a(2)1 . . . a(n)1

a(1)2 a(2)2 . . . a(n)2
...

. . .
...

a(1)10 a(2)10 . . . a(n)10


10×n

= (15)


d(1)(2)1 d(2)(3)1 . . . d(n−1)(n)

1

d(1)(2)2 d(2)(3)2 . . . d(n−1)(n)
2

...
. . .

...
d(1)(2)10 d(2)(3)10 . . . d(n−1)(n)

10


10×n−1

We start by normalizing the derivation matrix and the amplitude-frequency matrix
separately. We then combine the derivation matrix with the second column of the amplitude-
frequency matrix, representing the frequency, into a one-dimensional feature vector. We
refer to this feature as the Pitch and Partials Amplitude Gradient Feature.

[d(1)(2)1 . . . d(n−1)(n)
1 f (1)1 . . . f (n)1 . . .

d(1)(2)10 . . . d(n−1)(n)
10 f (1)10 . . . f (n)10 ]

(16)

4.2. Speech Wave Function Probability Amplitude Feature
4.2.1. Model Speech Signal by Using Concept of Schrödinger Equation

This section is a brief introduction to the Schrödinger equation. The Schrödinger
equation is a fundamental equation in quantum mechanics that describes the time evolution
of a quantum state.

The Schrödinger equation is a partial differential equation, and its solution gives the
probability amplitude of finding the quantum system in a particular state at a given time.
The wave function ψ can be used to calculate various physical quantities, such as the
probability density of finding a particle in a particular location, or the expectation value of
an observable physical-like energy or momentum.

The Schrödinger equation has revolutionized our understanding of the behavior
of particles at the quantum level and is essential in many areas of physics, chemistry,
and engineering.

Quantum mechanics describes the properties of systems by using a wave function,
Ψ(x, t) and we get it by solving the Schrödinger equation [25] :

ih̄
∂Ψ
∂t

= − h̄2

2m

(
∂2Ψ
∂x2

)
+ VΨ (17)

Here, i is the square root of −1, and h̄ is Planck’s constant, which is the original
constant h divided by 2π :

h̄ =
h

2π
= 1.054573× 10−34 Js.

Centered on Porn’s mathematical analysis of the wave function, |Ψ(x, t)|2 is the
probability of discovering a particle x and the time t [25]. When we look at exponential
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activity in the time coordinate for the first time, we guess Ψ(x, t) = e−iωt f (x) and use the
method of separation of variables to solve the Schrödinger equation:

Ψ(x, t) = ψ(x) f (t) (18)

∂Ψ
∂t

= ψ
d f
dt

,
∂2Ψ
∂x2 =

d2ψ

dx2 f (19)

So, the Schrödinger equation changes the form to:

i h̄ ψ
d f
dt

= − h̄2

2m
d2ψ

dx2 f + V ψ f (20)

Dividing by ψ f :

i h̄
1
f

d f
dt

= − h̄2

2m
1
ψ

d2ψ

dx2 + V (21)

The left side is the time function t, and the right side is the location function x. It
only occurs when all sides are constant and when the divergence constant is labeled E in
quantum mechanics.

i h̄ ψ
d f
dt

= E, (22)

or
d f
dt

= − iE
h̄

f (23)

and

− h̄2

2m
1
ψ

d2ψ

dx2 + V = E (24)

or

− h̄2

2m
d2ψ

dx2 + Vψ = Eψ (25)

The equation describing a particle with a definite energy, known as the time-independent
Schrödinger equation, is more stringent than the initial Schrödinger time-dependent equa-
tion. This is because the time-independent equation culminates in two ordinary differential
equations instead of one partial differential equation, with the constant E representing
the particle’s total energy (kinetic plus potential) [25]. The general solution of the time-
dependent Schrödinger equation, represented by Equation (23), is given by C exp(−iEt/h̄),
where C is a constant that is absorbed into ψ. Then, we apply

f (t) = e−iEt/h̄. (26)

4.2.2. Infinite Square Well Model

To solve the time-dependent Schrödinger equation, we can make use of the infinite
square well model. This model system in quantum mechanics consists of a particle that is
confined to a one-dimensional box with infinite potential energy at the boundaries. It is
used to study the behavior of a particle in a potential well with fixed boundaries, which
can be an idealization of certain real-world systems, such as electrons in a solid or a gas
trapped in a container.

