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Abstract: In this work, a combination of signal processing and machine learning techniques is
applied for petrol and diesel engine identification based on engine sound. The research utilized
real recordings acquired in car dealerships within Poland. The sound database recorded by the
authors contains 80 various audio signals, equally divided. The study was conducted using feature
engineering techniques based on frequency analysis for the generation of sound signal features. The
discriminatory ability of feature vectors was evaluated using different machine learning techniques.
In order to test the robustness of the proposed solution, the authors executed a number of system
experimental tests, including different work conditions for the proposed system. The results show
that the proposed approach produces a good accuracy at a level of 91.7%. The proposed system can
support intelligent transportation systems through employing a sound signal as a medium carrying
information on the type of car moving along a road. Such solutions can be implemented in the
so-called ‘clean transport zones’, where only petrol-powered vehicles can freely move. Another
potential application is to prevent misfuelling diesel to a petrol engine or petrol to a diesel engine.
This kind of system can be implemented in petrol stations to recognize the vehicle based on the sound
of the engine.

Keywords: sound processing; engine sound; feature extraction; vehicle classification; intelligent
transport system

1. Introduction

Sound is one of the primary forms of sensory information that we use to perceive
our surroundings. The classification of sounds is widely used in several different fields.
Because of this, the classification of sounds has become a very popular topic. Fields of
application include, for example: multimedia retrieval [1,2], technology medical problems
s [3,4], speech recognition [5], speaker recognition [6,7], urban sound classification [8,9],
environmental sound classification [10,11], speech emotion recognition [12], animal sound
classification [13,14], detection of mechanical failure [15], and many others. In recognition
tasks, the basic issue is what to recognize, in other words, what the inputs of the system are.

Sound classification is also employed within intelligent transport systems for analyzing
and managing road traffic. This application is extremely well developed and driven by
an increase in general traffic volume, primarily in urban agglomerations. The concept of
intelligent transportation systems (ITS) refers to the use of unconventional process and
organizational transport solutions aimed at supporting the operation of road infrastructure
and improving road user safety [16]. The decision-making process associated with these
systems is based on analyzing data collected through various sensors [17]. An acoustic
signal is one such example [18]. Currently, sound signals in the road traffic space are
monitored mainly for the purposes of controlling noise levels. Another application may be
the detection of dangerous incidents, such as gunshots, explosions, accidents, collisions, or
other distress requiring help [19,20]. Recognition based on acoustic information is possible
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if the sound generated by tracking object includes specific features that allow to distinguish
it from signals produced by other vehicles [21,22].

One application of ITS technology lies in the enforcement of clean transport zones. In
these, only petrol-powered vehicles can freely move [23]. Nowadays, vehicle verification is
based on a system of cameras that recognize license plates and use them to assess whether a
vehicle has the right to enter the zone [24]. This technology has been already introduced in
many European cities [25]. An alternative method is analyzing sound and quickly notifying
an unauthorized driver about the prohibition on entering a given area. This is particularly
useful for non-local drivers that are not usually familiar with the legislation applicable in a
given city.

The article presents a method for vehicle class identification based on recorded sound
signals. In this case, vehicle class is construed as the type of engine (petrol or diesel) that
the vehicle is fitted with. Internal combustion engines can be divided by different criteria.
However, this study is focused on classifying them based on the ignition method, and,
hence, the type of consumed fuel. The objective of the experiments conducted by the
authors in this paper is to develop a target system that enables petrol and diesel engine
identification based on the engine sound by means of digital signal processing, including
the use of machine learning algorithms. Such a system could be treated as a part of the
application of industrial revolution 4.0 in the ITS sector.

First, the paper presents related works for automatic identification of the engine type.
Herein, the authors point out that the general motivation behind developing petrol and
diesel engine identification via sound is that, today, there are only a few available solutions
to this problem. Currently, engine sounds are mostly used for identifying the type of car
(i.e., car, bus, truck, motorcycle, military vehicle) [26–28]. The next section of the on-going
work describes our application of feature engineering practices, which means finding sets of
parameters to be used as a base to generate feature vectors for modelling the engine sound.
In the work, our study utilized the sound database that the authors collected which contains
80 various audio signals, equally divided into diesel and petrol engines. The presented
algorithm was then applied to evaluate the signal using a spectrum. Vectors of selected
voice descriptors were used in the classification scheme based on different neural networks.
The subsequent section describes a test of the robustness of the proposed solution. In
undertaking this, the authors executed a number of system experimental tests, including
different work conditions for the proposed system. Finally, the last section summarizes the
research, compares our results with other research, and points to the direction of further
research.

2. Related Works

Automatic identification of engine type is a research area that is not widely analyzed in
the world literature. Early publications regarding automated acoustic vehicle recognition al-
gorithms were focused mainly on military vehicle signals [29], in order to develop a system
that improves surveillance for security. As part of the experiments, analysis methods such
as FFT (fast Fourier transform) [21], STFT (short time Fourier transform) [26], time-varying
autoregressive (TVAR) combined with low-order discrete cosine transform (DCT) [30],
MFCC (Mel-frequency cepstral coefficients) [31], and wavelet packet were used [32].

