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Abstract: Embedded systems are widely used in automotive electronics, smart home, smart medical,
aerospace and other fields. Aiming at the problem of formal modeling and verification analysis of
embedded systems, a solution is proposed using extended Petri net reduction operations. Petri net
based representation for embedded system (PRES+) and the object-oriented technology are combined
to obtain the object-oriented PRES+ (OOPRES+). Two kinds of subnet reduction rules of OOPRES+
are presented. The preservation of boundedness and liveness of the reduction net system has been
investigated to alleviate the problem of state space explosion of OOPRES+. The modeling and
analysis of the embedded control system of a smart restaurant is used as an example to verify the
effectiveness of the subnet reduction rules. Results obtained can provide an effective way to examine
the reduction property of Petri net systems, and present a powerful means to model and verify the
large-scale complex embedded systems.
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1. Introduction

With the rapid development of modern information technology, embedded system is
undoubtedly one of the most popular technologies at present, and has been widely used in
automotive electronics, smart home, smart medical, aerospace and other fields. In order
to improve the design efficiency and reliability of embedded systems, it is necessary to
conduct formal modeling and analysis of embedded systems.

In terms of embedded system modeling methods, traditional modeling methods
mostly use informal modeling methods, which can basically describe the functional proper-
ties of the system, but it is not easy to strictly verify by mathematical methods. The formal
method describes the properties of the system with symbols and mathematical language,
and can describe and verify the system in a systematic way [1]. The formal modeling
methods widely used mainly include: extended finite state machine method [2], data flow
diagram method [3], Petri net method [4], entity-relationship diagram method, etc. These
formal modeling methods describe the characteristics of embedded systems from different
aspects, but do not form a unified standard.

Aiming at the problem of formal modeling and verification analysis of embedded
systems, a solution is proposed using the object-oriented PRES+ (OOPRES+) reduction
operations in this paper. The preservation of liveness and boundedness of the reduction net
system has been investigated to alleviate the problem of state space explosion of OOPRES+.
Results obtained can provide a powerful means to model and verify the large-scale complex
embedded systems.

2. Related Works

Embedded systems are widely used in many fields. The research and application of
embedded systems have become increasingly important. Most of aircrafts have systems
for collision avoidance systems, navigation, flight data recorder, automatic flight control,
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monitoring systems as well as weather radar system. Embedded computer systems with
increasing memory requirements are used in all of above systems. To reduce the electricity
consumed by these systems, Weisberg et al. [5] suggested detecting the portion of the
actually used computer memory. The other portion can be temporarily turned off and
turned on again when needed. Lenhardt et al. [6] present algorithms for calculating a
power-efficient distribution of a divisible workload, heterogeneous physical servers. The
calculated algorithms can minimize the power consumption.

To improve the design efficiency of embedded systems, it is necessary to model
and verify embedded systems. Petri net has a clear mathematical definition and strict
specification of derivation rules, which is a relatively sound formal modeling method.
Classical Petri nets can model systems with concurrency, conflict and uncertainty, but
there are the following shortcomings in embedded system modeling: no hierarchy, no
consideration of time factors and limited ability to describe data flow. In order to overcome
these shortcomings, domestic and foreign scholars have investigated and proposed a
variety of extended forms of Petri nets for embedded system modeling and analysis, such
as colored nets [7], PRUE (Petri net based on unified representation), time Petri nets [8],
fuzzy Petri nets [9], timed double-flow Petri nets, etc. These extended forms of Petri nets
improve the ability to model and analyze embedded systems based on different application
requirements, but there are still some problems. For example, although the token of colored
net has information and hierarchical description ability, there is no clear time characteristic.
Although time can be attached to the token, there is semantic inconsistency. Time Petri nets
have time characteristics, but the tokens do not have information.

PRES+ (Petri net based representation for embedded systems) [10] has a hierarchical
structure and the ability to analyze data flow. Real-time characteristics can be captured
by the time delay attached to the transition and the timestamp in the token, but it is not
convenient for modular modeling of large-scale complex embedded systems.