The wave function of the particle in the infinite square well can be found analytically,
and it exhibits some interesting properties, such as the quantization of energy levels and
the absence of probability density outside of the box. By studying this simple model, we
can gain insight into more complex quantum systems, such as atoms and molecules.

V(x) =

{
0, if 0 ≤ x ≤ a,
∞, otherwise.

(27)
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In quantum mechanics, this type of configuration is often referred to as a “particle in a
box” (a 1D box) or “square”. The particle is free to move within the specified region, but
has zero probability of escaping, much like a particle trapped inside a box. Therefore, the
wave function ψ(x) is equal to zero outside of the region.

The potential energy is infinite outside of the two boundaries that prevent particles
from escaping. This is similar to an elastic ball being placed inside a square well, where it
can move freely within the well but cannot escape due to the infinitely high walls of the
well [25].

In fact, the particle has zero probability of being detected beyond the range of x values
that vary from 0 to L. This is because the particle would need to overcome the exponentially
tall and infinitely high theoretical wall at the edge of the box. When the particle is outside
of the specified range, ψ(x) is equal to zero. Within the range, where V(x) = 0, the
time-independent Schrödinger Equation (25) takes the form:

− h̄2

2m
d2ψ

dx2 = Eψ (28)

or
d2ψ

dx2 = −k2ψ, where k =

√
2mE
h̄

(29)

We assume that E > 0 because the reciprocal of E < 0 is not physically meaningful.
Thus, we can approach the problem dynamically, interpreting it as an oscillatory function
that can be described using trigonometric functions. The general solution of Equation (29)
is given by:

ψ(x) = A sin(kx) + B cos(kx) (30)

However, in the context of quantum mechanics, it is not immediately clear what this
solution means physically. If the probability distribution were discontinuous, it would
be highly problematic to say that there was something fundamentally wrong with the
distribution. However, in this case (and in most other cases that are not pathological), it
is reasonable to assume that the probability distribution is continuous. Therefore, we can
proceed under the assumption that the solution is valid.

Applying the boundary conditions ψ(0) = ψ(a) = 0, the equation can be rewritten as:

ψ(0) = A sin 0 + B cos 0 = B (31)

So B = 0, and

ψ(x) = A sin kx. (32)

Then ψ(a) = A sin ka, this only happens when

ka = 0,±π,±2π,±3π, . . . (33)

kn =
nπ

a
, with n = 1, 2, 3, . . . (34)

We can use Equation (29) to determine that k =
√

2mE
h̄ . Since we assume E > 0, we can

write the possible values of E as:

En =
h̄2k2

n
2m

=
n2π2h̄2

2ma2 (35)

where n is a positive integer representing the energy level of the particle.
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To ensure that the total probability of finding the particle in the range 0 ≤ x ≤ a is 1,
we must normalize the wave function ψ by fixing the constant ψ as follows:

Ψn(x, t) =

√
2
a

sin(
nπ

a
x) e−i(n2π2 h̄/2ma2)t (36)

4.3. Speech Wave Function-Based Probability Amplitude Feature

During the process of speech production, the vibrations generated by the vocal cords
pass through the vocal tract to create specific sounds. Although every individual is unique,
the changes over time and space of these vibrations should be similar when making the
same sound. Therefore, the shape and movement of the interaction among all involved
biological structures generate an acoustic waveform. This means that all the information
is embedded in the time-domain and frequency-domain characteristics with different
probabilities. However, the commonly used features for speech signals, such as Mel-
frequency cepstral coefficients, do not explicitly capture the probability information of
the signal.

To address this issue, we introduce the concept of a frame probability feature in speech
signal processing. Frames with a high probability receive a greater coefficient, resulting in
a higher degree of discrimination in the feature vector.

To improve the Mel-frequency cepstrum coefficient, we apply the infinite square well
model in feature extraction. We can use the concept of probability from the wave function.
Just as the infinite square well restricts the particle, the speed of sound limits the audio to
a particular range if we determine the length of time. The stationary states Equation (36)
is used to calculate the probability in each frame. To calculate this equation, we need to
know every frame’s time, position in space, and energy. Figure 3 shows an audio sample of
the phoneme /r/ in the time domain, which we recorded near the speaker’s mouth. The
characteristics of the audio signal contain all the information embedded in the time domain
and frequency domain with different probabilities.

