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Abstract: This paper studies the robust tracking control problem for a class of uncertain nonlinear
dynamical systems subject to unknown disturbances. A robust trajectory tracking control law is
designed via a simple learning-based control strategy. In the developed design, the cost function
based on the desired closed-loop error dynamics is minimized by means of gradient descent technique.
A stability proof for the closed-loop nonlinear system is provided based on the pseudo-linear system
theory. The learning capability of the developed robust trajectory tracking control law allows the
system to mitigate the adverse effects of the uncertainties and disturbances. The numerical simulation
results for a planar PPR robot are included to illustrate the effectiveness of the developed control law.
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1. Introduction

Several robust control approaches have been proposed to deal with the issues asso-
ciated with uncertainties, disturbances, and noise [1–7]. The sliding mode control (SMC)
method represents a popular robust control approach [8–13]. SMC theory is based on
using high controller gains to achieve robust performance despite the disturbances and
uncertainties. However, high gains may cause unwanted chattering effects on the system
response [14].

The use of learning-based model predictive controllers is an alternative approach to
dealing with disturbances and uncertainties [15–19]. Neural network (NN)-based learning
is a common control technique with various types of applications, including NN-based
online learning [20], adaptive NN-based stabilization [21], and adaptive NN-based back-
stepping control [22,23]. The main concern in applying NN-based learning is the inherent
difficulty in proving closed-loop system stability [24].

Another control approach combines a fuzzy neural network (FNN) and conventional
PD controller to realize the so-called PD+FNN control [25–27]. This novel control approach
employs a sliding mode control (SMC) based leaning technique that allows for robust
control. Their approach does not rely on partial derivatives or matrix inversions. The
work in [28] presents a robust adaptive learning control for a spacecraft in the presence
of unknown disturbances and uncertainties. The asymptotic stability of the closed-loop
systems with the proposed adaptive control law is proven based on the Lyapunov theory.

Type-2 neuro-fuzzy controllers (T2NFCs) have also found wide use, where type-2
fuzzy logic and artificial neural network controllers are fused together to achieve better
performance [29–32]. The suggested online adaptive rules in T2NFCs help to lessen the need
for detailed gain tuning by learning the disturbances and the system dynamics in an online
fashion. The sliding mode learning control (SMLC) approach for controlling uncertain
dynamical systems is addressed in [9]. In this work, a T2NFC learns the system behavior
while a conventional control term provides the system stability. Then the T2NFC fully
takes over the control of the system rapidly. This SMLC approach is shown to be capable of
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learning the system behavior even without the knowledge of any mathematical model so
that the closed-loop system achieves robust control performance. The neuro-adaptive SMC
approach has also been effectively employed in the control of robotic systems [33–35].

The feedback linearization control (FLC) technique is another widely used approach.
However, the performance of the traditional FLC approach degrades under uncertainties
and disturbances such that the closed-loop error fails to converge to zero [36,37]. In the
literature, FLC with an integral action (FLC-I) has been proposed to ensure the convergence
of the steady-state error. To overcome the drawbacks of the traditional FLC, several learning
approaches have been proposed in conjunction with FLC [38–40]. In [40], an artificial NN
with a nonlinear auto-regressive-moving average model has been designed to facilitate
learning of the feedback linearized inputs for a nonlinear plant. In [41], a Gaussian process
methodology is employed to determine a model for the FLC technique with minimal
knowledge of the system a priori. In addition, in the literature, a dynamic linearization
strategy has been designed for discrete-time nonlinear systems [42–46]. For systems that
undergo varying working conditions such as time-varying uncertainty and delay [47,48],
the aforementioned methods may not be good candidates. One approach to deal with this
drawback is to incorporate disturbance observers for disturbance compensation [49–55]. For
example, Ref. [49] proposes a gradient-descent-based learning gain as well as a disturbance
observer of nonlinear systems.