Current studies focused on the use of the acoustic signal generated by the vehicle
engine have been presented in relation to the identification of the type of machine. The
authors of these have proposed utilizing so-called “machine biometrics”, which is under-
stood as the identification of the vehicle brand. Based on the completed research, 22 sound
features were extracted and their discrimination capabilities were tested in combination
with nine different machine learning classifiers, towards identifying five vehicle manufac-
turers. The experimental results revealed the ability of the proposed biometrics to identify
vehicles with high accuracy up to 98% for the case of the multilayer perceptron (MLP)
neural network model [27]. Generally, such research usually focuses on recognizing classes
for various vehicles, but not for engine type based on sounds [31,33].
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Using audio signal as the basis for identifying the type of engine, was discussed in
the article [34]. As part of the research, the authors defined the characteristics of the signal
based on the FFT transform, and used the SVM network. However, they employed a less
numerous acoustic database. Another interesting research focuses on detecting V6 and V8
engines based on audio signal [35].

Most of the studies presented in the literature describe the identification of the type of
machine defined, e.g., a car, bus, truck, or motorcycle [36–38]. The research proposed by the
authors in the current study is focused on type of engine (petrol or diesel), regardless of type
of machine. The solutions proposed in this area are very limited. First of all, the authors of
works in the literature have used different databases and limited numbers of recordings
with a limited diversity of recorded signals [34,35]. Greater diversity corresponds to
creating a common database utilizing the products of different vehicle manufacturers and
different vehicle models. This kind of approach gives good foundations to develop a robust
system which is independent of the recorded signal. Furthermore, in some articles, the
sample is too small, and the algorithms have been tested on unequal groups with just
limited types of machine. What is more, in the current literature, there is a lack of research
conducted on the impact of changing the sound compression. Further research is needed
to develop accurate and efficient methods for automatic engine type identification using
acoustic signals.

3. Architecture of Proposed System

A typical identification system structure includes three stages. The first is signal
recording, followed by parameter extraction and classification. A diagram of the method
proposed by the authors of this paper is shown in Figure 1.
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3.1. Signal Recording

The experiment required creating a database with sounds of different vehicle engines.
For this purpose, an Android-based smartphone was used; specifically, a Samsung S21
Ultra model manufactured by Samsung Electronics in Seoul, South Korea. The phone was
equipped with a high-quality microphone designed for recording audio. The microphone
was built into the phone and designed to capture high-quality sound in a variety of
environments. To record the engine sounds, a freeware android Dyktafon app was used,
which allowed for easy and convenient recording and saving of audio files. Sound signals
were recorded with a sampling frequency of 44.1 kHz and in the WAV format, owing to
the good quality of such a signal determined by the lossless format. Audio signals were
recorded at different places, where the acoustics, surroundings and external factors varied.
This significantly impacted the diversity of recorded sounds, which made constructing the
entire system difficult. The dissimilarity of each audio signal in the database allows the
designed signal to reflect real recording conditions with a high degree of probability. This
enables answering the question of how the system would operate under real conditions.
Figure 2 shows a test bench for recording sound samples.
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Audio signals were recorded with the engine in idle run, that is, without any loads
besides internal resistance. The recording device was positioned at 0.5–1.5 m from the
vehicle bonnet. Most recordings were conducted at car dealerships, because obtaining such
a large number of recordings with a satisfactory sampling frequency was a great challenge
to the authors of this paper. Sound samples were recorded mainly in the morning due to
the specificity of car dealership operation.

The collected database contains a total of 80 sound signals. The first 40 recordings
originate from diesel engine vehicles, and the other 40 from petrol engine vehicles. Different
vehicle models were recorded (approximately 60 in total). Table 1 presents synthetic dataset
information, including the different types of machines used in recording.

Table 1. Dataset information.

Vehicle Manufactures Vehicle Model (Number)

AUDI A3 (2)
A4 (2)
A5 (1)
A6 (2)
A8 (1)

BMW 320d
E46 (2)
Seria 1

X5
CITROEN C1

C4
C5

Picasso
FIAT Panda (3)

Punto
FORD Focus (3)

Galaxy
Mondeo

HYUNDAI I20 (2)
i40

MAZDA 6
MERCEDES 212

C
CLC 200

s320
MINI COOPER Mini Cooper

MITSUBISHI Pajero
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Table 1. Cont.

Vehicle Manufactures Vehicle Model (Number)

OPEL Astra
Corsa

Insignia (2)
Meriva

PEUGEOT 207 (2)
2008
5008

Boxer
RENAULT Clio III

Megane
Clio

Scenic
ROVER R75
SAAB 9-3
SEAT Altea

Exeo
Ibiza
Leon

SKODA Octavia (2)
Rapid

SUZUKI Swift
SX4

Vitara
TOYOTA Yaris

VOLKSWAGEN Golf (3)
Passat (3)

Polo
Tiguan (2)

VOLVO c30
c60

A full specification of the recorded signals can be found in Tables A1 and A2 in
Appendix A. In this paper, only sounds generated by the vehicle engine were used. In
further work on the system, the author will focus on other sounds generated by vehicles,
such as exhaust system.

