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Abstract: Visual Simultaneous Localization and Mapping (VSLAM) has been a hot topic of research
since the 1990s, first based on traditional computer vision and recognition techniques and later on
deep learning models. Although the implementation of VSLAM methods is far from perfect and
complete, recent research in deep learning has yielded promising results for applications such as au-
tonomous driving and navigation, service robots, virtual and augmented reality, and pose estimation.
The pipeline of traditional VSLAM methods based on classical image processing algorithms consists
of six main steps, including initialization (data acquisition), feature extraction, feature matching, pose
estimation, map construction, and loop closure. Since 2017, deep learning has changed this approach
from individual steps to implementation as a whole. Currently, three ways are developing with
varying degrees of integration of deep learning into traditional VSLAM systems: (1) adding auxiliary
modules based on deep learning, (2) replacing the original modules of traditional VSLAM with deep
learning modules, and (3) replacing the traditional VSLAM system with end-to-end deep neural
networks. The first way is the most elaborate and includes multiple algorithms. The other two are in
the early stages of development due to complex requirements and criteria. The available datasets
with multi-modal data are also of interest. The discussed challenges, advantages, and disadvantages
underlie future VSLAM trends, guiding subsequent directions of research.
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1. Introduction

In recent decades, Simultaneous Localization and Mapping (SLAM) has been one of
the scientific areas deserving active study in various autonomous robotic systems. SLAM
involves creating or updating a map of an unknown environment and simultaneously
tracking the location of the robot in it. This approach enables the robot not only to create
a map of the travelled path, but also to accurately identify the scenes already visited.
The benefits of progressively improved VSLAM algorithms are already being used in
autonomous driving and navigation in different environments [1–3], service robots [4],
virtual and augmented reality [5,6], and pose estimation [7,8].

SLAM has been a subject of research in robotics since the 1980s, focusing on the
use of Sound Navigation and Ranging (SONAR) sensors, 2D laser scanners, and Light
Detection and Ranging (LiDAR) scanners as primary sensors. Since the 2000s, thanks
to improvements in hardware and advances in computer vision (particularly “Structure
from Motion”), the SLAM approach has become visual SLAM based on low-cost video
cameras. Since then, the use of VSLAM in real-time systems has gradually become a
reality. Thus, VSLAM refers to those SLAM systems which use cameras (monocular, stereo,
or RGB-D) as the main input sensors that capture visual information about unknown
objects and environments. VSLAM technologies can be formally represented as visual-only,
visual-inertial, or RGB-D-based. The visual-only VSLAM systems use monocular or stereo
cameras and process 2D images and are considered the most studied and cheapest systems,
despite the fact that stereo cameras are inferior in cost to monocular cameras. The main
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benefit of the stereo camera application is to provide real information about the depth of the
scene and pose in indoor and/or outdoor environments. It is currently the most researched
field in VSLAM. Thus, MonoSLAM algorithm utilized an extended Kalman filter for visual
measurement to estimate the ego-motion and the 3D coordinates of feature points in a
scene [9]. In addition to MonoSLAM, many advanced but similar algorithms have been
developed, such as parallel tracking and mapping [10], collaborative visual SLAM [11],
monocular/stereo visual ORB-SLAM [12], and robust to fast camera motions RKSLAM [13],
among others. Visual-inertial VSLAM systems provide rich information about the angular
velocity, acceleration, and the magnetic field around the devices, which allows us to
accurately assess the position of the sensors in dynamic scenes. However, a fusion of visual
data and inertial measurements is a real problem, far from its reasonable implementation
at the algorithmic and software levels. RGB-D sensors, including a monocular RGB camera
and a depth sensor, simultaneously generate a color image and a dense depth map that help
significantly in pose estimation and mapping. Thus, the RGB-D-based VSLAM architecture
is simplified. However, this approach is only suitable for indoor environments due to
the limitations of the depth sensor and requires large amounts of memory and power
consumption. Sometimes other distance sensors are used instead of RGB-D sensors, such
as SONAR sensors (for underwater UAVs), 2D laser scanners, or LiDAR scanners. In this
case, data fusion is also necessary.

VSLAM is based on the principals of Visual Odometry (VO) and loop closure and
includes six steps consisting of initialization (data acquisition), feature extraction, feature
matching, pose estimation, map construction, and loop closure. Methods for simultaneous
estimation of camera pose and scene structure from video are divided into feature-based
methods and direct methods. For a long time, feature-based methods prevailed in VO. They
include image input, feature extraction and matching, and tracking and mapping. Thus,
the recent ORB-SLAM3 system, which analyzes information captured by monocular, stereo,
and RGB-D cameras, as well as IMU (Inertial Measurement Unit) sensors, is more versatile,
accurate, and robust than previous ones [14]. Direct methods treat pose estimation as a
non-linear optimization problem, resulting in higher accuracy if the photometric calibration
of the camera has been handled well. They minimize photometric error by iteratively
optimizing the initial motion. Semi-direct methods take advantage of both approaches
to achieve higher accuracy and efficiency [15]. Initially, semi-direct methods apply the
principle of epipolar line constraint to match the features on the epipolar line. They
then minimize the re-projection error and thereby solve the problem of pose estimation.
However, direct and semi-direct methods require high-quality images and are sensitive to
photometric changes.

The first major part of SLAM is VO, which estimates the pose of an agent (vehicle,
human, or robot) using video sequences acquired from one or multiple cameras. The core
of VO is camera pose estimation, the so-called real-time ego-motion estimation. Another
task of VO is to track the position of moving agents based on a captured video sequence.
VO is an inexpensive and alternative odometry technique compared to local techniques
such as wheel odometry, SONAR localization systems, LiDAR sensors, Inertial Navigation
Systems (INS), and global techniques such as GPS/GNSS or the low-cost Ultra-WideBand
(UWB) positioning technology. At the same time, in practice, conventional video cameras
sometimes cannot provide reliable data with poor rotation, low parallax movement, or
complex illumination. Reliability can be improved by integrating information from multiple
devices [16,17]. Another way is to use RGB-D sensors applied not only for analysis of
the static, but also the dynamic environment [18]. There are numerous VSLAM methods
focused on the application on a single platform. Since the 2010s, applications of a team
of agents (drones, robots, etc.) have been of great of interest [11]. Such systems are called
collaborative VSLAMs and have recently attracted many researchers.
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Map construction followed by refinement and loop closure is the second major part
of SLAM. Map construction is an essential requirement for locating a mobile robot or
an unmanned autonomous vehicle in the indoor/outdoor environment to perform path
planning tasks. For further optimization and recognition of previously visited places, a loop
closure system is used. Thus, identical scenes can be easily recognized by the mobile agent.

We can mention three ways to integrate deep learning models into traditional VS-
LAM systems:

1. Adding auxiliary modules based on deep learning.
2. Replacing the original modules of a traditional VSLAM system with deep learn-

ing modules.
3. Replacing the traditional VSLAM system with end-to-end deep neural networks.

Since 2017, many outstanding surveys have been published in the field of VSLAM.
Some of them are presented in Table 1. However, there are not many surveys in the field of
VSLAM that include a partial discussion of deep learning. Moreover, VSLAM deep learning
applications are discussed only in [19], where 42% of references were published in the last
5 years. Moreover, at present, virtual and augmented reality methods do not explicitly use
deep learning models. Therefore, a detailed discussion of the latest deep learning models
for VSLAM will fill a gap in systematic surveys and provoke further research.

Table 1. A summary of recent surveys in the field of VSLAM.

Title and Reference Year Deep Learning

Keyframe-based monocular SLAM: design, survey, and future directions [20] 2017 No

Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality [21] 2019 No

Collaborative visual SLAM for multiple agents: A brief survey [22] 2019 No

A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data [23] 2021 Yes

SLAM; definition and evolution [24] 2021 Yes

Role of deep learning in loop closure detection for visual and LiDAR SLAM: A survey [25] 2021 Yes

A review of visual SLAM methods for autonomous driving vehicles [26] 2022 No

Advances in visual simultaneous localisation and mapping techniques for autonomous vehicles:
A review [27] 2022 Yes

A survey of state-of-the-art on visual SLAM [28] 2022 Yes

Visual SLAM algorithms and their application for AR, mapping, localization and wayfinding [29] 2022 No

A comprehensive survey of visual SLAM algorithms [30] 2022 Yes

An overview on visual SLAM: From tradition to semantic [31] 2022 Yes

Overview of deep learning application on visual SLAM [19] 2022 Yes

Perception and navigation in autonomous systems in the era of learning: A survey [32] 2022 Yes

Approaches, challenges, and applications for deep visual odometry: Toward complicated and
emerging areas [33] 2022 Yes

In-depth review of augmented reality: Tracking technologies, development tools, AR
displays, collaborative AR, and security concerns [34] 2023 No

Augmented reality-based guidance in product assembly and maintenance/repair
perspective: A state of the art review on challenges and opportunities [35] 2023 No

Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil
engineering [36] 2023 Yes
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The contribution of this survey is as follows.

1. A brief description of historical development and some problem statements of deep-
based VSLAM tasks are presented. Although the historical evaluation of SLAM
systems is divided into two main periods: the past (1985–1999) and the present
(2001–2023), we introduce a different interpretation in terms of the development of
deep models—since 2017.

2. We provide a new and complete classification and overview of the recent VSLAM
methods based on three ways to integrate deep learning into traditional VSLAM systems:
(1) adding auxiliary modules based on deep learning, (2) replacing the original modules
of a traditional VSLAM system with deep learning modules, and (3) replacing the
traditional VSLAM system with end-to-end deep neural networks. These three ways
have different degrees of elaborateness due to a short period of development.