Although all these learning-based and nonlinear methods have several benefits, such
as handling uncertainties, unmodeled dynamics, and disturbances, the real-time implemen-
tations are challenging due to the fact that they are mostly computationally expensive. To
address this, in this paper, we generalize the fundamental steps presented in our previous
work [56,57] for the design of a simple learning (SL) control strategy for the trajectory
tracking of a class of dynamical systems. The developed SL strategy utilizes the updates
rules based on the desired closed-loop error dynamics to adjust its control gains and the
disturbance estimates in the feedback control law. Here, the FLC method is used for de-
signing the traditional feedforward control law based on the nominal model of the system.
In the developed strategy, the gradient-descent method is used to minimize the desired
closed-loop error function, therefore finding the adaptation rules for control gains and
disturbance estimates. The stability of the closed-loop nonlinear system is mathematically
proven based on the pseudo-linear system theory.

The main contributions of this paper are (a) the development of a general computa-
tionally efficient simple learning-based robust tracking control law and (b) the illustration
of the effectiveness of the designed control law via computer simulation results using
the planar PPR robot manipulator. Additionally, It is worth noting that the developed
algorithm is computationally efficient for real-time implementation as presented in our
previous work [56,57].

The paper is organized as follows: The mathematical model of a class of dynamical
systems studied in this paper is presented in Section 2. In Section 3, an FLC-based control
law is designed. In Section 3.1, the update rules for controller gains and disturbance
estimates are derived. Proof of the closed-loop stability based on the pseudo-linear system
theory is provided in Section 3.2. The satisfactory performance of the proposed method is
illustrated by providing numerical simulations of the PPR robot manipulator in Section 4,
and finally, Section 5 presents the conclusions and future research work.

2. Mathematical Model

Let (Q, L) be a mechanical system with n degrees of freedom. Here Q ⊂ Rn is the
configuration manifold (assumed to be a smooth manifold) and the smooth real-valued
function L = L(q, q̇) is the Lagrangian, where q ∈ Q and q̇ ∈ Rn are referred to as n-vectors
of generalized configuration variables and generalized velocity variables, respectively. In
general, L can be expressed as

L =
1
2

q̇T M(q)q̇−U(q) (1)
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where 1
2 q̇T M(q)q̇ is the kinetic energy of the system and the smooth real-valued function

U(q) denotes the potential energy of the system. Here the n× n smooth matrix function
M(q) (called the generalized inertia matrix) is assumed to be symmetric and positive
definite. Let τ ∈ Rn denote the n-vector of generalized forces/torques acting on the system.
Then, the Euler–Lagrange equations [58] are given by

d
dt

∂L
∂q̇
− ∂L

∂q
= τ, (2)

which can be expressed as Equation (3) considering all the model uncertainties and distur-
bances:

M(q)q̈ + F(q, q̇) = B(q)u + ∆(q, q̇) + w(t) (3)

Here q̈ ∈ Rn is referred to as an n-vector of generalized acceleration variables, u ∈ Rn

is an n-vector of control input variables, B(q) is an invertible n× n smooth matrix function,
and F(q, q̇) is an n-vector smooth function; in addition, ∆(q, q̇) ∈ Rn and w(t) ∈ Rn

represent n-vectors of modeling uncertainties and external disturbances, respectively.
Define by x = [xT

1 , xT
2 ]

T = [qT , q̇T ]T the state. Then Equation (3) can be expressed in
state space form as

ẋ1 = x2 (4)

ẋ2 = f (x) + g(x1)u + d (5)

where

f (x) = −M−1(x1)F(x), g(x1) = M−1(x1)B(x1), d = M−1[∆(x) + w] (6)

where d ∈ Rn represents a lumped disturbance vector that comprises modeling uncertain-
ties and external disturbances. Here, the control design goal is to design a control input
u ∈ Rn so that the system tracks a given reference trajectory r(t) = [rT

1 (t), rT
2 (t)]

T , where
r2 = ṙ1, accurately while the state and control variables remain bounded.