Figure 3. Audio in time domain.

We also need to consider how the audio is distributed in space. Assuming the speed
of sound is 340 m/s, we can calculate that the sound wave can travel a distance of 34 m
during the 0.1-second duration. Therefore, the sound wave originating from the speaker’s
mouth will be located 34 m away at the beginning of the recording. Similarly, the sound
wave at the end of the recording will be located at the microphone’s position, which we
can assume is at position zero. Figure 4 shows the audio distribution of the same sample
in space.
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Figure 4. Audio spatial distribution.

This new feature can be interpreted as a probability-based feature, which is calculated
based on the time, position, and energy of each sampling point in a complex manner and
provides a way to incorporate the probability information of each frame into the Mel-
frequency cepstrum coefficient (MFCC) feature. The procedure consists of pre-emphasis
and framing, calculating the wave function Ψ(x, t), and obtaining the probability |Ψ(x, t)|2.
We then add up all probabilities of samples within one frame to obtain the total probability
of that frame. We continue with the MFCC procedure, which includes windowing, applying
Fast Fourier Transform, applying a Mel-scaled filter bank, and applying Discrete Cosine
Transform to obtain the original MFCC features of that frame. Finally, we multiply the
MFCC features by the probability of that frame to obtain the new feature.

5. Classification Methods

In this paper, we use a hypothesis H = 1 to represent the classification result of stan-
dard English pronunciation of /r/, and use hypothesis H = 0 to represent the classification
result of a non-standard English /r/. We use L = 1 to represent speech labeled as standard
English speakers, and L = 0 to represent speech labeled as non-standard English speakers.

5.1. K-Nearest Neighbor (KNN)

One of the most basic and straightforward classification techniques is K-nearest neigh-
bor classification. The KNN algorithm works based on the principle that if the majority
of the most similar samples in the feature space (i.e., the sample’s closest neighbor in the
feature space) belong to the same group, then the sample does as well [26]. The Euclidean
distance between a reference sample and the training samples is typically used as the basis
for the K-nearest neighbor classifier.

Data in the training set L, are classified by this algorithm into several separate cat-
egories, C1, . . . , CM, with M as the number of categories. In the jth category, there are
samples {(x(j)

1 ), . . . , (x(j)
n )}, where n is the number of samples and features are N dimen-

sion vectors. The expectation of each category will be

µ(j) =
1
n

n

∑
i=1

x(j)
i (37)

Then, we can calculate the distance of each sample in the testing dataset, X1, . . . , Xn,
to each category expectation, µ(j), using Equation (38).

dj =
√
(Xi − µ(j))2 (38)
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Because this is a binary classification, the value of the threshold affects the classification
rate. We can investigate the performance of the classifier by changing the threshold and
using a receiver operating characteristic curve. The classification logic for a given threshold
Vi is shown in (39).

H =

{
1, if d1

d2
≤ Vi

0, if d1
d2

> Vi
(39)

5.2. Gaussian Multivariate Model (GMM)

A Gaussian Mixture Model (GMM) is a statistical model that assumes that the proba-
bility distribution of the observed data points comes from a mixture of several Gaussian
distributions, each with its own mean and covariance. The model is trained to learn the pa-
rameters of these Gaussian distributions and the probabilities of each data point belonging
to each of the Gaussian distributions. Once trained, the GMM can be used for a variety of
tasks such as clustering, density estimation, and classification (40).

The mean and the covariance matrix of the GMM can be obtained from the training
dataset [27].

µ =
1
n

n

∑
i=1

xi (40)

Σ = E[(x− µ)(x− µ)T ] (41)

In order to calculate fast, we extract the diagonal elements of Σ and generate a diagonal
matrix to replace the original covariance matrix. To expedite calculations, we can extract the
diagonal elements of the covariance matrix, denoted by D, and create a diagonal matrix by
placing these elements along the main diagonal. This diagonal matrix can then be used to
replace the original covariance matrix in computations, leading to faster processing times.

D =


σ2

1
σ2

2
. . .