3.2. Feature Extraction

The extraction and selection of features obtained from recorded signals is the work
stage most important in terms of designing each identification system. The process is aimed
at choosing such parameters of a recorded signal, so as to achieve features characteristic for
each class of acquired sounds. The obtained descriptors will be used to define the target
feature vector describing a given signal. The objective of processing sound signals with the
use of the appropriate algorithm is to bring to light the distinguishing sound features of a
given model. The feature extraction process involved employing the Matlab 2017b (The
Mathworks Inc., Natick, MA, USA.) computation environment and defining a 12-element
feature vector containing parameters defined within the frequency domain [39,40]: spectral
Centroid, spectral Crest, Spectral Decrease, spectral Entropy, spectral Flatness, spectral
Flux, spectral Kurtosis, spectral RolloffPoint, Spectral Skewness, spectral Slope, Spectral
Spread, Pitch. The descriptors are more thoroughly described in [40–46]. A 15 ms Hamming
window with a 5 ms overlap was used. The conducted experiments primarily utilized the
audioFeatureExtractor function in Matlab [47]. The diagram of this function is graphically
depicted in Figure 3. The list of parameters is shown in Table 2.
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Table 2. List of extracted audio signal features.

Parameter Name

C1 Spectral Centroid
C2 Spectral Crest
C3 Spectral Decrease
C4 Spectral Entropy
C5 Spectral Flatness
C6 Spectral Flux
C7 Spectral Kurtosis
C8 Spectral RolloffPoint
C9 Spectral Skewness
C10 Spectral Slope
C11 Spectral Spread
C12 Pitch

Electronics 2023, 12, x FOR PEER REVIEW 6 of 23 
 

 

Table 2. List of extracted audio signal features. 

Parameter Name 𝐶  Spectral Centroid 𝐶  Spectral Crest 𝐶  Spectral Decrease 𝐶  Spectral Entropy 𝐶  Spectral Flatness 𝐶  Spectral Flux 𝐶  Spectral Kurtosis 𝐶  Spectral RolloffPoint 𝐶  Spectral Skewness 𝐶  Spectral Slope 𝐶  Spectral Spread 𝐶  Pitch 

 
Figure 3. The diagram of the audioFeatureExtractor function. 

3.3. Selection 
The goal of applying feature selection techniques in machine learning is to find the 

best set of features that allows the building of optimized models of the studied phenom-
ena [48]. Fisher score is one of the most widely used supervised feature selection methods. 
The key idea of the Fisher score is to find a subset of features such that in the data space 
spanned by the selected features, the distances between data points in different classes are 
as large as possible, while the distances between data points in the same class are as small 
as possible. The assessment involved employing the Fisher significance coefficient defined 
by the formula [49]: 

𝑆𝑚𝑛 𝑓 = |𝑐 − 𝑐 |𝜎 + 𝜎  (1)

Figure 3. The diagram of the audioFeatureExtractor function.

3.3. Selection

The goal of applying feature selection techniques in machine learning is to find the best
set of features that allows the building of optimized models of the studied phenomena [48].
Fisher score is one of the most widely used supervised feature selection methods. The key
idea of the Fisher score is to find a subset of features such that in the data space spanned
by the selected features, the distances between data points in different classes are as large
as possible, while the distances between data points in the same class are as small as
possible. The assessment involved employing the Fisher significance coefficient defined by
the formula [49]:

Smn( f ) =
|cm − cn|
σm + σn

(1)

where:

• cm—m-class arithmetic mean
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• cn—n-class arithmetic mean
• σm—m-class standard deviation
• σn—n-class standard deviation

3.4. Classification

The classification stage involves generating predictions regarding objects from outside
the training set, as based on input data. The classifier development procedure is divided
into two phases. The first, called the “learning process”, is responsible for creating a so-
called “model” based on parameter values and classes. In addition, this process should also
ensure the lowest possible classification error level. The next stage is determining classifier
effectiveness through its testing by involving samples not participating in the learning
process. In the current study, the preliminary structure of the vehicle class identification
system was firstly examined using different machine learning techniques. The target
structure of system was then determined by the conducted experiments which had the
intent of achieving the best accuracy. The classification results were presented using the
confusion matrix [50]. This is a simple cross-tabulation of the actual and recognized classes
and allows easy calculation of the classifier parameters. The main indicator used to evaluate
the proposed solution was accuracy [50].

Acc =
TP + TN

TP + TN + FP + FN
(2)

4. Experiment

Constructing a system for identifying engine types based on the audio signals that
they generate required, above all, conducting a preliminary analysis of the recorded signals
to compare them. This was followed by selecting audio signal descriptors defined at the
extraction stage. These experiments became the cornerstone for presenting assumptions
related to the target system structure.

4.1. Observation of Studied Signals

The preliminary analysis of studied signals is based on presenting individual time
waveforms and their spectra for the recorded sound samples. Figure 4 shows the waveform
of an audio signal in a time domain, for diesel and petrol engines, respectively.

On comparing the audio signal time domain waveforms shown in Figure 4, a signifi-
cant difference in the amplitude of the presented signal is noticeable. Both engines were
recorded from the same distance of 0.5 m, thus minimizing the probability of distorting the
obtained values. Red marks the signal envelope understood as an instantaneous amplitude
value. The diesel engine amplitude ranges from –1 to 1, while the petrol engine ranges from
−0.6 to 0.6 on average. Such a significant difference results from the design characteristics
of the analyzed engine types.