3. Description of multi-modal VSLAM datasets suitable for supervised training and test-
ing will help to select the most suitable datasets in terms of intra-cross and inter-cross
validation. Most VSLAM datasets use real data obtained from multi-modal sensors.
However, several datasets include simulation data using third party software tools.

4. Critical analysis of advantages and disadvantages provides further research on the
integration of deep learning into VSLAM methods applied in many practical fields.

Structure diagram for the rest of the survey is depicted in Figure 1.
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The rest of this survey is organized as follows. Some examples of problem formulations
of VSLAM based on deep learning are discussed in Section 2. Deep learning models for
VSLAM are presented in Section 3. Section 4 includes a brief technical summary of VSLAM
datasets. Section 5 provides discussion and future trends. Section 6 concludes the survey.

2. Problem Formulation of VSLAM Based on Deep Learning

VSLAM is a rapidly evolving branch of SLAM based on computer vision paradigms.
VSLAM components cover all the challenges of traditional SLAM and include data asso-
ciation (feature extraction, feature tracking, and motion tracking), pose estimation, map
construction, map refinement, and loop closure. The algorithmic interpretation of this
sequence is highly dependent on the types of SLAM sensors such as monocular, stereo, or
RGB-D. Monocular SLAM methods were the earliest methods that estimated the location
of objects in the environment, indoor or outdoor, as well as the position of the camera by
direct (pixel-based), feature-based, or semi-direct (hybrid) methods. The basic stereo SLAM
algorithms produce a dense colored point cloud that is more accurate than standard LiDAR
SLAM algorithms. RGB-D SLAM methods are superior to traditional VSLAM methods,
providing more depth range. They extract features using both 2D and 3D measurements,
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improving interaction between frames. However, there are long distance limitations caused
by the physical nature of RGB-D sensors.

Several problem statements in the traditional formulation of the VSLAM problem can
be found in the literature, for example, feature extraction and matching [27], Extended
Kalman Filter (EKF)-SLAM and its modifications [37], pose estimation of the omnidirec-
tional robot [38,39], loop closure [40], etc. Due to the fact that deep learning does not
support traditional computing paradigms, the formulation of VSLAM problems based
on deep learning has fundamentally changed. Moreover, deep learning techniques have
opened up new possibilities for VSLAM solutions, including depth prediction [41], object
detection [42], and semantic/instance segmentation [43]. Let us consider some problem
formulations for adding auxiliary modules based on deep learning (Example 1), replac-
ing the original modules of a traditional VSLAM system with deep learning modules
(Example 2) and replacing the traditional VSLAM system with end-to-end deep neural
networks (Example 3).

Example 1. Feature-based VSLAM systems use keypoints and descriptors to find a match between
two consecutive frames. Many hand-crafted features were offered in the 2010s. A real-time VSLAM
method called ORB-SLAM was presented in [12]. This method was based on the ORB (Oriented
FAST and Rotated BRIEF) keypoint detector, which measures the orientation of a corner using the
intensities of its surroundings. The main advantages of the ORB detector are achieving the highest
feature extraction rate and a certain invariance to rotation and scale, which made it possible to
develop the SOTA algorithm based on hand-crafted features in SLAM—ORB-SLAM2 [44]. The
ORB-SLAM2 system includes three modes consisting of monocular, stereo, and RGB-D. Deep
learning has fundamentally changed the approach to feature extraction. Thus, auxiliary modules
based on deep learning began to develop.

Zhu et al. [45] focused on improving the quality of feature matching for a SLAM
interpolation engine using a deep network. They estimated the re-projection error using
the 3D map point Pi = [Xi, Yi, Zi]

T ∈ R3 in world coordinates relative to a keypoint
pt−1 ∈ R2 in the previous frame and a matching keypoint p′t ∈ R2 in the current frame.
The transformation matrix

Mt =

[
R T
0 1

]
(1)

recalculated the world coordinates to the current camera coordinates. This transformation
matrix was the target matrix for optimization. Here, R is the rotation matrix and T is the
translation vector. pt denotes the coordinates of projecting P′ = MtPi (the current camera
coordinate) and is calculated as

pt = K Mt Pi (2)

where K ∈ R3×3 is the camera intrinsic parameters matrix.
However, usually pt–1 and p’

t do not represent the same visual object, since the
number of features can be limited. A better feature correspondence means a smaller
distance between p’

t and ugt, where ugt is the ground truth of pt–1 in the current frame.
Estimating p’

t can be achieved by n feature matching to approximate its ground truth ugt:

T∗ = argmin
Mt

1
2

n

∑
i=1

∥∥∥ugt + ∆u− pt

∥∥∥, (3)

where ∆u is the error between p′t and its ground truth ugt.
The proposed InterpolationSLAM network was trained to optimize Equation (3). Such

manipulations with keypoints made it possible to build one interpolated frame between
the previous and current frames to obtain more accurate velocity estimates.

Example 2. One promising approach is scene reconstruction and ego-motion estimation from a
sequence of unstructured frames. The unsupervised neural network proposed in [46] was trained to
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match the spatio-temporal 3D dependencies of unlabeled monocular frames, minimizing photometric
loss and depth distortion loss. Unsupervised learning does not require high quality ground truth
labels in depth images and camera poses. At each step, initial depth Dt, as well as camera rotation
Rt and translation Tt, are estimated by a pair of consecutive frames It, It+1. A 3D matching model is
then designed, where the depth projects onto a point cloud, and an optical flow corresponding to the
camera pose is generated. To this end, the model minimized the depth warped loss LD, considering
forward-backward consistency constraints:

LD = ∑
x,y

∥∥∥Dt(x, y)− D̂t
(
x′, y′

)∥∥∥
2
, (4)

where Dt(x, y) is the inferred depth value from frame pair It → It+1 at pixel (x, y) and
D̂t(x′, y′) is the warped depth value from frame pair It+1 → It at pixel (x′, y′). Pixel
coordinates (x′, y′) are calculated as follows:

x′ = x + Ut(x, y), y′ = y + Vt(x, y), (5)

where Ut(x, y) and Vt(x, y) are the optical flow between the two consecutive frames It and
It+1 at pixel (x, y) along OX and OY axes, respectively.

A depth smoothness loss LS is calculated using image gradients to preserve sharp
image details:

LS = ∑
x,y
∇Dt(x, y) ·

(
e−|∇(I(x,y))|

)T
, (6)

where ∇ is the differential operator, |·| is the element-wise absolute value, and T is the
transpose of weighted image gradient.

The 3D point cloud in the scene Pt = (Xt, Yt, Zt) is created using a pinhole cam-
era model:

Pt =

 Xt
Yt
Zt

 =
Dt

f

 xt
w − cx
yt
h − cy

f

, (7)

where xt and yt are the column and row pixel coordinates in frame It, respectively, w
and h are the numbers of pixels in column and row, respectively, while cx, cy, and f are
the camera intrinsic parameters, which are taken from the camera documentation or are
assigned empirically.

It should be noted that during 3D reconstruction tasks from the point clouds using a
neural network, holes may appear. The problem of repairing holes is solved by generating
hole regions within the boundaries of triangle patch.

The pinhole camera model in frame It+1 is calculated through rotation and translation
in frame It:

Pt+1 = RtPt + Tt (8)

and then projects a 3D point onto the image plane using the camera intrinsic parameters.
The corresponding 3D point Pt+1 = (Xt+1, Yt+1, Zt+1) in frame It+1 is projected onto the

image plane as a row and column position (xt+1, yt+1) using Equation (7). The rigid optical
flow is calculated by simple subtraction of pixels, and the virtual frame method was used
to estimate the optical flow of moving visual objects (so called non-rigid optical flow).

For estimating ego-motion, a pose sub-network, into which the depth and monocular
images are fed, is trained using a photometric loss Lph based on the structural similarity
index SSIM:

Lt
ph = η

1−SSIM(It ,I′ t)
2 + (1− η)‖It − I′t‖2

Lt+1
ph = η

1−SSIM(It+1,I′ t+1)
2 + (1− η)‖It+1 − I′t+1‖2

(9)

where η is assumed to be 0.80 by cross validation while I′t and I′t+1 are the synthesized
frames from It and It+1 frames, respectively, using 3D rotation expressions:
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Rx
t (α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 Ry
t (β) =

 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

 Rz
t (γ) =

1 0 0
0 cosγ − sinγ

0 sinγ cosγ

 (10)

where α, β, and γ are the angles of rotation about the OX, OY, and OZ axes, respectively.
The two fully connected layers predict a set of parameters including translation parameters
Tt and sinα, sinβ and sinγ. The last three parameters must be in the interval [–1, 1], for
when the Softplus activation function is applied.

Example 3. In [47], a self-supervised monocular VO method was proposed. A deep network called
PU-PoseNet evaluated the prediction-update poses of visual objects. It should be noted that the
end-to-end self-supervised monocular VO framework is usually based on the idea of Kalman filter
prediction-update and can reconstruct the original image using the outputs of the networks. Such
networks are trained using photometric error. First, the PU-PoseNet network estimates the relative
pose between two consecutive frames It–1 and It. Second, the DepthNet network predicts the depth
map Dt of the current frame. Third, the outputs of PU-PoseNet and DepthNet networks are used for
reconstructing the current frame It from the previous frame It–1. The overall VO network is trained
using both the reconstructed image from PU-PoseNet and the depth map from DepthNet according
to the loss function:

L = Lp + λdLd + LVAE + λsLs, (11)

where Lp is the photometric loss considering weighted movement based on long-term pose
consistency, Ld is the depth consistency constraint loss, LVAE is the VAE (Variatonal Auto-
Encoder) loss, Ls is the depth smoothness loss, and λd and λs are the weighted coefficients
for the depth consistency constraint loss and the depth smoothness loss, respectively.