Object-oriented technology can effectively divide large-scale complex systems into
multiple simple subsystems and model them accordingly. In order to facilitate the modular
modeling of large-scale complex embedded systems, an Object-Oriented Petri net based
Representation for Embedded System (OOPRES+) is obtained by integrating object-oriented
technology and PRES+.

OOPRES+ can be used for formal modeling and analysis of embedded systems. How-
ever, with the increase of system scale and complexity, the state space increases exponen-
tially, and the problem of “state space explosion” will be encountered, which seriously
affects the application of OOPRES+ in the modeling and analysis of large-scale complex em-
bedded systems. The problem of state space explosion is NP-hard and cannot be completely
solved, but it can be alleviated by using some property preserving transformations.

Synthesis [11–15], reduction [16–24], and refinement [25–29] are three commonly used
Petri net transformation methods. Reduction is an important transformation method. There
have been many researches on Petri net reduction. Berthomieu et al. [16,17] proposed a
method to count the number of reachable markings of a Petri net, and reduce the number of
transitions and places in a system. Ceška et al. [18] focused on how to use an object-oriented
Petri nets partial-order reduction approach to alleviate the state space explosion problem.
Shah et al. [19] focused on reduction of the colored Petri net (CPN) model of a flexible
manufacturing system to reduce the total number of elementary circuits. Chiachío et al. [20]
introduced a method based on Approximate Bayesian Computation to infer the plausible
values of the model parameters of the simplified model in a rigorous probabilistic way.
Bønneland et al. [21] described the structure reduction techniques used in reachability
queries on weighted Petri net with inhibitor arcs. Xia [22] proposed a set of reduction
rules for the PRES+ model to preserve total equivalence. Xia et al. [23] proposed several
reduction rules for Petri net with inhibitor arcs based representation for embedded systems
(PIRES+). Li et al. [24] proposed several reduction rules for the bounded labeled Petri nets
(LPNs). Under certain conditions, these reduction rules can preserve the diagnosability of
the LPN system.
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The above research works have played certain roles in the property analysis and
system modeling of Petri nets, but OOPRES+ is a newly proposed extended Petri net, and
its reduction operation has not been systematically studied. The property preservation re-
duction operation can alleviate the state space explosion problem of OOPRES+, and realize
the formal modeling and analysis of large-scale complex embedded systems. Therefore, it
is necessary to conduct in-depth research on it.

In this paper, two reduction rules of OOPRES+ are proposed, and the necessary and
sufficient conditions for the reduction operation to preserve the boundedness and liveness
of the original net system are presented. The reduced net system is obtained by reducing
the original OOPRES+ net system according to the given reduction rules. The reduction
rules can make the reduced net system have the same boundedness and liveness as the
original net system, so that the relevant properties of the large system can be investigated
with the small systems without the analysis of the reachable space, so as to alleviate the
explosion of the state space of the OOPRES+.

3. Basic Concepts

In this section, we propose some related concepts of OOPRES+.

Definition 1. A PRES+ model is N = (P, T, I, O, M), where P = {p1, p2, · · · , pm} is a non-
empty finite set of places, T = {t1, t2, · · · tn} is a non-empty finite set of transitions, I ⊆ P× T is
a non-empty finite set of input arcs, O ⊆ T × P is a non-empty finite set of output arcs. M is a
marking, which indicates the distribution of tokens in the place. k = 〈v, r〉 is a token, where v is the
token value, and r is the token time.

Figure 1 shows an example of the PRES+ model. For the example, in Figure 1,
P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4, t5}, I = {(p1, t1), (p1, t2), (p2, t3), (p3, t3), (p4, t4)},
{(p5, t5)}, O = {(t1, p2), (t2, p3), (t3, p4), (t3, p5), (t4, p1), (t5, p1)}, M0 is the initial marking,
M0(p1) = {〈2, 0〉}, M0(p2) = M0(p3) = M0(p4) = M0(p5) = ∅.
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Figure 1. An example of PRES+ model. 
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Figure 1. An example of PRES+ model.