Figure 5 shows examples of audio signal spectra for the recorded signals of the diesel
and petrol engines, respectively. The tested engines have frequency components with the
highest amplitude, ranging from 400 to 1400 Hz. The difference in low- and medium-
frequency component amplitudes between the spectra is clearly noticeable. Spectrum
amplitudes of the audio signal recorded for the petrol engine have considerably higher
values relative to the diesel engine in the 0.5–8 and 12–15.5 kHz ranges.

4.2. Evaluation of Specific Audio Signal Features

Developing the target structure of the feature vector for the vehicle class identification
audio signal is based on defining differences in the recorded signals. This goal is achieved
through the feature selection process that can be treated as the problem of searching for a set
of traits describing an object classified according to a certain evaluation criterion. Feature
selection methods are usually composed of three elements (steps), namely feature subset
generation, subset evaluation, and stop criterion. Basic statistical parameters, i.e., mean
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value, standard deviation, and variance of a given parameter [51], were adopted as the
evaluation criterion within the planned experiments. Tables 3 and 4 show the mean values
of the extracted spectral parameters, calculated based on forty audio signals, assuming that
two classes were defined for two engine types, respectively.
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Table 3. List of extracted audio signal features with obtained numerical results for the diesel engine.

Parameter Mean Standard Deviation Variance

C1 1346.303 354.309 125,535.063
C2 766.1 94.678 8963.879
C3 0.054 0.005 2.777 × 10−5

C4 0.580 0.030 9.279 × 10−4

C5 0.041 0.014 2.033 × 10−4

C6 0.004 9.489 × 10−4 9.004 × 10−7

C7 18.975 6.581 43.304
C8 7536.43 3395.796 11,531,431.954
C9 3.745 0.667 0.445
C10 −3.376 × 10−9 5.926 × 10−10 3.512 × 10−19

C11 2847.529 607.579 369,152.539
C12 62.784 50.028 2502.791

Table 4. List of extracted audio signal features with obtained numerical results for the petrol engine.

Parameter Mean Standard Deviation Variance

C1 2049.129 222.143 49,347.569
C2 146.823 42.035 1766.918
C3 0.026 0.004 1.668 × 10−5

C4 0.732 0.02 4.192 × 10−4

C5 0.056 0.008 6.431 × 10−5

C6 3.622 × 10−4 1.669 × 10−4 2.788 × 10−8

C7 11.785 2.256 5.088
C8 7081.120 336.166 113,007.696
C9 2.675 0.298 0.089
C10 −3.034 × 10−10 6.994 × 10−11 4.892 × 10−21

C11 2871.476 178.671 31,923.415
C12 280.566 126.810 16,080.764

The diversity of mean values for specific engine types is the main aspect that reveals the
usefulness of a given parameter within the process of designing a vehicle class identification
system. Standard deviation is an additional, equally important factor. It is the basic measure
of the variability in the values of defined parameters. In the case of large values of this
parameter for a given feature, the parameter is rejected because its numerical values are
too scattered within one class, which leads to the analyzed feature being hardly repeatable
for the class in question.

The extracted features were empirically divided into two subgroups, based on deter-
mined parameters. Group 1 (C2, C3, C4, C5, C6, C7, C9, C10) contains descriptors that satisfy
the assumed conditions, and the authors believe they can be employed to distinguish
different engine types. Mean values reach values clearly different relative to the two classes
and standard deviations are characterized by low values, which indicates their strong
concentration around the mean value. The remaining features comprise Group 2 (C1,
C8,C11, C12). Accordingly, they do not exhibit good discriminatory properties in relation
to the issue under consideration. The authors conclude that the probability of obtaining
the same values for two different engine types is too high due to similar mean values of
the individual features that distinguish them as parameters comprising the vector of the
features describing an audio signal [52].

In the further part of the article, the Fisher measure was also used. Known as “Fisher
information”, these are statistical measures used to quantify the amount of information that
an observable random variable carries about an unknown parameter of interest. They are
named after the statistician, Ronald Fisher, who introduced them in the early 20th century.
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4.3. Assessment of Qualified Parameters

The process of preliminary parameter value change assessment enabled selecting a
feature vector consisting of 8 descriptors. Figure 6 shows a waveform of value changes in
selected parameters in order to find differences between them.
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characterized by very low numerical values. When observing the time waveform shown in
Figure 3 and the data from Tables 1 and 2, it is noticeable that the mean value for the diesel
engine is approximately 0.053 and is halved for the petrol engine. Its standard deviation is
low, which increases its credibility as a feature distinguishing two engine types. In addition,
when looking at this variance, one can conclude that given values are stable over time. The
Spectral Flatness feature is similar in terms of value to the c3 feature, namely, spectral decrease.
However, the difference between the mean values is no longer twofold. Analyzing the
remaining numerical values of this parameter enables a conclusion that this descriptor can
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be used to identify a vehicle class with high probability. In addition, the waveform shown in
Figure 6 demonstrates the stability in the value of this parameter for the diesel engine.

4.4. Results of Recognition

The designed system, taking only 8 extracted descriptors into account, was initially
subjected to classification. The classification model is based on a training set, and the
assessment of its effectiveness has been verified based on a test set. Audio signals were
divided in the 75%-to-25% proportion into the training and validation sets [53], respectively.
In consequence, 30 training sounds and 10 test sounds were obtained for each engine type.
The abilities of the 12-dimensional vectors based on spectrum of sound signal, were exam-
ined with standard machine learning methods. Table 5 lists the effectiveness of individual
classifiers as measured by accuracy. The conducted experiments demonstrate that the most
accurate results of recognition were achieved with linear support vector machine SVM [54].