In this case, the photometric loss function has the form:

Lp
(

It, Ît
)
=

α0

2
(
1− SSIM

(
It, Ît

))
+ α1

∥∥∥It − Ît

∥∥∥
1
+ α2

∥∥∥It − Ît

∥∥∥
2
, (12)

where SSIM
(

It, Ît
)

is the structured similarity between the current frame It and the recon-
structed frame Ît while α0, α1, and α2 are hyper-parameters.

The depth consistency error depends on the depth of moving objects and the camera
movement. For the static objects in the scene, the depth consistency error, similar to the
photometric error, is calculated using the Euclidean transformation applied to the sampled
frame. The VAE loss determines the noises robustness of the VO by assuming that the
random vector satisfies a multivariate Gaussian distribution. The depth smoothness loss
improves the representation of geometric details in the scene and is defined as follows:

Ls = |∂xD∗t |e−|∂x It | +
∣∣∂yD∗t

∣∣e−|∂y It |, (13)

where D∗t is the disparity and ∂ is the partial derivative.
To eliminate occlusions, the mask can be constructed to remove data about moving or

occluded objects. The estimated depth values of static objects in the scene may be infinite
thus reducing the accuracy of pose estimation. To solve this problem, a mask of stationary
pixels is automatically created to exclude stationary pixels from the training process of the
VO network.

We have given just a few examples of the VSLAM problem formulation using deep
learning models. However, one can see a specific approach to the use of deep neural
networks in VSLAM tasks.
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3. Deep Learning Models for Visual SLAM

The VSLAM framework includes many fundamental topics that are traditionally
considered to be different computer vision tasks. The traditional geometric methods can be
divided into filtering-based VSLAM methods, which were widely studied initially due to
their low computational cost, and optimization-based VSLAM methods showing higher
accuracy. Although traditional geometric VSLAM methods have achieved amazing results
in environmental mapping and localization, they have several disadvantages related to
sensitivity to changing lighting/weather/seasonal conditions, scale non-invariance, and so
on. Some of these shortcomings have been overcome with deep learning paradigms, but
not all.

The active use of deep learning and reinforcement learning in VSLAM can be traced
back to the mid-2010s. This work was carried out in three main areas: the development of
auxiliary deep-based modules, the development of original deep learning modules, and
the construction of end-to-end deep neural networks. These main directions are considered
in Sections 3.1–3.3, respectively.

3.1. Auxiliary Modules Based on Deep Learning

Table 2 provides a summary of the recent auxiliary modules based on deep learning
since 2018. The information is sorted by the “Main Subject” attribute including feature
extraction, semantic segmentation, pose estimation, map construction, and loop closure
and the “Year” attribute. This field in deep learning for VSLAM is most numerous. As
can be seen from Table 2, most deep learning models use a supervised (“SP”) learning
strategy, denoted by a “+” sign. The unsupervised learning strategy is labeled as “US”. The
description of the datasets is presented in Section 4.

Hereinafter, a brief discussion of the publications presented in Table 2 is given in terms
of deep learning paradigms. Please note that sometimes the authors do not specify the title
of their deep neural models.

Feature extraction
Feng et al. [48] developed an end-to-end deep network called 2D3D-MatchNet for

jointly matching descriptors based on 2D and 3D keypoints extracted from an image and a
point cloud. The main idea was to use LiDAR data to build more accurate 3D reference
maps for pose estimation. 2D3D-MatchNet had a triplet-like deep network architecture
that evaluated the similarity between a given pair of image patches and the local point
cloud volume. Image patches centered on the 2D image keypoints were fed into one of
the branches based on the VGG-16 model. The output was a descriptor of the 2D image
keypoints. The other two branches with shared weights learned the descriptor of the 3D
point cloud keypoints. The positive and negative local volume point clouds were fed
into these branches. The network was trained using the triplet loss function estimated
by a Euclidian metric. The pose of the camera was computed from the supposed set of
2D-3D correspondences. The authors created a dataset with a huge collection of 2D-3D
image patches with 3D point cloud volume correspondences called the Oxford 2D-3D
Patches dataset.

Table 2. A summary of recent auxiliary modules based on deep learning.

Method Year Main Subject Data
Learning Strategy

Dataset
SP US

2D3D-MatchNet
[48] 2019 Feature

extraction
Monocular,
LiDAR data + Oxford 2D-3D Patches

Dataset

SP-Flow [49] 2020 Feature
extraction

Monocular,
Stereo, Depth + KITTI Visual Odometry,

TUM RGB-D

LIFT-SLAM [50] 2021 Feature
extraction

Monocular,
Intertial data + KITTI Visual Odometry,

EuRoc MAV
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Table 2. Cont.

Method Year Main Subject Data
Learning Strategy

Dataset
SP US

[51] 2018 Semantic
segmentation Monocular + CARLA simulator

[52] 2019 Semantic
segmentation Monocular + KITTI Visual Odometry,

TUM-mono

ObjectFusion [53] 2019 Semantic
segmentation

Monocular,
Depth + Own dataset

Deep SAFT [54] 2020 Semantic
segmentation Monocular + TUM RGB-D, ICL-NUIM

EF-Razor [55] 2020 Semantic
segmentation

Monocular,
Depth + TUM RGB-D

RoomSLAM [56] 2020 Semantic
segmentation Monocular + MIT Stata Center, TUM

RGB-D,

USS-SLAM [57] 2020 Semantic
segmentation Monocular + Pascal VOC, SBD, COCO

[58] 2022 Semantic
segmentation

Monocular,
Depth +

Virtual KITTI 2, KITTI
Visual Odometry,

Extended CMU Seasons,
RobotCar Seasons

[59] 2020 Semantic
segmentation

Monocular,
Inetrtial + ADVIO

[60] 2022 Semantic
segmentation Monocular TUM RGB-D

[45] 2022 Pose estimation Monocular +
KITTI Visual Odometry,

TUM RGB-D, own
dataset

[46] 2022 Pose estimation Monocular + KITTI Visual Odometry

ObjectFusion [61] 2022 Pose estimation Monocular,
Depth + SceneNet RGB-D,

ScanNet

Cowan-GGR [62] 2022 Pose estimation Monocular + KITTI Visual Odometry,
MidAir, Synthetic images

TransPoseNet [63] 2023 Pose estimation Monocular,
Depth + RGB-D 7-Scenes

ORGPoseNet,
ORGMapNet [8] 2023 Pose estimation Monocular + RGB-D 7-Scenes, RIO10,

Oxford RobotCar

LKN [64] 2019 Map
construction Monocular + KITTI Visual Odometry,

ApolloScape

DRM-SLAM [65] 2020 Map
construction

Monocular,
Depth + NYU RGB-D V2, TUM

RGB-D, ICL-NUIM

Mask-RCNN [66] 2020 Map
construction Monocular + Own dataset

[3] 2021 Map
construction Stereo + Own agricultural dataset

[67] 2020 Loop closure Monocular + +
City Centre, KITTI Visual

Odometry, Gardens
Point Walking

Triplet Loss [68] 2021 Loop closure Monocular + TUM2, City Centre
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Table 2. Cont.

Method Year Main Subject Data
Learning Strategy

Dataset
SP US

[69] 2022 Loop closure Monocular + KITTI Visual Odometry,
Oxford RobotCar

PlaceNet [70] 2023 Loop closure Monocular + CityScape, subset of
ADE20K

An approach suggested by Qin et al. [49] can be connected to feature-based methods of
VO. The authors developed a keypoint extraction network called SP-Flow, which combined
a self-supervised framework and the Lucas–Kanade (LK) optical flow algorithm. The ORB
feature extractor was replaced with SP-Flow, which was easy to train and, at that time, did
not require labeled images for network training. Optical flow was used to match feature
points. The SP-Flow network involved six conventional convolution layers, a middle
convolution layer, and a pixel shuffle layer. The output represented a probability map with
keypoints extracted. The originality is a progressive training process that consists of three
steps: keypoint pre-training, keypoint self-labeling, and joint training. A similar approach
to detecting and matching keypoints in the underwater environment has been demonstrated
in [71]. For this, a very simple network architecture such as LeNet-5 was used.

Bruno and Colombini [50] proposed to use the Learned Invariant Feature Transform
(LIFT) module [72] in the traditional VSLAM concept using ORB-SLAM. The network ar-
chitecture included three main CNN-based modules called Detector, Orientation Estimator,
and Descriptor. The network processed image patches. Since the original LIFT was trained
on photo-tourism datasets, the authors retrained it on VO datasets.

Semantic segmentation
The main VSLAM feature-based methods use rich image features and robust descrip-

tors to match feature correspondences in different images or frames. However, such fixed
feature presentation suffers from a performance penalty in environments with low-textured
regions, low-structured areas, or motion blur. Deep learning models do not need hand-
crafted feature extraction. Thus, the traditional VSLAM task relative to feature extraction
has been transformed into semantic segmentation.

Kaneko et al. [51] combined the results of VSLAM and semantic segmentation using
the DeepLab v2 model in order to improve VSLAM. The improvement concerned the
removal of feature points of dynamic objects; in other words, the authors proposed to
select only reliable correspondences of stationary objects. The system was trained on scenes
of an urban environment with numerous vehicles, pedestrians, etc. using the CARLA
simulator [73]. The authors empirically found that the “Car” class (moving objects) and the
“Sky” class (distant area) worsened the performance of VSLAM. Thus, a mask based on
the semantic segmentation of these areas did not allow processing feature points in these
masked areas.