σ2
N

 (42)

The probability density function (PDF) of the Gaussian Multivariate Model is shown
by the following Equation (43):

pi(x; µ, Σ) =
1

(2π)
N
2 |Σ|

1
2

e(−
1
2 (Xi−µ)TΣ−1(Xi−µ)) (43)

After calculating the PDF of a testing sample using Gaussian Mixture Models (GMMs),
the testing sample can be classified as belonging to the Gaussian component with the
highest posterior probability. In other words, for each Gaussian component in the GMM,
we can compute the posterior probability that the testing sample belongs to that component
given its observed features. The testing sample is then classified as belonging to the
component with the highest posterior probability.

5.3. Artificial Neural Network

An Artificial Neural Network (ANN) is a popular classifier used in various fields such
as image recognition, natural language processing, speech recognition, and many others.
An ANN is a type of machine learning model that is designed to simulate the behavior of
the human brain’s neural networks.

The basic structure of an ANN consists of an input layer, one or more hidden layers,
and an output layer. The nodes in the input layer receive the input data, which are then
processed by the nodes in the hidden layers to extract important features. The output layer
then produces the final output based on the learned features.
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The learning process of an ANN involves training the network on a labeled dataset,
where the network adjusts its weights and biases to minimize the difference between
the predicted output and the true output. This process is typically performed using an
optimization algorithm such as backpropagation.

One of the strengths of an ANN is its ability to learn complex patterns and relationships
in data, making it suitable for a wide range of classification tasks. Additionally, an ANN
can handle noisy or incomplete data, and can generalize unseen data well, making it a
powerful tool for machine learning. The activation function in an ANN is (44),

S(x) =
1

1 + e−x (44)

The ability to learn from training data and generalize results using active function is one
of the main characteristics of an artificial neural network; it stores the knowledge gained
during the training process in the synaptic weights of the neurons [28].

The synaptic weight of a connection between two nodes is a value that represents
the connection between the two nodes. The way nodes are connected, connection weight
values, and the activation function all affect the output of a neural network model.

For an ANN, the input layer is the input signal, and the hidden layer and output layer
are assembled by cells [29].

For m samples {x(1)y(1) · · · x(m)y(m)}, the cost function of applying a neural network is
Equation (45).

J(θ) =− 1
m
[

m

∑
i=1

k

∑
k=1

y(i)k log(hθ(x(i)))k

+ (1− y(i)k )log(1− hθ(x(i)))k)]

+
λ

2m

L−1

∑
l=1

SL

∑
i=1

SL+1

∑
j=1

(θ
(l)
ji )2

(45)

where the input data x are represented as features, the output data y represent the label of
the training sample, and the weight matrix between the network’s cells is denoted by θ.
To prevent overfitting, a regularization parameter λ is introduced. The network typically
consists of L layers, with Sl representing the number of units in layer l. The objective of the
ANN is to find the weight matrix θ that minimizes the cost function.

The backpropagation algorithm is a supervised learning algorithm used to train
Artificial Neural Networks (ANNs) to make accurate predictions for a given input. The
name “backpropagation” refers to the fact that the algorithm works by propagating the error
from the output layer back through the network, adjusting the weights of the connections
between neurons as it goes. During the training process, the backpropagation algorithm
calculates the error between the network’s output and the desired output, and then adjusts
the weights of the connections between neurons in the network to minimize this error. This
is typically performed using a gradient descent optimization algorithm, which calculates
the gradients of the error with respect to each weight in the network, and then adjusts the
weights in the direction of the steepest descent.

6. Experiment and Result
6.1. Data Collection and Labeling

In this project, we recruited 31 human subjects, including 19 native English speakers
and 12 nonnative English speakers. All participants were asked to read a file containing
40 words with the phoneme ‘r’ sound in word initial position followed by a variety
of vowels. Their speech signals were recorded using a SONY PCM-D50 two-channel
linear digital recorder. The sample of a part of the file was shown in the Table 1. The
recordings were conducted either in the communication lab at the School of Allied Health
and Communicative Disorders, or at the Digital Signal Processing lab, Northern Illinois
University. To ensure a quiet recording environment, we aimed to maintain an average
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ambient noise level of less than 45 dB during the recording procedure. The sampling rate
was set at 48 kHz, and a data file with two channels was obtained for each participant.

Table 1. Sample of word list.

r and Adjacent Vowel Words

/ru/ rude
/ru/ room
/ru/ ruse
/ru/ root

/ri/ reach
/ri/ reef
/ri/ reason
/ri/ read

The duration of the phoneme /r/ in a word is approximately 0.085 s, so we extracted
the first 0.1 s of the speech segment from each word as a data sample.