Table 5. List of the effectiveness of individual classifiers.

Algorithm Accuracy [%]

Fine Tree 68.8
Medium Tree 68.8
Coarse Tree 73.8

Linear Discriminant 86.2
Quadratic Discriminant 82.5

Logistic Regression 81.2
Gaussian Naive Bayes 71.2

Kernel Naive Bayes 67.5
Linear SVM 91.7

Quadratic SVM 80
Cubic SVM 77.5

Fine Gaussian SVM 61.3
Medium Gaussian SVM 81.2
Coarse Gaussian SVM 78.8

Fine KNN 76.2
Medium KNN 73.8
Coarse KNN 50
Cosine KNN 76.2
Cubic KNN 73.8

Weighted KNN 77.5
Boosted Trees 50
Bagged Trees 77.5

Subspace Discriminant 83.8
Subspace KNN 62.5

RUSBoosted Trees 50
Narrow Neural Network 73.8
Medium Neural Network 83.8

Wide Neural Network 78.8
Bilayered Neural Network 82.5
Trilayered Neural Network 76.2

SVM Kernel 57.5
Logistic Regression Kernel 58.8

The trained classifier misclassified two audio signals out of twenty, one for the diesel
engine, and one for the petrol engine. The validation matrix for the linear SVM is presented
in Figure 7. It demonstrates that the system recognizes vehicles with diesel and petrol
engines with 90% accuracy.
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Because of the limited data sample, the authors applied the cross-validation method
in order to reliably assess the proposed method for recognition. In this variant, the feature
vector based on the descriptors will be divided into k number of equal subsets. Each of
these will be successively classified as a test set, and the combination of the other ones as a
training set. This will be followed by a k-fold analysis of each of them and the obtained
results will be averaged in order to obtain effectiveness values of the final system [50]. An
advantage of the cross-validation system is its accuracy and that it does not employ data
for testing. Classifiers for nine different cases, starting with k = 2 and ending with k = 10,
were trained under this variant. The effectiveness of all tested methods is compared in
Figure 8. Classifier effectiveness relative to the adopted 10-fold cross-validation is presented
in Figure 9.
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4.5. Feature Selection

The feature importance selection algorithm was applied in order to reduce the number
of parameters used for classification, while simultaneously enhancing the classification
result. It can possibly indicate synergy among features, as well the synergy of features
with the SVM classifier, and the applied algorithm of their selection [51]. Three groups
can be distinguished among object-describing features. These are relevant, irrelevant, and
redundant. The first group contains features good at “distinguishing” between classes
and which improve classification algorithm effectiveness. Irrelevant features are those
wherein the value of which are random in each class. They usually do not lead to improved
classification effectiveness or even worsen it. The third feature group contains those in
which their roles can be taken over by other features. As part of the research, the authors
applied one of the so-called “ranking methods”, the essence of which is an attempt at
finding relevant features, taking their assessment measure into account.

Figure 10 shows a so-called “feature ranking” or, in other words, values of the Fisher
measure for individual descriptors. Descriptors describing spectral slope (C10) and crest
(C2) stand out the most, since their Fisher measure values exceed 4.5.
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Another classifier that exhibits effectiveness of 80% was developed based on five se-
lected descriptors and a linear SVM algorithm. Herein, narrowing down the number of
descriptors to two best at distinguishing between both engine types enabled obtaining
identification effectiveness of 85%, which is a small difference. A confusion matrix in the
case of using two descriptors is presented in Figure 11 below.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

authors applied one of the so-called “ranking methods”, the essence of which is an attempt 
at finding relevant features, taking their assessment measure into account. 

Figure 10 shows a so-called “feature ranking” or, in other words, values of the Fisher 
measure for individual descriptors. Descriptors describing spectral slope (C10) and crest 
(C2) stand out the most, since their Fisher measure values exceed 4.5. 

 
Figure 10. Fisher measure values for the defined descriptors (the red line shows mean value). 

Another classifier that exhibits effectiveness of 80% was developed based on five se-
lected descriptors and a linear SVM algorithm. Herein, narrowing down the number of 
descriptors to two best at distinguishing between both engine types enabled obtaining 
identification effectiveness of 85%, which is a small difference. A confusion matrix in the 
case of using two descriptors is presented in Figure 11 below. 

 
Figure 11. Validation validity matrix for two descriptors. 
Figure 11. Validation validity matrix for two descriptors.

4.6. Evaluation the Database

Wide diversity within the dataset and the unsupervised process of signal recording
brought about a situation whereby the size of the learning database matters, as it has an
impact on performance and its management methodology. In this work, we recognized
that different environmental conditions may affect such sensitive data recordings and the
final results of identification.