3. Control Design

To formulate the tracking problem for the given reference trajectory, define the tracking
error vector e(t) = [eT

1 (t), eT
2 (t)]

T , where e1 = r1 − x1 and e2 = r2 − x2. Consider the
following control input

u = g−1(x1)
(
− f + K1e1 + K2e2 + ṙ2 − d̂

)
(7)

where the n× n gain matrices K1 and K2 are symmetric and positive definite and d̂ ∈ Rn

represents the estimated disturbance vector. In what follows, for the simplicity of the
development in this paper, we will assume K1 = k1 In, K2 = k2 In, where k1 ∈ R and k2 ∈ R
are positive control gains and In denotes the n× n identity matrix, so that Equation (7) can
be rewritten as

u = g−1(x1)
(
− f + k1e1 + k2e2 + ṙ2 − d̂

)
(8)

The closed-loop error dynamics can then be expressed as

ė1 = e2 (9)

ė2 = −k1e1 − k2e2 − d + d̂ (10)

3.1. Update Rules

Let kd = [k1d, k2d]
T denote the desired gain vector. Consider the following desired

closed-loop error dynamics:

c(e, kd) = ė2 + k2de2 + k1de1 (11)
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The update rules are derived by using a gradient descent method to minimize the cost
function and given by

C =
1
2

cT(e, kd)c(e, kd) (12)

The update rule for the controller gain is given by

k̇i = −αi
∂C
∂ki

= −αicT(e, kd)
∂c
∂ki

= αicT(e, kd)ei

(13)

where the ith controller gain’s learning rate is denoted by αi > 0. Similarly, the disturbance
estimate can be updated using the rule below:

˙̂d = −αd̂
∂C
∂d̂

= −αd̂cT(e, kd)
∂c
∂d̂

= −αd̂c(e, kd)

(14)

where the learning rate αd̂ is for the disturbance estimate d̂. The disturbance estimates and
the controller gains are updated until the cost function converges to zero (i.e., C(e, kd)→ 0).

3.2. Stability Proof

The closed-loop error dynamics of the system under study can be rewritten as

ë1 + k2 ė1 + k1e1 − d̂ + d = 0 (15)

and assuming disturbance d has a much smaller average rate of change than that of the
error state variables, then taking the time derivative of (15) and having ḋ = 0, we obtain
the following:

...
e 1 + k2 ë1 + (k1 + k̇2)ė1 + k̇1e1 − ˙̂d = 0. (16)

Substituting the associated expressions for k̇i and ˙̂d in (16), we obtain

...
e 1 + k2 ë1 + k1 ė1 + (α1cTe1)e1 + (α2cT ė1)ė1 + αd̂c = 0. (17)

Using the expression for c(e, kd) given by Equation (11), we obtain

...
e 1 + A1(ξ)ë1 + A2(ξ)ė1 + A3(ξ)e1 = 0 (18)

where ξ = [eT
1 ėT

1 ëT
1 ]

T is the state and

A1 =
(
k2 + αd̂

)
In + α1e1eT

1 + α2 ė1 ėT
1

A2 =
(
k1 + αd̂k2d

)
In + k2d

(
α1e1eT

1 + α2 ė1 ėT
1

)
A3 = k1d

(
αd̂ In + α1e1eT

1 + α2 ė1 ėT
1

)
.

(19)

Equation (17) is in a pseudo-linear form. A stability analysis will be performed using a
Routh–Hurwitz criterion [59]. Clearly ∀ξ, the Ai(ξ), i = 1, 2, 3 are symmetric and positive
definite and the characteristic equation corresponding to Ai(0), i = 1, 2, 3, is given by[

s3 +
(
k2 + αd̂

)
s2 +

(
k1 + αd̂k2d

)
s + k1dαd̂

]
In = 0. (20)



Electronics 2023, 12, 2026 5 of 16

The stability of the closed-loop error system can be shown by applying the Routh–Hurwitz
criterion such that the characteristic Equation (20) has all its roots with negative real parts
if the following condition is satisfied:(

k2 + αd̂
)(

k1 + αd̂k2d
)
> k1dαd̂. (21)

In what follows, ki, kid, i = 1, 2, and αd̂ are chosen such that the stability condition in
Equation (21) is satisfied.

4. Example: Simple Learning Control of a PPR Robot

As a sample nonlinear system, a planar PPR robot with three joints (two prismatic
and one revolute) is considered as shown in Figure 1. The planar PPR robot is moving
on a horizontal plane so that the gravitational potential can be ignored. In Figure 1, the
Cartesian position of the revolute joint and the orientation of the third link are denoted by
(x, y) and θ, respectively. The control inputs are the torque τ that is actuating the revolute
joint and the forces Fx and Fy applied to the two prismatic joints. The physical parameters
for the PPR robot are the mass of the three links m1, m2, m3; the distance l from the revolute
joint to the center of mass (CoM) of the third link; and the moment of inertia J3 of the third
link about its CoM.