Definition 2. For every transition t ∈ T, there exists a transition function f , i.e.,
∃ f : τ(p1)× τ(p2)× · · · × τ(pa)→ τ(q) , where τ is a type function that associates with every
place, where ·t = {p1, p2, . . . , pa}, q ∈ t.

Definition 3. For every transition t ∈ T, there exists a minimum transition delay a and a
maximum transition delay b, both of which are non-negative real numbers and a ≤ b, where a and
b represent the lower and upper bounds on the execution time of the transition function associated
with the transition t.

In Figure 1, the transition functions associated with the transitions t1, t2, t3, t4, t5 are
f1, f2, f3, f4, f5, and the transition delays are [a1, b1], [a2, b2], [a3, b3], [a4, b4], [a5, b5], respec-
tively.

Definition 4. An OOPRES+ subnet is a six-tuple SN = {P, T, I, O, W, Q}, where
P = {p1, p2, . . . . . . , pm} is a non-empty finite set of places, denoted by SN(P);
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T = {t1, t2, . . . . . . , tn} is a non-empty finite set of transitions, denoted by SN(T), and for
each transition t, there exists a transition function and transition time delay corresponding to
it; I ⊆ ((P× T) ∪ (Q× T)) is the input arc set; O ⊆ ((T × P) ∪ (T ×Q)) is the output arc set;
W is the weight function, which defines the weight size on the flow relationship, and the default
value is 1; Q = {q1, q2, . . . . . . , qs} is the set of message places, denoted by SN(Q).

The message place that receives messages from the subnet and transmits them to the
gateway is called the output place (denoted by QO), and the message place that receives
the messages from the gateway and transmits them to the subnet is called the input place
(denoted by QI).

Figure 2 shows an example of the OOPRES+ subnet, where P = {p1, p2 },
T = {t1, t2, t3, t4, t5}, I = {(q1, t1), (q1, t2), (p1, t3), (p1, t4), (p2, t5)}, O = {(t1, p1), (t2, p1),
(t3, p2), (t4, p2), (t5, q2)}, M0 is the initial marking, M0(p1) 6= ∅, M0(p2) = M0(q1) =
M0(q2) = ∅, Q = {q1, q2}, where q1 is the input message place and q2 is the output
message place.
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Figure 2. An example of OOPRES+ subnet.

Definition 5. An OOPRES+ net is a four-tuple Σ = {N, F, G, M}, where N =
{SN1, SN2, . . . . . . , SNm} is the subnet set of OOPRES+ (where the place set, the transition
set, and the messages place set are denoted by N(P), N(T), and N(Q), respectively.); F is the
flow relation between subnets and gateways, including two parts FI and FO, where FI ⊆ Q× G,
FO ⊆ G×Q; G = {g1, g2, . . . . . . , gS} is a set of gateways; M is the system making, and the initial
marking is M0.

Definition 6. Let Σ = {N, F, G, M} be an OOPRES+ net system with M ∈ R(M0), and M0 is
the initial marking.

(i) For transitiont ∈ T, if ·t ∩Q 6= ∅, then t is said to be enabled under M, if and only if

∀p ∈ P : M(p) ≥W(p, t) (1)

∀q ∈ Q : M(q) ≥W(q, t) (2)

(ii) For t ∈ T, if ·t ∩ Q = ∅, then t is said to be enabled under M, if and only if it satisfies
formula (2).

(iii) The system marking changes after the firing of transition t: M→ M′ , where
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M′(p) =


M(p)−W(p, t) pε·t− t·

M(p) + W(t, p) pεt· − ·t
M(p)−W(p, t) + W(t, p) pε·t ∩ t·

M(p) else

M′(q) =


M(q)−W(q, t) qε·t
M(q) + W(t, q) qεt·
M(q) else

Definition 7. Let an OOPRES+ net system be Σ = {N, F, G, M0}, with M0 as the initial
marking and t ∈ N(t), then

(i) A transition t is said to be live if for every M ∈ R(M0), there exists M′ ∈ R(M), such that
M′[t >.