The research into database evaluation divided it into different learning and testing
stages so as to assess the size of database for the recognition quality. The sound recordings
were divided into five subgroups:

• 1/2 is a training set, and 1/2 is a validation set
• 3/5 is a training set, a 2/5 is a validation set
• 7/10 is a training set, a 3/10 is a validation set
• 4/5 is a training set, a 1/5 is a validation set
• 9/10 is a training set, a 1/10 is a validation set

4.7. Evaluation the Impact of Lossy Compression Sound Signal

The main objective of these experiments was to assess the impact of changing the
sound compression on the effectiveness of the solution proposed by the authors. Lossy
compression removes details irreversibly. In the MP3 files, the compression algorithm is
based on the range of human hearing, and sound that is inaudible or insignificant to the
human ear is removed from the file.
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Figure 12 below shows a summary of system operation efficiency for the different
divisions into training and test data.
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People can hear frequencies within the 20 Hz–20,000 Hz range, but the human ear is
most sensitive to a smaller range, generally given as 100 Hz to about 6 kHz. Therefore,
in theory, any quiet content in the low-end and high-end can also be removed without
a noticeable impact on the overall sound quality [55]. Unfortunately, this compression
changes the spectrum of the analyzing sound that is the base for the calculated features.
Table 6 shows mean values of extracted spectral descriptors determined by the authors
with the use of the feature extraction algorithm for the diesel engine sound recorded in
.wav and .mp3 formats.

Table 6. List of extracted audio signal features with obtained numerical results for the diesel engine.

Parameter .wav File .mp3 File

C1 1349.678 1346.303
C2 763.883 766.1
C3 0.055 0.054
C4 0.579 0.580
C5 0.025 0.041
C6 0.004 0.004
C7 18.460 18.975
C8 7636.798 7536.43
C9 3.697 3.745
C10 −3.076 × 10−9 −3.376 ×10−9

C11 2853.089 2847.529
C12 68.314 62.784

Validation validity matrix for this variant is shown in Figure 13.
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4.8. Assessing System Operation Efficiency Based on a Selected Audio Signal Type

The last experiment assumes classifier training based on signals involving only vehicle
ignition type input. To this end, Audacity software was used to manually separate the
sound of an engine running in idle speed from the signal containing its start-up. Next,
the features were extracted. The C2 C4 C6 C7 C9 C12 descriptors were chosen for classifier
training. The validation matrix is shown in Figure 14.
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5. Discussion

The research proposed by the authors focused on recognize a type of engine (petrol
or diesel), regardless of type of machine. The most important stage of this research is to
develop the architecture of the recognizing system.

The execution of this task required, above all, characterizing and recording a sound
database. The research utilized real recordings acquired in cooperating car dealerships
within Poland. The sound database recorded by the authors contains 80 various audio
signals, equally divided into that generated by diesel and petrol engines. The second
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stage of research focused on feature extraction stage, taking into account the evaluation of
specific audio signal features. Matlab software using the audioFeatureExtractor function
was utilized for this purpose. Next, the authors empirically selected the parameters that
they believed to hold the ability to distinguish between classes. To this end, the authors
employed basic statistical parameters for analysis, and executed comparative analyses
of changes in the value of a given feature in the time domain. Accordingly, eight of
12 parameters defined at the descriptor extraction stage were pre-qualified. Selected
features and different machine learning methods were then used to choose a linear SVM
classifier characterized by an effectiveness level of 90%, where the sound database was
divided in a 3:1 ratio to training and test data. We used the accuracy indicator and the
confusion matrix to evaluate the results.

Because the dataset of the experiment is limited, the cross-validation method was then
applied. An advantage of the cross-validation system is its accuracy and that it does not
employ data for testing. The conducted experiments also involved defining the number
of tests aimed necessary for assessing the solution proposed by the authors. The results
obtained using the test method showed that the classifier was characterized by the lowest
effectiveness of 83.8% for k = 2 and the highest for k = 10. Effectiveness reductions relative to
their predecessors were noted for validation steps of k = 5 and k = 7. A more detailed analysis
was subsequently conducted for two randomly chosen cases. In the first, the set was divided
into k = 5 subsets, and into k = 10 subsets in the second. Accordingly, an identification system
designed based on five-fold analysis and a linear SVM algorithm was characterized by an
effectiveness of 86.2%. In the case of a five-fold validation, we noted that petrol engines are
characterized by lower identification effectiveness (82.5%) relative to diesel engines (90%). In
the second case, which assumed a 10-fold validation, the system exhibited higher effectiveness
at a level of 88.8%. Figure 8 shows the error percentage for this system testing variant.

Another problem assumed by the authors is evaluation of the database. The diversity
in recording signals is very wide. Although there are different approaches to collecting
data for machine learning models, and it ultimately depends on the specific goals of the
project, in this particular study, the author chose to collect the data in an uncontrolled
environment to simulate real-world conditions, where the engine sound would be mixed
with other sounds and background noise. The aim was to make the model more robust
and adaptable to application in different environments and situations. An analysis of data
division into training and test indicated that the first variant assumed an equal set division
(50% of training and test data each). Eight signals out of forty were incorrectly classified,
five as petrol engine and three as diesel engine. Another classifier obtained the lowest
effectiveness of all at 75%. In this case, five petrol engines and three diesel engines were
incorrectly classified out of all 36 in the validation set. The third subgroup had a 70–30%
set ratio. The classifier developed in this proportion demonstrated the highest effectiveness
of all proposed within this diploma thesis, at a level of 91.7%. Only two signals in 24 were
misclassified and belonged to the petrol engine group. The fourth division exhibited a
similar effectiveness to the first one, amounting to 81.2%. In this case, one of the diesel
engine sounds and two of the petrol engine sounds were incorrectly classified in the test
database containing 16 sounds in total. The last classifier had the smallest validation set of
all, because it only consisted of eight of these sounds. One incorrectly classified engine in
such a small set translated to a system effectiveness of 87.5%.