Fx

Fy

θ

(x; y)

joint 1

joint 2

joint 3

x

y

τ

Figure 1. Schematic representation of a planar PPR robot.

The Lagrangian is given by

L =
1
2
(m1 + m2)ẋ2 +

1
2

m2ẏ2 +
1
2

m3v2
3 +

1
2

J3θ̇2 (22)

where v3 is the velocity of the CoM of the third link, which is given by

v3 =
√
(ẋ− lθ̇ sin θ)2 + (ẏ + lθ̇ cos θ)2. (23)
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The equations of motion can be obtained as below by using Lagrangian formulation.

mx ẍ−m3lθ̈ sin θ −m3lθ̇2 cos θ = Fx

myÿ + m3lθ̈ cos θ −m3lθ̇2 sin θ = Fy

Jθ̈ + m3l(ÿ cos θ − ẍ sin θ) = τ

(24)

where mx = m1 + m2 + m3, my = m2 + m3 and J = J3 + m3l2.

4.1. Computer Simulation Results

To evaluate the performance of the developed control law presented in Section 2, the
PPR robot system is considered in this section. The nominal and estimated parameters of
the PPR robot system are given in Tables 1 and 2, respectively.

Table 1. Parameters of PPR robot system.

Symbol Parameter Value Unit

m1 Link 1 mass 5 kg
m2 Link 2 mass 10 kg
m3 Link 3 mass 15 kg
J3 MOI of link 3 about its CoM 1.5 kg·m2

l Distance b/w revolute joint and CoM of link 3 0.5 m

Table 2. Estimated parameters of PPR robot system.

Symbol Parameter Value Unit

m1 Link 1 mass 4 kg
m2 Link 2 mass 8 kg
m3 Link 3 mass 12 kg
J3 MOI of link 3 about its CoM 1.7 kg·m2

l Distance b/w revolute joint and CoM of link 3 0.8 m

Three numerical simulation cases were considered for evaluating the performance of
the developed simple learning-based controller.

• Case I: Tracking sinusoidal trajectories;
• Case II: Tracking constant trajectories;
• Case III: Tracking under large external disturbances.

In Case I, the developed controller generates the appropriate control actions for track-
ing sinusoidal trajectories. Then, in Case II, the control actions for maintaining the system
behavior for properly tracking constant trajectories is studied. Finally, in Case III, the perfor-
mance of the developed controller for trajectory tracking under large external disturbances
is evaluated.

Simulations are carried out with the following initial conditions:

(x0, y0, θ0) = (0, 0, 0)

(ẋ0, ẏ0, θ̇0) = (0, 0, 0).

In all simulation cases, the following external disturbances are assumed:

dx = dy = 0.5 m/s2, dθ = 0.5 rad/s2

All the simulations using the developed control algorithm are implemented on a
platform with the following specifications: MacBook Pro (macOS 13.2.1), Processor: 2.3 GHz
Intel Core i5, Memory: 16.00 GB. In all cases, the total simulation time is 70 seconds and
the sampling time is 0.05 s. In this work, we employed the Runge–Kutta 4th order method
for numerically solving the equations of the system.
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4.2. Case I: Tracking Sinusoidal Trajectories

To study the tracking of sinusoidal trajectories, the desired trajectory for PPR robot is
designed as follows:

xd(t) = cos t [m]

yd(t) = sin
t
4

[m]

θd(t) = 45 cos
t
2

[deg].

For the simulation in Case I, the control gains below are used for the desired closed-
loop error dynamics:

k1d = 1, k2d = 2.

All the learning rates and the initial values for the controller in Case I are given below:

k1(0) = 1, k2(0) = 1

α1 = 10.5, α2 = 0.2.

All the learning rates and the initial value for the disturbances in Case I are as follows:

dx(0) = 0, dy(0) = 0, dθ(0) = 0, αd̂ = 10.5.

Figure 2 illustrates that the configuration variables x, y, and θ closely follow the
reference trajectory.

Figure 2. Performance of the PPR robot for sinusoidal trajectory tracking (see Case I: Tracking
Sinusoidal Trajectories).