The Faster R-CNN model with semantic filtering was applied to solve the outlier
problem in RANSAC (RANdom SAmple Consensus) based on F-matrix calculations [52].
Instead of feature points, stable semantic regions were extracted from the two images
in order to increase the accuracy of the RANSAC method. Such a semantic filter was
implemented in the ORB-SLAM system.

The original problem statement was given in [53], when both 3D detection and se-
mantic segmentation were performed by CNN for general object detection, and then the
SLAM system improved these results. First, CNN detected 2D objects in frames and built a
local target map. Second, the local target map was fused with the SLAM results in order to
update the global target map as a 3D surfel model (surfels are simple surface elements).
Third, the global target map was projected in the current 2D frame. Modified RANSAC
was used to remove the outliers. The designed system included three main components: a
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CNN-based object detection module (Faster R-CNN), a surfel-based SLAM module, and a
Fusion-Update module.

Xu at al. [54] proposed an online Scene Adaptive Feature Transform (SAFT) module
called Deep-SAFT to replace the corresponding feature extraction module in the SLAM
system, such as ORB-SLAM2. A learning-based descriptor was implemented in the Siamese
network followed by the decision network. The grayscale image patches are fed into the
two Siamese branches that extract two 256-dimensional descriptors while the next decision
network computes their similarity score. The Deep-SAFT module was embedded into
the ORB-SLAM2 (RGB-D) system, providing the threads for modified tracking and online
learning, plus additional ones such as local mapping and loop closure used in ORB-SLAM2
with minor enhancements.

An effective method for processing the edge-features in SLAM called Edge-Feature
Razor (EF-Razor) was proposed in [55]. YOLOv3 [28] was used to accurately identify
the position of the object. At first, all edge-features detected by YOLOv3 are considered
unstable. EF-Razor then implements stricter criteria for keypoint pairs, removing unstable
ones. Thus, EF-Razor can work in cases where an object is occasionally lost.

RoomSLAM presented in [56] was built on traditional VSLAM back-end optimization,
including block of measurements, front-end part with object detector, wall detector, robot
pose prediction, and room detection/creation, as well as data association and back-end
part with sub-graph (room) optimization and loop closure detection/correction. Deep
learning has only been used for object detection in the form of a one-stage YOLOv3 detector
pre-trained on the COCO dataset. RoomSLAM was evaluated with two datasets: the TUM
RGBD dataset and the MIT Stata Center dataset.

Jin et al. [57] proposed a semantic SLAM framework with Unsupervised Semantic
Segmentation (USS-SLAM) in dynamic environments. The USS-SLAM framework ran four
threads in parallel: tracking thread, local mapping thread, loop closing thread, and semantic
map generation thread. The tracking thread based on the ORB-SLAM2 system filtered
out feature points belonging to dynamic objects, combining a semantic segmentation
model with a multi-view geometry method. To improve the performance of semantic
segmentation, an unsupervised adversarial learning method was used. It should be noted
that the main advantage of unsupervised learning is the application of unlabeled per-pixel
ground truths. Moreover, these authors suggested adversarial transfer learning in the
multi-level feature spaces to transfer more information at different levels of the semantic
segmentation model. Keyframes were used as input data.

A long-term visual localization method under changing environments was proposed
in [58]. This method used semantic segmentation to create an invariant scene representation.
Additional deep information made it possible to clarify the difference in appearance
between images due to environmental changes. The authors also used the automatic
synthesis dataset to reduce computational costs in building the depth maps and specifying
semantic labels in a real scene. The trained model had significant generalization ability
due to domain adaptation strategy. The model was trained on the vKITTI2 and KITTI VO
datasets and then tested on the Extended CMU Seasons and RobotCar Seasons datasets
with better results than other SOTA visual localization models.

Zhao et al. [59] proposed a real-time semantic visual-inertial SLAM system for dynamic
environments. This system utilized the pixel-wise results of semantic segmentation based
on DeepLabv3+ [74]. A monocular Visual-Inertial System (VINS) in combination with RGB
sequences made it possible to achieve real-time trajectory estimation. Feature tracking
and extraction modules have been integrated into the front-end of the developed SLAM
system. For experiments, the authors used the ADVIO dataset containing dynamic indoor
and outdoor scenes.

The same idea with using ORB-SLAM2 and a parallel semantic thread based on the
lightweight YOLOv5 detector in a dynamic environment was developed in [60]. For the
tracking thread of static feature points, the optimization of the homography matrix with the



Electronics 2023, 12, 2006 12 of 29

removal of noise points was implemented using the RANSAC algorithm. The optimized
optical flow mask made it possible to remove dynamic characteristic points.

Pose estimation
Zhu et al. [45] presented an interpolation network in order to improve the performance

of feature-based VSLAM systems. Both hand-crafted and deep learning features were
verified. The authors integrated their interpolation network into the ORB-SLAM2, SP-
SLAM [75], and DSO (Direct Sparse Odometry) [76] frameworks. Since the interpolation
network slows down the pose transformation, such an approach can be recommended for
a better initial pose estimation based on the assumption of constant velocity.

Song et al. [46] proposed a multi-task approach for estimating optical flow, pose,
and scene depth based on spatio–temporal 3D dependencies matching. They designed
sub-network models for these tasks using warped depth maps and frames. To estimate
object motion and ego-motion, a self-supervised iteration model was also developed, in
which rigid flow was optimally converted to optical flow using the virtual frame method,
taking into account dynamic regions.

Zou et al. [61] developed the ObjectFusion system, which estimated the camera pose
in each frame and incrementally built up 3D surface reconstructions of object instances in a
scene. A typical encoder-decoder CNN created instance segmentation masks using RGB-D
frame. The distance value of the surface points (depth) and the projection silhouette were
used for the object shape and pose inference based on the ResNet50 model. The camera
pose was then estimated using hybrid camera tracking based on both the deep implicit
object representation and sparsely sampled map points. The SceneNet RGB-D dataset and
the ScanNet dataset were used for training.

In order to overcome the well-known challenges of dynamic environment, limitations
of aerial datasets for training, and embedded hardware constraints, Mumuni et al. [62]
proposed a confidence-weighted adaptive network with geometric-guided refinement
called Cowan-GGR. They designed and tested a lightweight real-time CNN for the UAV
system, which included three deep models. DepthNet estimated the depth of the scene
using a single monocular image. At the same time, EgoMNet and OFNet predicted the
camera pose and optical flow, respectively, using two adjacent frames.

Li et al. [63] developed a fast system for indoor localization under low illumination or
night conditions. The processing consisted of four steps, including initial pose estimation,
search of referenced Point ClouDs (PCDs), point cloud generation based on keypoints,
and geometry alignment using Iterated Closest Points (ICP). The proposed TransPoseNet
used visual and depth images to initialize the pose. Pose initialization and pose refinement
were performed using deep learning pose regression and keypoint geometry alignment,
respectively. The proposed TransPoseNet jointly performed self-supervised depth mapping
and transformer-based pose regression. In other words, Transformer and CNN were
combined into a single neural network for pose regression. This architecture made it
possible to extract both local and global features in depth images. For pose refinement, a
method based on the ICP algorithm was developed, which included three steps: sub-map
selection, ICP-based geometry alignment, and pose refinement across multiple results.
The authors empirically showed that their method outperforms the traditional keypoints
detectors such as SIFT and SURF using the 7-Scenes dataset, which contains a collection of
RGB-D frames.

An Object Relation Graph (ORG) has been proposed in [8]. ORG incorporated deep
multi-layer GNNs to exploit the semantic connections and relative spatial clues of the
objects. First, the Fully Convolutional One-Stage (FCOS) network [77] detected the objects
of interest and labeled them with bounding boxes. Second, the detected objects and the
corresponding features were integrated with ORG. A four-layer GNN structure extracted
multi-level object features. Edges based on the updated features were dynamically built
in each GNN layer and then concatenated and fed into the fully connected layer. The
developed ORG module was embedded into PoseNet [78] and MapNet [79]. The resulting



Electronics 2023, 12, 2006 13 of 29

networks called ORGPoseNet and ORGMapNet were tested on several datasets including
7-Scenes, RIO10, and Oxford RobotCar.

Map construction
Although the monocular VSLAM methods can accurately track ego-motion and cam-

era poses, the constructed 3D maps are extremely sparse. Even the stereo matching
application fails in the textureless regions of raw frames.

Zhao et al. [64] proposed an ego-motion estimation system through current measure-
ments, suitable for building 3D maps in urban environments. They designed a monoc-
ular VO system based on a hybrid Learning Kalman Network (LKN). On the one hand,
this model demonstrated non-linearity. The learning observation network included the
FlowNet2 model as an optical flow network and a network for ego-motion estimation.
On the other hand, the Kalman probabilistic mechanism using LSTM (Long-Short Term
Memory) cells allowed them to update the state. LKN provided powerful constraints for tra-
jectory filtering in the spatio-temporal domain. The LKN-VO system has been successfully
integrated with dense 3D mapping.

In [65], a dense reconstruction method was developed using sparse depth samples
and predicted dense depth maps. The ORB-SLAM model generated sparse depth samples,
while the CNN model created depth maps. The ResNet-101 model was chosen as the
backbone with some modifications. Keyframes in the form of single-view color images
were fed to the inputs of ResNet-101. Due to the fact that the sparse depth map created
by ORB-SLAM and the dense depth map obtained from CNN were not on the same scale,
a robust RANSAC-based least square method was employed to determine the optimal
scale factor. However, the depth estimation module and the depth fusion module were
implemented separately, not as an end-to-end framework.