The subsequent research we undertook is related to evaluating lossy sound signal.
The main objective of the experiments was to assess the impact of changing the sound
compression on the effectiveness of the solution we proposed. In undertaking this work, we
discovered that when the format of the analyzed file is changed to a lossy one such as mp3,
the obtained numerical values of extracted descriptors do not significantly differ from each
other. However, after network training under the same assumptions, we saw that system
effectiveness decreased from 90% to 80%. With regard to the test results, it can be concluded
that the format of the audio signal does not significantly affect the effectiveness of the system.
To conclude, the proposed system is independent of the format recorded audio signal.
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Another area of research that we undertook is related to the limited set of recorded
signals. Herein, we observed that deterioration in identification results was observed when
assessing system operation effectiveness based on a selected audio signal type. A system
trained on sounds of engine ignition type alone guarantees an effectiveness of only 50%. Such
a classification level is unsatisfactory since a random hit has the same probability statistically.

6. Conclusions

The objective of this research was to construct a motor vehicle engine type identifica-
tion system based on the parametric analysis of an audio signal.

The study was conducted using feature engineering techniques based on frequency
analysis for the generation of sound signal features. The discriminatory ability of feature
vectors was evaluated using different machine learning techniques. In order to test the
robustness of the proposed solution, the authors executed a number of system experimental
tests, including different work conditions for the proposed system. The study involved
five basic experiments. The first assumed training a classifier based on the entire database
of audio signals with the use of a cross-validation method. Another variant was based on
training a classifier using a database of sounds converted to the mp3 format. A further
experimental test variant assumed the application of a feature selection algorithm (Fisher
significance coefficient). The fourth experimental test variant assumed classifier training
based on signals containing only car ignition type. The last of the variants assumed
assessing identification effectiveness, taking into account data division into training and
test. The results show that our system achieved performance of 91.7% in terms of accuracy.

Most of the studies presented in the literature describe the identification of a type
of machine defined as car, bus, truck, or motorcycle [27]. The study reported by [28], in
contrast, identified the car model. The research proposed by us focused on type of engine
(petrol or diesel), regardless of machine type. This study is comparable to that of [28],
but the aim of the study is different. To our knowledge, our study is a first [34,35], so the
possibility to compare with other results is limited.

The presented material extends the findings discussed in the most comparable pa-
per [34,35]. Although we reached lower overall accuracy: 91.7%, we used in our experi-
ments a more numerous and diverse database. In [34], the system works on smaller dataset.
It identifies six different automotive engine sounds from six different vehicle makes with
two types of engine, petrol and diesel, respectively. In our dataset, we used recordings of
vehicles built by 21 different vehicle manufacturers, as well as 57 different car models. The
greater diversity in our work as compared to previous studies in the literature lies in the
greater diversity in the database as it includes the offerings of different car manufacturers as
well as different car models. This kind of approach gives good foundations for developing
a robust system that is independent of recorded signal, vehicle make, and model. In [35],
the authors investigated four different automotive engine sounds from just four different
makes of vehicle with two types of engine (V6 and V8). The results give better accuracy
probably because the vehicle type is limited, so the sound is more repeatable.

Besides, it turned out that experiments conducted with the use of changing sound
compression can give good results. With regard to the test results, it can be concluded that
the format of the audio signal does not significantly affect the effectiveness of the system.
To conclude, the proposed system is independent of the format of the recorded audio signal.

Research in this field can be continued by expanding the classes of analyzed vehicles,
e.g., trucks or motorcycles, and recording using different “acoustic signatures” for different
recording places. The results of this research can be implemented in practice in various ways.
For example, the proposed system can be integrated into intelligent transportation systems
to improve traffic management, enhance vehicle safety, and reduce environmental pollution.
The system can also be used in automotive service centers to quickly and accurately identify
engine types. What is more, our system could be used, e.g., in preventing misfuelling diesel
to petrol engines or petrol to diesel engines. This kind of system can be implemented in
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petrol stations to recognize the car based on the sound of the engine. A system that merely
identifies the vehicle visually does not provide this opportunity.

Author Contributions: Conceptualization, E.M.-Z.; data curation. E.M.-Z. and M.M.; formal analysis,
E.M.-Z. and M.M.; investigation, M.M.; methodology, E.M.-Z.; resources, M.M.; software, M.M.; validation,
M.M.; visualization, M.M.; supervision, E.M.-Z.; writing—original draft preparation, E.M.-Z.; writing—
review and editing, E.M.-Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financed/co-financed by Military University of Technology under research
project UGB 865.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and to prevent mass
dissemination of the collected data, including the sounds of vehicles recorded during the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Signal characteristics for diesel engine vehicles.