(ii) An OOPRES+ net system Σ is said to be live if, for system Σ, ∀t ∈ N(T), t is live.

Definition 8. Let an OOPRES+ net system be Σ = {N, F, G, M0}, and M0 the initial marking,
p ∈ N(P), q ∈ N(Q), then

(i) A place p is said to be bounded if there exists a positive integer K such that ∀M ∈ R(M0),
M(p) ≤ K. A message place q is said to be bounded if there exists a positive integer B such
that ∀M ∈ R(M0), M(q) ≤ B.

(ii) An OOPRES+ net system Σ is said to be bounded if, for a system Σ, ∀p ∈ N(P) and
∀q ∈ N(Q), p and q are bounded.

4. Subnet Reduction Rules and Property Analysis of OOPRES+

In this section, we present two internal subnet reduction rules of the OOPRES+ net
system, and propose the necessary and sufficient conditions for the reduced OOPRES+ net
systems to preserve liveness and boundedness.

4.1. Q-Type Internal Subnet Reduction

In this section, we will introduce the Q-type internal subnet reduction rule of the
OOPRES+. Figure 3 is an example of this reduction rule.
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Definition 7. Let an OOPRES+ net system be 𝛴 = {𝑁, 𝐹, 𝐺, 𝑀଴}, with 𝑀଴ as the initial marking 
and 𝑡 ∈ 𝑁(𝑡), then 
(i) A transition 𝑡 is said to be live if for every 𝑀 ∈ 𝑅(𝑀଴), there exists 𝑀′ ∈ 𝑅(𝑀), such that 𝑀ᇱ[𝑡 >. 
(ii) An OOPRES+ net system 𝛴 is said to be live if, for system 𝛴, ∀𝑡 ∈ 𝑁(𝑇), 𝑡 is live. 

Definition 8. Let an OOPRES+ net system be 𝛴 = {𝑁, 𝐹, 𝐺, 𝑀଴}, and 𝑀଴ the initial marking, 𝑝 ∈ 𝑁(𝑃), 𝑞 ∈ 𝑁(𝑄), then 
(i) A place 𝑝  is said to be bounded if there exists a positive integer 𝐾  such that ∀𝑀 ∈𝑅(𝑀଴), 𝑀(𝑝) ≤ 𝐾. A message place 𝑞 is said to be bounded if there exists a positive integer 𝐵 such that ∀𝑀 ∈ 𝑅(𝑀଴), 𝑀(𝑞) ≤ 𝐵. 
(ii) An OOPRES+ net system 𝛴 is said to be bounded if, for a system 𝛴, ∀𝑝 ∈ 𝑁(𝑃) and ∀𝑞 ∈𝑁(𝑄), 𝑝 and 𝑞 are bounded. 

4. Subnet Reduction Rules and Property Analysis of OOPRES+ 
In this section, we present two internal subnet reduction rules of the OOPRES+ net 

system, and propose the necessary and sufficient conditions for the reduced OOPRES+ net 
systems to preserve liveness and boundedness. 

4.1. Q-Type Internal Subnet Reduction 
In this section, we will introduce the Q-type internal subnet reduction rule of the 

OOPRES+. Figure 3 is an example of this reduction rule. 
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Figure 3. An example of Q-type internal subnet reduction rule. Figure 3. An example of Q-type internal subnet reduction rule.