In [66], a Mask Regional CNN (Mask RCNN) model, enhanced with a feature pyramid
network, improved a 3D semantic map of an indoor environment using keyframes. The
authors created their own dataset with 21 types of objects commonly found in laboratory
and home scenes and applied data augmentation.

Some specific tasks, such as large-scale agricultural tasks, are not solved only by
the basic SLAM application. Thus, the main contribution of [3] was the development
of a global mapping framework suitable for fruit picking tasks based on stereo vision
and large-scale SLAM methods. For this purpose, the EfficientDet-D3 network [80] was
applied, providing progress in orchard picking tasks in various environmental conditions
and limited computational costs.

Loop closure
It is well-known that scene recognition allows a robot to navigate in an already visited

scene. The recognition of such visited scenes is carried out by the loop closure detection
module, which performs self-localization and reduces the drift in the map due to the
movement of the robot.

In [67], one deep neural network accelerated loop closure detection, while another
deep neural network detected moving objects such as pedestrians, vehicles, bikes, animals,
etc. to eliminate their influence on loop closure detection. The proposed system for
loop closure detection used a super dictionary and deep learning features extracted in
parallel streams.

The framework of triplet loss based metric learning for a SLAM system was proposed
in [68]. In this study, the ResNet_V1_50 has been introduced to make the feature vector
more expressive. Keyframes were converted to feature vectors and their similarity was
calculated using Euclidean distance. Feature vectors were utilized to determine if a closed
loop was forming.

Duan et al. [69] considered the loop closure detection problem in a special prob-
lem statement. As is well-known, loop closure detection involves two steps: matching
keyframes in the current scene and searching for a transformation between keyframes for
the correct trajectory. The trajectory correction is then usually achieved by pose graph
optimization. The authors embedded keyframe descriptors in the pose graphs in such
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a way that each node of the pose graph was a keyframe with 6-DoF pose attributes and
an encoded image. Thus, the local map based on the pose graph has become a sparse
image. Deep Feature Matching (DFM) [81] was used to solve the two steps mentioned
above simultaneously on a large data scale. The proposed method was evaluated on the
KITTI dataset and the Oxford RobotCar dataset.

Osman et al. [70] developed a plug-and-play model called PlaceNet that detects loop
closure. The main idea was to learn the multi-scale deep auto-encoder network in a way
that avoids tracking dynamic objects. The introduced PlaceNet had a U-Net architecture
trained on scaled input images. The CityScapes dataset and a subset of the ADE20K dataset
were used for training, while the City Center dataset, the KITTI vision benchmark suite, the
Nordland dataset, the Gardens Point (GP) dataset, and TUM-SLAM dataset were applied
for testing the designed model.

3.2. Deep Learning Modules

Another way is to replace the original modules of a traditional VSLAM system with
deep learning modules. A summary of several methods, not numerous, is shown in Table 3.
The acronyms “SP” and “US” stand supervised and unsupervised learning, respectively.
The learning strategy used is indicated by a “+” sign.

Table 3. A summary of recent original deep learning modules.

Method Year Main Subject Data
Learning Strategy

Dataset
SP US

[82] 2017 Camera
relocalization Monocular + RGB-D 7-Scenes

DistanceNet [83] 2019 Distance estimation Monocular + KITTI Visual
Odometry

DDL-SLAM [84] 2020
Object segmentation,

Background
inpainting

Monocular,
Depth + TUM RGB-D, PASCAL

VOC

PSPNet-SLAM [85] 2020 Object segmentation Monocular,
Depth + TUM RGB-D

[86] 2022 Path planning Monocular + Own dataset

DEM [87] 2020 Scene reconstruction Monocular,
Depth + NYU-Depth-v2, KITTI

Visual Odometry

Wu et al. [82] solved the problem of camera relocalization with a single monocular im-
age using CNNs. To avoid problems with periodicity of angle values, the authors used the
Euler method based on the 6D orientation vector of a rigid body. Data augmentation helped
to reduce the sparsity of poses during training. Finally, the authors developed and tested
the BranchNet architecture with the idea that the orientation and translation vectors were
predicted by different branches compared to a single branch of the PoseNet architecture.

Kreuzig et al. [83] proposed an end-to-end many-to-one traveled distance estimator
based on CNN and Recurrent Neural Network (RNN). The developed DistanceNet esti-
mated the traveled distance of the ego-vehicle between the first and last image of a set of
consecutive frames. First, CNN extracted geometric features of several frames that had
semantic meaning. Second, the obtained features were fed to the RNN to estimate the
distance. FlowNetC was used as a feature extractor that estimated the optical flow between
two images. The correlation layer of FlowNetC provided an increase in the size of the
functional channel up to 1024. The RNN acquired pairs of images over multiple time steps
and estimated the distance between the first and last given images. This allowed them to
estimate the distance traveled between consecutive frames.
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A robust RGB-D SLAM system for dynamic scenarios was developed in [84]. The
Dynamic Deep Learning SLAM (DDL-SLAM) provided dynamic object segmentation
and background inpainting capabilities for the ORB-SLAM2 model. DDL-SLAM adopts
Deformable U-Net [88] to implement pixel-wise semantic segmentation trained on the
PASCAL VOC dataset. Multi-view geometry has been added to the system to improve
segmentation of dynamic objects and search for new dynamic objects that were static
most of the time. Tracking and mapping were implemented based on ORB-SLAM2. For
background inpainting, the last 15 previous keyframes were selected for projection into the
dynamic parts of the current frame. A very close approach can be found in [85] while based
on a pyramid scene parsing network [89]. The PSPNet semantic segmentation network
filtered the feature points by optical flow, detecting a priori dynamic points to eliminate
them, while stable static feature points were used to build semantic maps. This network
has been integrated with the ORB-SLAM2 system.

Footstep planning for the indoor navigation of humanoid robots was discussed in [86].
The authors proposed the GAN-based architecture for building an accurate path (even
the narrow path) for planning the footsteps of a humanoid robot. The GAN model for
generating the optimal path was implemented in Robot Operating System (ROS). The aim
was to solve the motion planning problem of a humanoid robot in an unknown environment
between obstacles. The GAN-based footstep planner included a generator for creating
a high-resolution map from an input map containing random goal and obstacle points
and a discriminator, which classified the generated maps as real or fake. The generator
had a typical U-Net architecture, while the discriminator included two branches (for real
and fake inputs) of a Siamese-like architecture. The system was tested on its own dataset
and demonstrated an accuracy of approximately 93% of the generated footsteps using the
GAN-based path planner.

The Depth Estimation Model (DEM) based on an encoder-decoder for the SLAM ap-
plications was proposed in [87]. The capabilities of DEM were tested with three modalities:
RGB images, sparse depth, and RGB-D data. The ResNet-50 model and the modified
DPN-92 model were employed as the encoder for processing the RGB images and the
depth images, respectively. A decoder generated pixel-wise depth images of size 228 × 304,
learned by the transposed convolution and convolution layers. The DEM module was
successfully incorporated in the SLAM system.

3.3. End-to-End Deep Neural Networks

Recently, deep learning has been used to solve problems of detection, localization,
classification, and control of objects, eliminating the shortcomings of geometric solutions
in SLAM. With more efficient and higher-level feature extraction, deep learning solutions
become better than conventional monocular VO/VIO or VSLAM/VISLAM solutions. The
conventional VO systems require an accurate solution at each step, including feature
detection, feature matching, camera calibration, local optimization, etc., while deep-based
SLAM systems do not need a camera calibration step due to how the correspondences
between sensor data and target values are learned during the training phase. Thus, deep-
based SLAM methods are related to direct VSLAM/VO methods [33]. Only in recent years
have end-to-end deep neural networks been developed for SLAM applications.

The third way is to use end-to-end deep networks instead of a traditional VSLAM
system. A summary of several methods ordered by the criterion “Main Subject” is presented
in Table 4. The acronyms “SP”, “US” and “RL” stand supervised, unsupervised and
reinforcement learning, respectively. The learning strategy used is indicated by a “+” sign.

Lan proposed to integrate VSLAM with CNN, called vSLAM-CNN (vCNN) for surgi-
cal applications [90]. It should be noted that SLAM technology has been widely applied in
robots and unmanned vehicles, but rarely in the analysis of surgical videos. The vCNN
model generated region predictions using constant localization from 3D maps and provided
deep learning models to capture objects with bounding boxes. The Mask R-CNN model
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was chosen as a backbone for object classification, and a recurrent neural network with
LSTM cells predicted the workflows.

An end-to-end monocular VO system based on self-supervised learning has been
proposed in [47]. The authors used the Kalman filter to predict and update their data and
they developed a prediction update mechanism that took into account information from
previous pose measurements and applied a novel training strategy. To reduce the effect of
local motion, a motion-weighted photometric loss was formulated based on the constraints
of long-term posture constancy. The architecture of PU-PoseNet (Prediction-Update Pose
Estimation Network) included several networks for pose measurement, weighted fusion,
pose predict, and pose update. The KITTI odometry dataset was used for experiments.

In [91], the UAV pose estimation was improved by reducing the noise of the inertial
data using the Savitzky-Golay filter and extracting visual-inertial features based on the
Inception-v3 model, which were fed to the Gaussian process regression unit. The inertial
image features have been enhanced with optical flow. The proposed method was tested on
the EuRoC dataset and its own dataset.

Table 4. A summary of recent end-to-end deep neural networks.