The control gains k1 and k2 (see Figure 3), the estimated disturbances (d̂x, d̂y, and d̂θ)
(see Figure 4), and the control input forces (Fx, Fy) and torque Fθ (see Figure 5) for Case I
(Tracking Sinusoidal Trajectories) are shown in Figures 3–5.
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Figure 3. Control gains for Case I (Tracking Sinusoidal Trajectories).

Figure 4. All the estimated disturbances for Case I (Tracking Sinusoidal Trajectories).
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Figure 5. Input forces and torque for Case I (Tracking Sinusoidal Trajectories).

4.3. Case II: Tracking Constant Trajectories

To study the tracking of constant trajectories, the desired trajectory for PPR robot is
designed as follows:

xd = 1 [m], yd = 2 [m], θd(t) = 90 [deg].

For the simulation in Case II, the below control gains are used for the desired closed-
loop error dynamics:

k1d = 1, k2d = 1.2.

All the learning rates and the initial values for the controller in Case II are given below:

k1(0) = 1, k2(0) = 1

α1 = 1.5, α2 = 0.2.

All the learning rates and the initial value for the disturbances in Case II are as follows:

dx(0) = 0, dy(0) = 0, dθ(0) = 0, αd̂ = 1.5.

Figure 6 illustrates that the configuration variables x, y, and θ closely follow the
reference trajectory.

The control gains k1 and k2 (see Figure 7), the estimated disturbances (d̂x, d̂y, and d̂θ)
(see Figure 8), and the control input forces (Fx, Fy) and torque Fθ (see Figure 9) for Case II
are shown in Figures 7–9.
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Figure 6. Performance of the PPR robot for constant trajectory tracking (see Case II: Tracking Constant
Trajectories).

Figure 7. Control gains for Case II (Tracking Constant Trajectories).
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Figure 8. All the estimated disturbances for Case II (Tracking Constant Trajectories).

Figure 9. Input forces and torque for Case II (Tracking Constant Trajectories).
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4.4. Case III: Trajectory Tracking under Large External Disturbances

To study the tracking performance of the developed control technique under large
external disturbances, an extra disturbance of 2 m/s2 is additionally applied (i.e., dx =
[0.5 + 2] m/s2) in the range of [30–31] seconds.

In this simulation, the desired trajectory for the PPR robot is designed as follows:

xd = 1 [m], yd = 2 [m], θd(t) = 90 [deg].

For the simulation in Case III, the below control gains are used for the desired closed-
loop error dynamics:

k1d = 1, k2d = 1.2.

All the learning rates and the initial values for the controller in Case III are given
below:

k1(0) = 1, k2(0) = 1

α1 = 1.5, α2 = 0.2.

All the learning rates and the initial value for the disturbances in Case III are as follows:

dx(0) = 0, dy(0) = 0, dθ(0) = 0, αd̂ = 1.5.

Figure 10 illustrates that the configuration variables x, y, and θ closely follow the
reference trajectory.

Figure 10. Performance of the PPR robot for trajectory tracking under large external disturbances
(see Case III: Trajectory Tracking under Large External Disturbances).

The control gains k1 and k2 (see Figure 11), the estimated disturbances (d̂x, d̂y, and d̂θ)
(see Figure 12), and the control input forces (Fx, Fy) and torque Fθ (see Figure 13) for Case
III are shown in Figures 11–13.
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Figure 11. Control gains for Case III (Trajectory Tracking under Large External Disturbances).

Figure 12. All the estimated disturbances for Case III (Trajectory Tracking under Large External
Disturbances).
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Figure 13. Input forces and torque for Case III (Trajectory Tracking under Large External
Disturbances).

5. Conclusions

A robust trajectory tracking control strategy for a class of uncertain dynamical sys-
tems is presented in this paper. The external disturbances and model uncertainties are
compensated via the developed simple learning-based control technique. The developed
control design minimizes the cost function associated with the error dynamics of a class
of nonlinear systems. The significance of the developed robust trajectory tracking control
method is demonstrated via the results of numerical computer simulations of a PPR robot.

In this paper, the results are obtained for fully actuated systems with invertible control
input matrix B(q). Future work includes extending these results to underactuated systems,
i.e., systems with fewer inputs than their degrees of freedom, where the control input
matrix B(q) is not invertible [60].
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