In this research, which is a binary classification problem, we defined two categories
for each data instance: ’correct 1’ and ’incorrect 0’. The initial labeling process for the data
instances was conducted by a professional speech-language pathologist, who determined
whether each instance represented the correct or incorrect pronunciation of the phoneme
/r/. Then, we divided the labeled data into training and testing sets. The training set
is used to train the machine learning model, while the testing set is used to evaluate the
model’s performance.

The first 0.1 s part from an original waveform from a native English speaker is shown
in Figure 5.

Figure 5. Standard speaker “/r/”.

6.2. Pre-processing

The pre-emphasizing high pass FIR filter we used is y(n) = x(n)− 0.98x(n− 1). The
audio wave after passing the filter is shown as Figure 6.
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Figure 6. Pre-emphasized standard speaker“/r/”.

We chose the frame length as 40 ms with an overlap rate of 6.3% and we obtained 10
frames from each data sample for analysis. Figure 7 shows the difference in signal between
the first frame and tenth frame.

First frame wave

Tenth frame wave

Figure 7. Frame wave.
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Then, we used a hamming window, shown in Figure 8, to multiply each frame, as
shown in Figure 9.

Figure 8. Hamming window.

First frame wave in hamming window

Tenth frame wave in hamming window

Figure 9. Frame wave in hamming window.
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6.3. Feature Extraction
6.3.1. MFCC Features

We extract the MFCC feature, which is one of the the most popular features used for
speech recognition, as a comparison baseline. The frame length is 0.025 s, the frame step is
0.01 s and the overlap rate is 60%. For each /r/ production, we get a total of 8 frames and
we select 13 coefficients as features in 1 frame. Finally, the feature vector is a vector of 104
elements.

6.3.2. Pitch and Partials Amplitude Gradient Feature

We applied the fast Fourier transform to each frame of the speech signal, and then
we searched for the peak amplitude in the frequency domain. As shown in Figure 10,
when we compare the FFT figures obtained from the 1st and 10th frames, we can see that
the pitch frequency does not change significantly, but the amplitude in each frequency
changes dramatically.

1st frame FFT

10th frame FFT

Figure 10. Fast Fourier transform.

We then obtained the amplitude-frequency matrix shown in Equation (14), which
is a 10 × 2 matrix. For a particular frequency, we can analyze the trend of amplitude
changes across different frames. Figure 11 shows the amplitude changing trend for the
pitch frequency of 225 Hz.
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Figure 11. Amplitude changing trend in 225 Hz.

Next we calculated the derivation of the amplitude part from each frame with the
same pitch frequency as matrix (15). In this case, we have 10 frames, so the derivation
matrix will be a 10× 9 matrix. The derivation matrix quantifies the amplitude changes with
the time changes. Figure 12 shows the derivation representing the amplitude changing
trend in the 225 Hz pitch frequency.

Figure 12. Derivation in 225 Hz.

Finally we calculated the derivation matrix and obtained the pitch and partials ampli-
tude gradient features which include 190 elements.

6.3.3. Speech Wave Function Probability Features

In this experiment, we have 2480 audio samples of the phonetic /r/ pronunciation, each
with a duration of 0.1 s. These samples include 1520 labeled ‘1’ and 960 labeled ‘0’. The
recorder’s sampling rate is 48,000 Hz. The rational transfer function index α is 0.93. We
use a frame length of 0.025 s and a frame step of 0.01 s, resulting in an overlap rate of 60%
and the generation of eight frames. Each frame contains 1200 sampling points, with each
sampling point having a value of amplitude, whose square value represents the energy, time,
and corresponding spatial location. We can then use the stationary state wave function (36)
for analysis.

Ψn(x, t) =

√
2
a

sin(
nπ

a
x) e−i(n2π2 h̄/2ma2)t
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In this experiment, x represents the sampling point position in the spatial domain,
while t represents time. The length of the total 0.1 s signal, denoted as a, is 34 m. We can
calculate n, where En is the square value of amplitude. The constant m is assumed to be 1
in order to reduce computational complexity. Then, we can calculate the total probability
of this frame and continue with the calculation of the MFCC. A triangle window is applied
afterwards. We then perform FFT and pass the resulting signal through a Mel-scaled filter
bank, which is a 13-order filter bank, to obtain 13 coefficients from 1 frame. After applying
Discrete Cosine Transform, we can obtain the original MFCC, which we then multiply
by the probability. The probability of each frame from one standard English speaker’s
pronunciation is shown in Figure 13.