Method Year Main Subject Data
Learning Strategy

Dataset
SP US/RL

vCNN [90] 2022 Sub-VSLAM Monocular + M2CAI 2016 Challenge

PU-PoseNet [47] 2022 Pose estimation Monocular + KITTI Visual Odometry

[91] 2022 Pose estimation Monocular,
Inertial + EuRoC, own dataset

VIOLearner [92] 2018 Trajectory
estimation

Monocular,
Depth, Inertial + KITTI Visual Odometry

DeepMLE [93] 2022 Depth
estimator

Monocular,
Depth + KITTI Visual Odometry,

Virtual KITTI 2, DeMoN

PoseConvGRU [94] 2020 Ego-motion
estimation Monocular + KITTI Visual Odometry,

Malaga 2013

DeepAVO [95] 2022 Ego-motion
estimation Monocular +

KITTI Visual Odometry,
Malaga, ApolloScape, own

dataset

DeepVO [96] 2017 Visual
odometry Monocular + KITTI Visual Odometry

UnDeeopVO [97] 2018 Visual
odometry

Monocular,
Depth, Stereo + KITTI Visual Odometry

HVIOnet [98] 2022 Visual–inertial
odometry

Monocular,
Intertial + EuRoC, ROS-based

simulation dataset

SelfVIO [99] 2022 Visual–inertial
odometry Monocular + KITTI Visual Odometry,

EuRoC, Cityscapes

[100] 2021 Loop closure Monocular + Own dataset

MGRL [101] 2021 Visual
navigation Monocular + AI2-THOR framework

VGF-Net [102] 2021 Drone
navigation

Monocular,
Depth, GPS + Own dataset

Shamwell et al. [92] developed an unsupervised deep neural network called VIO-
Learner for absolute trajectory estimation. VIOLearner estimated scaled ego-motion based
on RGB-D imagery and inertial data as input. VIOLearner received the RGB-D source im-
age, target RGB image, IMU data from consecutive frames, and intrinsic camera parameters
from calibration matrix. VIOLearner performed multi-scale projections and online error
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correction. At each scale, the network computed the Jacobians of the re-projection error
associated with the grid. The authors argued that the unsupervised VIOLearner model per-
formed online error correction by combining uncalibrated and weakly time-synchronized
multi-modal data from different frames to improved VO estimates.

Xiao et al. [93] formulated the two-view Structure from Motion (SfM) problem as a
Maximum Likelihood Estimation (MLE) problem and solved it with a proposed framework
called DeepMLE. They developed an end-to-end DNN that iteratively searched for the
optimal estimation to maximize the likelihood of using the gradient-like data to improve
robustness and generalization capability. DeepMLE had three parts: correlation volume
calculation, uncertainty prediction, and iterative solver. At each iteration, the correlation
module evaluated the pixel correspondences between target and source images. The
prediction module predicted the uncertainty parameters for each pixel under the influence
of illumination, occlusions, moving objects, and noise. The likelihood map and gradient
information were then computed based on the correlation map and uncertainty parameters.
Finally, the deep iterative solver updated the depth and pose. The model was tested on
three datasets with indoor and outdoor scenes under various meteorological conditions.

Zhai et al. [94] introduced a long-term recurrent CNN called PoseConvGRU. The
PoseConvGRU model is a fully end-to-end network that encodes geometric features for
camera position estimation. This recurrent CNN extracted the geometric relationship
features from two adjacent frames in a video sequence, fed the feature maps to the stacked
ConvGRU module, and then built a relative pose regression function. The backbone of
PoseConvGRU was FlowNetSimple [103] without a decoder part. The proposed model
did not use dense optical flow, which made it faster and less computationally expensive.
As a result, it demonstrated better results than the VISO2-M model and the ORB-SLAM-
M model.

For an accurate assessment of ego-motion, Zhu et al. [95] proposed a framework for
learning monocular VO in an end-to-end way. The proposed lightweight DeepAVO model
based on frame-to-frame analysis yielded four parallel CNNs processing four quadrants of
the optical flow. Convolutional Block Attention Module (CBAM) [104] was implemented
as a dual attention mechanism that recalibrated the feature map in the channel and spatial
domains to find essential information and suppress useless information.

One of the first end-to-end frameworks for monocular VO was proposed in [96]. The
framework was based on deep RNNs, which have demonstrated the ability to generalize
to completely new environments using geometric feature representation and capturing
sequential dependence and complex motion dynamics. The main advantage of this ar-
chitecture was feature extraction with CNN and sequential VO modeling with RNN as a
simultaneous process.

The UnDeepVO architecture proposed in [97] was fundamentally different from the
basic version. The unsupervised UnDeepVO model, which was scale invariant, estimated
the 6-DoF pose and depth of view of a monocular camera using CNNs. The pose estima-
tor as a VGG-based model predicted the 6-DoF transformation between two consecutive
monocular images. The depth estimator using the encoder-decoder architecture generated
dense depth maps. The UnDeepVO model was trained in an unsupervised way with
spatial and temporal image losses. The spatial losses were constructed from the geometric
constraints between stereo images and summarized three types of consistency losses: pho-
tometric, disparity, and pose. The temporal image losses minimized camera motion errors
using two consecutive monocular images. The proposed UnDeepVO model was evaluated
on the KITTI Visual Odometry dataset and compared with other SLAM-based models.

Aslan et al. [98] designed an end-to-end deep learning architecture to predict Un-
manned Aerial System (UAS) position. In this system, inertial data were integrated with
images, and their processing was carried out in three steps. The first step used CNN to
extract spatial features from input images. In the second step, temporal features were
extracted from the IMU data using a Bidirectional Long Short Term Memory (BiLSTM)
network. In the third step, the UAS position was estimated by fusing both types of fea-
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tures, visual and inertial, using a BiLSTM-based model. The proposed method was tested
on the public EuRoC (European Robotics Challenge) dataset and the ROS-based simula-
tion dataset.

Almalioglu et al. [99] proposed an end-to-end trainable deep visual–inertial architec-
ture for pose estimation and depth mapping. A self-supervised deep learning-based VIO
model called SelfVIO involved modules for depth generation, visual odometry, inertial
odometry, visual–inertial fusion, spatial transformer, and target discrimination. Unlabeled
image sequences as well as raw IMU measurements were fed to the deep network. The
parameters of relative translation and rotation in consecutive frames were estimated with
6-DoF motion, while a depth image was created using a disparity map.

In [100], an end-to-end deep neural network was developed to evaluate the overlap
between two underwater scenes to solve the Visual Loop Detection (VLD) problem for
autonomous underwater vehicles. A Siamese CNN extracted the global image descriptors,
and then the loop quantifier compared the outputs of the two branches. Various cases of
loop representations were tested. The autonomous underwater vehicle was equipped with
a bottom-looking camera and quantified how much the frames overlapped.

The deep reinforcement learning visual navigation method was proposed in [101]. The
Markov network modeled the abstract map, and a knowledge graph initialized its structure,
reducing the difficulty of model learning. The end-to-end learning process trained by a
reinforcement learning method was utilized to update the abstract map. In addition to
visual features, the proposed MGRL (Reinforcement Learning method combined with a
Markov network and Graph) derived new graph relational features that measured the
relative distance between an observation and a target, providing a global view of the
environment through probability inference. This model was tested on the AI2-THOR
dataset and in the physical environment.

Liu et al. [102] developed VGF-Net to fuse visual and geometric information for
simultaneous drone navigation and height mapping. The goal was to create a better
representation of outdoor/indoor scenes based on visual-geometric features extracted from
RGB image sequences and an initial rough height map. In addition, a directional attention
model selected essential object relationships using the object boundaries in the 2.5D height
map and the extracted 3D keypoints. The standard SLAM module was used to refine
the height map and 3D keypoints. Thus, deep networks can be used not only as internal
modules of SLAM, but SLAM can also be part of the network.

4. Datasets for Visual SLAM

VSLAM methods based on deep learning models require large datasets with ground
truth for optimizing parameters during supervised learning. However, to collect complex
data including color, depth, LiDAR, inertial, GPS, and some specific data, developers need
expensive equipment maintained on moving platforms such as cars, UAVs, underwater
drones, etc. This problem limited the number of datasets in 2012–2014, and it is only since
2016 that large datasets have emerged for training various VSLAM methods based on
deep learning. Sometimes simulated scenes, such as those created in Unity 3D, are used as
datasets instead of real indoor and/or outdoor environments.

The ranking of applied datasets used in publications mentioned above is as follows:
the KITTI Vision Benchmark Suite (28%), the TUM RGB-D SLAM Dataset and Benchmark
(13%), own datasets (12%), the RGB-D dataset 7-Scenes (4.4%), the EuRoC MAV dataset
(4.4%), the ICL-NUIM dataset (3%), the NYU RGB-D V2 dataset (3%), the Oxford RobotCar
dataset (3%), the Malaga dataset (3%), the CityScapes dataset (3%), and the ApolloScape
dataset (3%), among others. An ordered summary of commonly used and most interesting
datasets from Table 5 is presented below.
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Table 5. A summary of VSLAM datasets.