Definition 9. Let SN1 = {P1, T1, I1, O1, W1, Q1} be a subnet of OOPRES+ net system
Σ = {N, F, G, M}. S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is called a Q-type internal subnet of SN1,

if and only if the following conditions are satisfied.
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(i) P′1 ⊆ P1, T′1 ⊆ T1, Q′1 ⊆ Q1, and P′1 6= ∅, T′1 6= ∅, Q′1 6= ∅;
(ii) I′1 = I1 ∩

{(
P′1 × T′1

)
∪
(
Q′1 × T′1

)}
, and O′1 = O1 ∩

{(
T′1 × P′1

)
∪
(
T′1 ×Q′1

)}
;

(iii)
(
·T′1 ∪ T′1·

)
⊆
(

P′1 ∪Q′1
)
;

(iv) {qin, qout} ⊆ Q′1, where qin is the only input message place of S′1 and qout is the only output
message place of S′1.

For the transition set N
(
T′1
)

of Q-type internal subnet S′1 =
{

P′1, T′1, I′1, O′1, W ′1, Q′1
}

,
there exists the transition function fT′1

. Take Figure 3 as an example. Transitions t2, t4, and
t6 are sequence relations. Transitions t3, t5, and t6 are sequence relations. Transition sets

{t2, t4} and {t3, t5} are parallel relations. So, fT′1
= ( f2 � f4)

∣∣∣∣∣∣( f3 � f5

)
� f6 (where the

symbol � represents compound operation, and || represents parallel operation).
For the transition set N

(
T′1
)

of Q-type internal subnet S′1 =
{

P′1, T′1, I′1, O′1, W ′1, Q′1
}

,
there exists a minimum transition time delay aT′1

and a maximum transition time delay
bT′1

, both of which are non-negative real numbers and satisfy aT′1
≤ bT′1

. Take Figure 3
as an example. Transitions t2, t4, and t6 are sequence relations. Transitions t3, t5, and
t6 are sequence relations. Transition sets {t2, t4} and {t3, t5} are parallel relations. So,
aT′1

= max(a2 + a4, a3 + a5) + a6, bT′1
= max(b2 + b4, b3 + b5) + b6.

Based on the transition function of the transition set N
(
T′1
)
, the transition time delay,

and the token information in the input place qin, the token information in the output place
qout can be calculated.

Definition 10. (Q-type internal subnet reduction rule) Suppose SN1 = {P1, T1, I1, O1, W1, Q1} is
a subnet of OOPRES+ net system Σ = {N, F, G, M}. Let the reduced subnet
SN2 = {P2, T2, I2, O2, W2, Q2} be obtained from using message place q̃ to replace the internal
subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of SN1 where,

(i) P2 = P1 − P′1;
(ii) T2 = T1 − T′1;
(iii) Q2 = Q1 −Q′1 + {q̃};
(iv) I2 = (I1 ∩ {(P2 × T2) ∪ (Q2 × T2)}) ∪ (q̃× qout·);
(v) O2 = (O1 ∩ {(T2 × P2) ∪ (T2 ×Q2)}) ∪ (·qin × q̃);
(vi) The token information in q̃ is the same as the token information in qout.

Supposition 1. In the OOPRES+ net system Σ = {N, F, G, M}, suppose that each transition of
the Q-type internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is live and each place of S′1 is bounded.

Theorem 1. Let OOPRES+ net system Σ′ = {N′, F′, G′, M′} be obtained from Σ = {N, F, G, M}
by reducing the Q-type internal-subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of the subnet

SN1 = {P1, T1, I1, O1, W1, Q1} of Σ. Then Σ′ = {N′, F′, G′, M′} is bounded if and only if
Σ = {N, F, G, M} is bounded.

Proof. (If) since Σ = {N, F, G, M} is bounded, then ∀p ∈ N(P), there exists a positive
integer K0 such that ∀M ∈ R(M0), M(p) ≤ K0, and ∀q ∈ N(Q), there exists a posi-
tive integer B0 such that ∀M ∈ R(M0), M(q) ≤ B0. Obviously, there exist positive in-
tegers K1 and B1, such that ∀p ∈

(
N(P)− SN1

(
P′1
))

, M(N(P)−SN1(P′1))
(p) ≤ K1, ∀q ∈(

N(Q)− SN1
(
Q′1
))