The new feature is a 8 × 13 matrix that represent the message of one production.
Reshape the matrix to a vector of 104 elements.

Figure 13. Probability of each frame.

6.4. Classification Results

In the classification part, the first algorithm used is KNN. We randomly select an audio
feature for a correct and an incorrect pronunciation as the reference. Using Equation (37),
we calculate the Euclidean distance for both reference features in the feature space, called
µ1 and µ2. Then, we use all other data samples as the testing sample and calculate the
distances (d1 and d2). To optimize the classification performance, we modify the original
KNN algorithm by using the classification logic for a given threshold Vi:

H =

{
1, if d1

d2
≤ Vi

0, if d1
d2

> Vi
(46)

the second classification algorithm is the Gaussian model. We select four native English
speakers’ feature samples to calculate the expectation ( µ ) by using Equation (40) and then
Equation (41) to get the covariance matrix Σ and then its diagonal matrix D. To scale the
output value we only calculate the p = e(−

1
2 (Xi−µ)TΣ−1(Xi−µ)) part of Equation (43). The

classification logic for a given threshold Vi is shown as Equation (47).

H =

{
1, if p > Vi

0, if p ≤ Vi
(47)

The last classifier used was an ANN, where features obtained from the previous subsec-
tion were fed into the input layer of the Artificial Neural Network. We then constructed one
hidden layer with six cells and one bias cell and one output layer with two output nodes.

The comparison of the performance among different features and methods can be
found in the Table 2.
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Table 2. Classification results for different features and methods.

KNN KNN GMM GMM ANN
CR (%) Threshold CR (%) Threshold CR (%)

MFCC 82.72 0.9053 81.77 0.4484 87.217
PPAG 79.15 0.6156 82.38 0.2148 96.97
SWPA 84.72 1.1196 80.77 0.4562 93.911

We obtained the maximum recognition rate for KNN and GMM classifiers by using
a specific threshold value. For the ANN, we evaluated the recognition rate for all three
types of features. Our results showed that the proposed speech wave function probability
features achieved the highest classification rate when using the KNN classifier. For the
GMM classifier, the pitch and partials amplitude features outperformed the other two
features. Finally, for the ANN model, the pitch and partials amplitude features provided
the highest classification rate.

7. Conclusions

In this study, we aimed to evaluate the feasibility of using a knowledge-based intel-
ligence program to differentiate pronunciation, specifically focusing on one of the most
challenging aspects of pronunciation remediation—the rhotic /r/. Our approach involved
using signal analysis and classification methods. We detected speech signals containing
/r/ by implementing short-time processing, extracting relevant features, and utilizing
classifiers for pronunciation diagnosis. Our experiment demonstrated that the proposed
knowledge-based intelligence program is a promising solution to this problem. Without
the loss of generality, this approach can be extended to other rhotics.

While algorithms commonly used for speech recognition have been extensively re-
searched, they may not be suitable for differentiating correct and incorrect rhotic pronunci-
ation based on detailed acoustic features. Therefore, we proposed two innovative features
to address this issue.

The first proposed feature focused on dynamic changes in the fundamental frequency
and its harmonics, called a pitch and particle gradient feature. To capture subtle differ-
ences among correct and various incorrect pronunciations, we borrowed the concept of
Schrodinger’s equation from quantum physics and developed a wave function-based prob-
ability feature from speech signals. We collected data from 31 human participants and
found that these two features performed well in our experiments.

The pitch and particle gradient feature outperformed the commonly used Mel-frequency
cepstral coefficients (MFCCs) feature when the Gaussian Mixture Model (GMM) and Arti-
ficial Neural Network (ANN) classifiers were employed. In addition, the wave function-
based amplitude probability feature achieved the best performance when using the ANN
classifier.

In future work, we plan to explore the potential of our proposed features and classifiers
in other aspects of speech recognition and pronunciation assessment. Additionally, we intend
to investigate the generalization of our model to larger datasets and diverse populations.

Finally, we aim to investigate the use of additional signal processing techniques
and advanced machine learning models such as deep learning to further improve the
performance of our proposed features and classifiers.
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