Dataset Year Subject Sensor Short Description

The KITTI Visual
Odometry

dataset
2012 22 stereo

sequences
Color camera, GPS,

LiDAR scanner

The dataset contains image pairs
captured in outdoor scenes with

ground truth labeling

The vKITTI2 dataset 2015 5 sequences Unity game engine
The dataset is a synthetic dataset

for training and testing
autonomous driving models

The TUM RGB-D
dataset 2012 39 sequences

Kinect sensor
(near-infrared laser,

infrared camera,
color camera)

The data was recorded as color
and depth frames with ground

truth trajectories

The NYU RGB-D V2
dataset 2012 464 indoor

scenes Kinect RGB-D sensor
The dataset includes physical

scenes for segmenting the visible
areas of objects

The RGB-D Dataset
7-Scenes 2013 7 scenes Kinect RGB-D sensor

The dataset allows observers to
evaluate dense tracking and

mapping, as well as relocalization

The Malaga dataset 2013 15 outdoor scenes Stereo camera, 5 laser
scanners, IMU, GPS

The dataset presents
high-resolution stereo images over

a 36.8 km trajectory

The ICL-NUIM dataset 2014 2 scenes Kinect sensor
The dataset includes labeled

scenes with a living room and an
office

The EuRoC MAV
dataset 2016 11 indoor scenes Stereo camera in grey

space, IMU

The dataset consists of stereo
images synchronized with IMU

measurements

The Oxford
RobotCar

dataset
2016 Over 130 scenes 6 cameras, LiDAR, GPS,

INS

The dataset contains long
trajectories in outdoor scenes with

complex weather conditions

The Cytiscapes dataset 2016 50 urban scenes Stereo camera, GPS
The dataset contains complex
street scenes from 50 different

cities

The AI2-THOR dataset 2017 120 indoor scenes Physical simulation in
Unity 3D

The dataset consists of
photorealistic 3D indoor scenes

with AI agent navigation

The ScanNet
dataset 2017 707 scenes Kinect sensor The dataset is a set of annotated

3D indoor reconstructions

The ApolloScape
dataset 2018 2 long sequences Camera, Stereo camera,

LiDAR, GPS, IMU

The dataset consists of varying
conditions and traffic densities

with complex scenarios

The MidAir
dataset 2019 79 min of drone flight

3 RGB cameras,
accelerometer,

gyroscope, GPS

The dataset provides a large
amount of synchronized data

corresponding to flight records

The RIO10
dataset 2020 10 sequences Mobile phone

The dataset provides RGB and
depth images with semantic maps

for reference

Created at the Karlsruhe Institute of Technology and Toyota Technological Institute at
Chicago, the history of the KITTI Vision Benchmark Suite began in 2012 with the stereo,
flow, and odometry benchmarks [105]. At that time, the raw data were collected [106].
Every year this benchmark has expanded its content, reaching the evaluation procedure
for Tracking and MOTS (Multi-Object Tracking and Segmentation) in 2021 [107]. The
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KITTI dataset includes such benchmarks as Stereo, Flow, SceneFlow, Depth, Odometry,
Object, Tracking, Road, Semantics, and Raw data. For VSLAM, the odometry benchmark is
suitable [108]. The KITTI Visual Odometry benchmark includes 22 stereo sequences with
and without ground truth trajectories.

Virtual KITTI 2 (vKITTI2) is a more photo-realistic version with better quality related
to the original virtual KITTI dataset [109]. It exploits recent improvements of the Unity
game engine and provides new data such as stereo images and scene flow [110]. While
Virtual KITTI included five driving video sequences cloned from the original KITTI dataset,
Virtual KITTI 2 consists of the same five sequence clones as Virtual KITTI, but has such new
features as increased photorealism, stereo cameras, and additional ground truth labeling.

The TUM RGB-D SLAM Dataset and Benchmark was created at the Technical Uni-
versity of Munich [111] in 2012. This dataset helps evaluate visual SLAM and odometry
systems on RGB-D data containing both RGB-D and ground-truth data [112]. The data
was recorded at full frame rate with resolution 640 × 480 by a Microsoft Kinect sensor in
two different indoor scenes. Each sequence consists of color and depth images and also
includes a ground truth trajectory obtained from the motion capture system. All data was
calibrated and synchronized in time. To obtain ground-truth trajectories, a high-precision
motion capture system was used, containing eight high-speed tracking cameras. The de-
velopers also proposed an evaluation criterion for measuring the quality of the camera
trajectory of visual SLAM systems.

The RGB-D dataset 7-Scenes presented in 2013 by Microsoft is an indoor dataset, which
included seven scenes captured by a Kinect RGB-D sensor [113]. This dataset is a collection
of RGB-D frames from each of seven scenes. Each scene is a specific office room with
many textureless regions. The ground truth camera poses are obtained by applying the
KinectFusion system [114]. The dataset may be used for evaluation of dense tracking and
mapping, as well as relocalization methods. Each sequence contains 500–1000 frames, and
each frame consists of three files with color, depth, and pose information. Each scene has
a full description for evaluation and dense reconstruction. However, the RGB and depth
camera have not been calibrated.

The EuRoC MAV dataset is provided by Swiss Federal Institute of Technology and
Autonomous Systems Lab. This visual-inertial data were collected using Micro Aerial
Vehicle (MAV) on-board devices [115]. The EuRoC (European Robotics Challenge) MAV
dataset [116] publicly shared by ETH is often used in VIO applications. Grayscale images
were acquired from a stereo camera, while the simultaneous accelerometer and gyroscope
data were captured by the on-board IMU sensor. For VIO calibration, the intrinsic parame-
ters of the camera and IMU sensor were included in the dataset. The dataset was collected
in an outdoor environment with various obstacles which contained light, medium, and
complex scenes depending on the MAV speed, brightness, and blur.

The ICL-NUIM dataset from Imperial College, London, UK was collected for com-
parative analysis of RGB-D, VO, and SLAM algorithms [117]. Both scenes with living and
office rooms are labeled with ground truth data [118]. The 3D ground truth surfaces, depth
map, and camera poses were created for the living room. Such data can be used not only to
build the camera trajectory but also to reconstruct the scene. The office room does not have
a 3D model and only provides trajectory data. An additional synthetic dataset contains the
images obtained from ray-traced 3D models. All data is compatible with the evaluation
tools available for the TUM RGB-D dataset.

The NYU RGB-D V2 is a dataset for understanding indoor scenes [119]. Its previous
version called the NYU Depth V1 dataset contained a limited number of scenes and scene
types plus unlabeled and labeled frames [120]. The NYU RGB-D V2 dataset involves
464 different indoor scenes belonging to 26 scene classes (total 1449 RGB-D images) that
were captured from commercial and residential buildings in three cities in the USA. A
dense per-pixel labeling in each image was performed using the Amazon Mechanical Turk
tool. For scene understanding, each instance in the scene was labeled with a unique label.
Thus, the dataset contains 35,064 objects, belonging to 894 classes. Each of the 1449 RGB-D
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images was manually annotated with a predefined vector describing relationships between
objects. There are also 407,024 unlabeled frames.

The Oxford RobotCar dataset contains over 1000 km of recorded videos captured from
six on-board vehicle cameras, as well as LiDAR, GPS, and INS objective data [121]. This
dataset contains much longer trajectories with complex dynamic outdoor environments
and meteorological conditions, including rain, snow, direct sunlight, and night, [122]. In
total, the dataset contains over 20 TB of imagery.

The Malaga dataset was collected in an urban environment using a special car, which
had eight sensors, including one stereo camera, five laser scanners, one IMU, and one
GPS receiver [123]. The first online version appeared in 2013. In 2013, this dataset was
a collection of high-resolution stereo images captured during a 36.8 km trajectory. Raw
(unprocessed) images had a resolution of 1024 × 768. A single sequence had a duration of
6–93 min [124]. The developers have created a video index (as an additional tool) available
online to select relevant segments from the dataset. In addition to the images, a 3D point
cloud reconstruction of the scenes was created as a video sequence based on laser scanners
and GPS data.

The Cityscapes dataset involves highly complex street scenes that were recorded in
fifty cities, mostly in Germany, with thirty classes grouped into eight categories: flat, con-
struction, nature, vehicle, sky, object, human, and void [125]. 5000 of these images have
high quality pixel-level annotations. 20,000 additional images have coarse annotations to
evaluate methods for processing weakly labeled data [126]. Semantic labeling is available
at the pixel-level and instance-level. The Cityscapes dataset significantly exceeds previ-
ous datasets in terms of volume, annotation quality, and scene complexity. The densely
annotated images can be used for training, validation, and testing, while the annotated
images only serve for additional training. Each of the training, validation, and testing sets
was ordered according to the territory size, the geographic direction across parallels and
meridians, and the season period.

The ApolloScape dataset includes many subsets, such as Scene Parsing, Car Instance,
Lane Segmentation, Self-Localization, Trajectory, Detection/Tracking, Stereo, and Inpain-
ing [127]. Thus, in April 2018, the Scene Parsing dataset contains 140 K frames at a resolution
of 3384 × 2710 with corresponding pixel-level annotations and pose information, as well as
depth maps for static background. It is expected that this dataset will include 1 MB frames
with corresponding pixel-level annotations and pose information. Herewith, the number of
moving objects on average ranges from tens to more than a hundred [128]. Each image is
also labeled with centimeter-accurate pose information, and the background point cloud
has millimeter-accuracy. The 25 classes were divided into five groups: movable object,
surface, infrastructure, nature, and void. A labeling pipeline includes 3D labeling and 2D
labeling for handling static background/objects and moving objects, respectively, using
CNN. The dataset is divided into training, validation, and testing subsets. The semantic
annotations for test images are not provided.

The ScanNet dataset is a large RGB-D video dataset. It contains over 707 unique indoor
environments, annotated with 3D camera poses, surface reconstructions, and instance-level
segmentations [129]. The surface reconstruction and semantic annotation were performed
automatically using a scalable RGB-D system. A CAD model was also provided as a subset
of scans [130].