Car Model Engine Capacity [L] Signal Duration [s]
Audi A4 1.90 20

Alfa romeo 159 2.00 18
Audi A3 1.90 16
Audi A6 3.00 12
Audi A8 4.00 17

Bmw 320d 2.00 21
Bmw E46 2.00 16

Bmw Seria 1 2.00 23
Bmw X5 3.00 21

Citroen C5 2.20 15
Citroen xantia 2.10 17

Ford Focus 1.60 18
Ford Focus 1.60 10

Ford Galaxy 2.00 10
Ford Mondeo 2.00 12
Hyundai i40 1.70 14

Mazda 6 2.00 11
Mercedes 212 3.00 11
Mercedes C 2.70 13

Mercedes CLC 200 2.00 13
Mercedes s320 3.20 14

Mitsubishi Pajero 2.50 14
Opel Insignia 2.00 13
Peugeot 2008 1.40 13
Peugeot 5008 2.00 14

Peugeot Boxer 2.50 11
Renault Clio III 1.50 22
Renault Megane 2.00 24

Saab 9-3 1.90 31
Seat Leon 1.90 12

Skoda Octavia 1.90 10
Skoda Rapid 1.40 11

Toyota Avensis 2.00 11
Volkswagen Golf 1.90 12

Volkswagen Passat 2.00 10
Volkswagen Passat 2.00 11
Volkswagen Passat 1.90 11
Volkswagen Tiguan 2.00 10

Volvo c30 2.40 12
Volvo V60 2.00 12



Electronics 2023, 12, 2012 20 of 22

Table A2. Signal characteristics for petrol engine vehicles.

Car Model Engine Capacity [L] Signal Duration [s]

Audi A3 2.0 25
Audi A4 3.0 35
Audi A5 1.8 21
Audi A6 2.8 27
Bmw E46 2.0 20

Chevrolet Aveo 1.2 22
Citroen C1 1.0 23
Citroen C4 1.6 18

Citroen Picasso 1.6 19
Fiat 500 1.4 7

Fiat Panda 1.2 9
Fiat Panda 1.2 15
Fiat Panda 1.2 16
Fiat Punto 1.4 8
Ford Focus 1.6 15

Hyundai i20 1.2 23
Hyundai i20 1.4 19
Mini Cooper 1.6 9
Opel Astra 1.4 7
Opel Corsa 1.4 18

Opel Insignia 1.8 16
Opel Meriva 1.4 38
Peugeot 207 1.4 32
Peugeot 207 1.4 13
Renault Clio 1.2 13

Renault Scenic 1.6 19
Rover R75 1.8 17
Seat Altea 1.6 19
Seat Exeo 1.8 8
Seat Ibiza 1.2 27
Seat Leon 1.6 15

Skoda Fabia 1.2 6
Suzuki Swift 1.2 19
Suzuki SX4 1.6 11

Suzuki Vitara 1.4 13
Toyota Yaris 1.3 22

Volkswagen Golf 2.0 26
Volkswagen Golf 1.4 12
Volkswagen Polo 1.4 9

Volkswagen Tiguan 1.4 13
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6. Kamiński, K.A.; Dobrowolski, A.P. Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis,
and Genetic Selection of Distinctive Features. Sensors 2022, 22, 9370. [CrossRef]

7. Kabir, M.M.; Mridha, M.F.; Shin, J.; Jahan, I.; Ohi, A.Q. A Survey of Speaker Recognition: Fundamental Theories, Recognition
Methods and Opportunities. IEEE Access 2021, 9, 79236–79263. [CrossRef]

https://doi.org/10.1109/TMM.2017.2751969
https://doi.org/10.7603/s40601-014-0015-7
https://doi.org/10.1016/j.bspc.2022.104190
https://doi.org/10.24425/bpasts.2021.137347
https://doi.org/10.1109/ISDFS49300.2020.9116286
https://doi.org/10.3390/s22239370
https://doi.org/10.1109/ACCESS.2021.3084299


Electronics 2023, 12, 2012 21 of 22

8. Nogueira, A.F.R.; Oliveira, H.S.; Machado, J.J.M.; Tavares, J.M.R.S. Sound Classification and Processing of Urban Environments:
A Systematic Literature Review. Sensors 2022, 22, 8608. [CrossRef] [PubMed]

9. Huang, Z.; Liu, C.; Fei, H.; Li, W.; Yu, J.; Cao, Y. Urban sound classification based on 2-order dense convolutional network using
dual features. Appl. Acoust. 2020, 164, 107243. [CrossRef]

10. Zohaib, M.; Shun-Feng, S.; Quoc-Viet, T. Spectral images based environmental sound classification using CNN with meaningful
data augmentation. Appl. Acoust. 2021, 172, 107581. [CrossRef]

11. Zohaib, M.; Shun-Feng, S. Environmental sound classification using a regularized deep convolutional neural network with data
augmentation. Appl. Acoust. 2020, 167, 107389. [CrossRef]

12. Jahangir, R.; Teh, Y.W.; Mujtaba, G.; Alroobaea, R.; Shaikh, Z.H.; Ali, I. Convolutional neural network-based cross-corpus speech
emotion recognition with data augmentation and features fusion. Mach. Appl. 2022, 33, 41. [CrossRef]

13. Oswald, J.N.; Erbe, C.; Gannon, W.L.; Madhusudhana, S.; Thomas, J.A. Detection and Classification Methods for Animal Sounds.
In Exploring Animal Behavior Through Sound: Volume 1; Erbe, C., Thomas, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022.
[CrossRef]

14. Tuncer, T.; Akbal, E.; Dogan, S. Multileveled ternary pattern and iterative ReliefF based bird sound classification. Appl. Acoust.
2021, 176, 107866. [CrossRef]
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