The Mid-Air dataset was created at the Montefiore Institute [131] as a multi-purpose
synthetic dataset containing low altitude drone flights data. The dataset consists of 79 min
of records that were manually extracted from over 5 h of flight records [132]. These records
are divided into 54 separate trajectories of the same length. Since each trajectory has
been rendered multiple times for different weather conditions, Mid-Air contains over
420,000 separate training frames. Data received from multi-modal vision sensors and
navigation sensors were synchronized. Multi-modal vision sensors provide RGB images,
stereo disparity, scene depth, and even object semantics.
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The AI2-THOR dataset is an open-source interactive environment for embodied
AI [133]. THOR means The House of Interactions for visual AI research. The AI2-THOR
dataset consists of photo-realistic 3D indoor scenes with AI agent navigation to complete
tasks [134]. It can be used in many fields such as planning, imitation learning, learning
by interaction, visual question answering, and so on. This dataset visualizes 120 rooms,
including kitchens, bedrooms, bathrooms, and living rooms, with over 2000 unique ob-
jects. Based on Unity 3D, the AI2-THOR dataset enables physical simulation for objects
and scenes.

The RIO10 dataset [135] includes 10 RGB-D video sequences of indoor scenes captured
by a mobile phone. Each scene was captured several times throughout the year. The ground
truth camera poses were obtained using an off-line package setup system. The dataset also
includes semantic maps. However, the application of this dataset to the relocalization task
is very difficult due to dynamic objects, blur, and various lighting conditions captured by a
mobile phone.

It should be noted that many datasets do not have a standalone website but are located
on the GitHub website.

5. Discussion and Future Trends

This survey presents the current advances in the field of deep-based VSLAM methods
since 2017, focusing on two aspects. First, high-quality studies show how deep learning
paradigms help to solve VSLAM tasks and even change traditional VSLAM problem
statements. Second, the new approaches proposed in the articles mentioned above open
up great perspectives for future investigations. Every year, deep learning models improve
their performance and demonstrate new capabilities for solving more and more complex
problems. Obviously, the implementation of deep learning methods in VSLAM is currently
far from desirable, but the first steps are very promising.

Recently, three ways to develop deep learning-based VSLAM software components
encompassing auxiliary modules, original deep learning modules, and end-to-end deep
neural networks have been identified with different degrees of implementation. A way to
develop auxiliary deep-based modules introduces most of the published studies including
feature extraction [48–50], semantic segmentation [51–60], pose estimation [8,45,46,61–63],
map construction [3,64–66], and loop closure [67–70]. It should be noted that deep neural
networks extract low-level features from images by converting them to high-level fea-
tureslayer by layer. Thus, deep learning “changes” the term “feature extraction” from
conventional keypoints extraction to complex tasks, such as matching keypoints of a 2D
image and 3D LiDAR points [48], keypoints extraction from an optical flow [49], extraction
of image patches using the famous ORB-SLAM algorithm [50], etc. Semantic segmentation
seems to be a more explored area, with semantic filtering [51,52], object detection followed
by semantic segmentation in static and dynamic environments [55–57], and scene repre-
sentation [58,59] being the main approaches. Deep learning-based pose estimation is a
wide area of study in many scientific fields, but only a few approaches have been imple-
mented in VSLAM systems related to VO tasks [8,45,62], ego-motion of camera [46,61],
and low illumination conditions [63]. Currently, map construction is not well explored
by deep learning paradigms and is presented by several attempts to incorporate optical
flow networks, RNNs, and stereo vision into validated SLAM systems. Better results are
achieved by combining depth, LiDAR, and optical data. Auxiliary modules in the loop
closure eliminate the influence of moving objects in the scene [67,70] and extract keyframes
for searching the correct trajectory [68,69].

There are several studies devoted to the development of original deep learning mod-
ules for camera relocalization [82], distance estimation [83], object segmentation [84,85],
path planning [86], and scene reconstruction [87]. The architecture of original deep learning
modules becomes more complex when multiple deep neural network models are used in
serial or parallel pipelines with RNNs or GANs. It was shown in [84] that the accuracy
and robustness of the proposed DDL-SLAM model outperforms the indicators of the ORB-
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SLAM2 model in highly-dynamic scenarios. At the same time, the DDL-SLAM model has
several limitations in real-time performance and scene inpainting.

Obviously, the development of end-to-end deep neural networks is the most promising
approach for VSLAM systems due to self-supervised learning and reinforcement learning
as the basis of high adaptive ability to a real dynamic environment. Interesting experi-
mental results were obtained in VO/VIO [96–99] and ego-motion tasks [94,95]. Sometimes
traditional methods such as Kalman filter [47] or the Savitzky-Golay filter [91] are combined
with end-to-end deep models that provide improved results. This is the so-called hybrid
approach. Some end-to-end deep neural networks have original applications, for example,
in surgery [90], UAV pose estimation [91,98], autonomous underwater vehicles [100], drone
navigation, and height mapping [102], etc.

It should be noted that the implementation of deep learning in VSALM systems is a
very complex process. However, impressive results have recently been achieved. Thus, the
Absolute Trajectory Error (ATE) metrics with and without auxiliary deep modules improve
values by 50 times [57], and depth reconstruction estimates in terms of time and accuracy
are better using the DRM-SLAM model [65], as well as precision–recall results for different
datasets in the loop closure problem [70].

Application of deep models in VSLAM partially changes the problem statements,
challenges, and directions of research. For example, scene mapping tends to move from
2D to 3D analysis, from sparse to dense maps, and from topological to semantic represen-
tation. Let us summarize the challenges and future trends in VSLAM in theoretical and
practical aspects.

1. Complex Types of Unsupervised Learning: Currently, supervised learning prevails
with the need to have access to large labeled datasets. Unsupervised learning is
more preferable from a practical point of view. However, it provides less precision,
which is of great importance for many near-photogrammetric VSLAM tasks. It is
evident that meta-learning, reinforcement learning, and life-long learning, as well as
the development of efficient architectures, will make it possible to compensate for the
inherent properties of unsupervised learning.

2. Robustness in Challenging Scenes: The robustness of algorithms plays an important
role in practical applications. Deep learning models well-trained on datasets need
to be robust to sensor noise, lighting, weather conditions, and complex scenarios
when used in real environments. Thus, the ego-motion and the motion of objects
must be accurately estimated. At the same time, the performance of some sensors,
such as LiDAR and RADAR sensors, is low in extreme meteorological conditions.
Conventional VSLAM systems based on stable visual landmarks are of limited use
and currently cannot be considered an effective solution. Another problem is failure
in situations with fast movement. Some algorithms are tested on multiple datasets,
including their own datasets. However, the problem of generalization is far from its
sufficient solution.

3. Real-time Deployment: Real-time implementation is one of the main factors pos-
itively influencing the practical development of VSALM for autonomous systems.
At present, most deep learning architectures tend to use complex modules, which
increase computational calculations and costs. Nevertheless, it is difficult to expect
in the near future that light-weight neural solutions will be acceptable for such com-
plex problems as VSLAM provides. Thus, we can talk about a huge gap between
simulation environments and real scenes.

4. Multi-task and Multi-modal Architectures: Deep networks that use multi-task and
multi-modal paradigms are attracting particular attention. Although datasets typically
provide multi-modal data from sensors such as color camera, stereo camera, event-
based camera, IMU, LiDAR, etc., deep learning networks cannot fuse or process all
types of data directly due to their inherent limitations. Data fusion remains an open
issue not only for VSLAM problems, but for many others.
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5. Dynamic Environment: The first VSLAM and traditional SLAM methods focused on
a static environment and failed in a dynamic environment. Only recently developed
end-to-end deep networks can be implemented as real time systems in a dynamic
environment, primarily due to the high performance of trackers with recognition
functions. Moreover, some solutions involve not only semantic but also instance
segmentation. Dynamic scenarios with dynamic objects are typical environments for
autonomous systems (road networks, highways, etc.).

6. Navigation Control: Path planning and navigation control are the core modules for
autonomous vehicles that affect safety. Many VSLAM algorithms lack an efficient
control technique for navigation. Navigation control is highly dependent on the state
of the environment and the performance of the algorithms. This issue requires future
work for fully autonomous vehicles.

6. Conclusions

VSLAM as a rapidly developing scientific field attracts a lot of attention from re-
searchers who develop and/or use deep learning models. The latest deep learning tech-
niques objectively improve VSLAM steps including data processing, pose estimation,
trajectory estimation, mapping, and loop closure. This detailed overview describes three
main ways of interaction. VSLAM methods with auxiliary modules based on deep learning
prevail, since it is a relatively simple introduction of different deep neural networks. Re-
placing the original modules of traditional VSLAM with deep learning modules is the least
numerous group of methods due to the difficulty of merging traditional VSLAM methods
and deep learning techniques. Replacing a traditional VSLAM system with end-to-end
deep neural networks is the most perspective way, suggesting new paradigms in VSLAM.
However, deep models have fundamental limitations. For example, they cannot process
inertial data in combination with color, depth, and LiDAR data. This means that extensive
research needs to be undertaken in the future. Generally speaking, deep learning models
offer opportunities for efficient processing of visual data in real time, but at the same time
have limitations in data fusion obtained from different types of sensors at the current stage
of technology development.

Another open issue is a preferable type of learning—supervised or unsupervised. At
the same time, reinforcement learning, perhaps the most acceptable for VSLAM, is in its
early use. This survey does not address these theoretical issues, as well as the issues of
inter-cross and intra-cross validation. A few datasets collected since 2012 are also discussed.
It should be noted that most datasets evolve from year to year, providing researchers
with large multi-modal data. The complexity and diversity of data is increasing. Finally,
challenges and future trends in VSLAM based on deep learning are summarized, indicating
promising research directions.
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