, M(N(Q)−SN1(Q′1))
(q) ≤ B1 (where M(N(P)−SN1(P′1))

is the vector after
removing the relevant component of P′1 of M, and M(N(Q)−SN1(Q′1))

) is the vector after re-
moving the relevant component of Q′1 of M). Similarly, there exist positive integers K2 and
B2, such that ∀p ∈ SN1

(
P′1
)
, M(SN1(P′1))

(p) ≤ K2, ∀q ∈ SN1
(
Q′1
)
, M(SN1(Q′1))

(q) ≤ B2. By
Definition 10, ∀p ∈ SN2(P2), M′(SN2(P2))

(p) ≤ K2, ∀q ∈ SN2(Q), M′(SN2(Q2))
(q) ≤ B2. Let

K = max{K1, K2}, B = max{B1, B2}, then ∀p ∈ N′(P) such that ∀M′ ∈ R(M′0) : M′(p) ≤
K; ∀q ∈ N′(Q) such that ∀M′ ∈ R(M′0) : M′(q) ≤ B.
(Only-if) Since Σ′ = {N′, F′, G′, M′} is bounded, according to Definition 10, the remaining
places of the net system Σ = {N, F, G, M} are bounded by removing the Q-type internal
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subnet S′1 =
{

P′1, T′1, I′1, O′1, W ′1, Q′1
}

. By Supposition 1, the Q-type internal subnet S′1 ={
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is bounded. So, the net system Σ = {N, F, G, M} is bounded. �

Theorem 2. Let OOPRES+ net system Σ′ = {N′, F′, G′, M′} be obtained from Σ = {N, F, G, M}
by reducing the Q-type internal-subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of the subnet SN1 =

{P1, T1, I1, O1, W1, Q1} of Σ. Then Σ′ = {N′, F′, G′, M′} is live if and only if Σ = {N, F, G, M}
is live.

Proof. (If) since Σ = {N, F, G, M} is live, then ∀t ∈ N(T), t is live. Since
(

N(T)− S′1
(
T′1
))
⊆

N(T), ∀t ∈
(

N(T)− S′1
(
T′1
))

, then t is live. It can be seen that after removing the internal
subnet S′1 from Σ = {N, F, G, M}, the system is still live. According to Definition 10,
∀t ∈ SN2(T2), t is live. Thus, the net system Σ′ = {N′, F′, G′, M′} is live.
(Only-if) Since the net system Σ′ = {N′, F′, G′, M′} is live, according to Definition 10, the
token information in q̃ is the same as that in qout. By Supposition 1, each transition of
the Q-type internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is live, therefore, the net system

Σ = {N, F, G, M} is live. �

Note that in the subnet SN1 = {P1, T1, I1, O1, W1, Q1} of the net system
Σ = {N, F, G, M}, if there are multiple Q-type internal subnets, as long as these inter-
nal subnets do not have the same pre-set and post-set, the above Q-type internal subnet
reduction rule can still be used to reduce the net system and preserve the boundedness and
liveness of the original net system.

Corollary 1. Suppose SN1 = {P1, T1, I1, O1, W1, Q1} is a subnet of the net system
Σ = {N, F, G, M}. In SN1, there exists a Q-type internal subnet set

{
S′11, S′12, . . . , S′1k

}
, where

·S′1i ∩ ·S′1j = ∅, S′1i· ∩ S′1j· = ∅ (where i, j = 1, 2, . . . , k, i 6= j). Let Σ′ = {N′, F′, G′, M′} be
obtained from Σ = {N, F, G, M} using Q-type internal subnet reduction rule to reduce the Q-type
internal subnet set

{
S′11, S′12, . . . , S′1k

}
of SN1, then Σ′ = {N′, F′, G′, M′} is bounded and live if

and only if Σ = {N, F, G, M} is bounded and live.

For the subnet set {SN1, SN2, . . . . . . , SNm} of the net system Σ = {N, F, G, M}, if these
subnets do not have the same pre-set and post-set between them, and there are multiple
disjoint Q-type internal subnets in each subnet, the net system Σ = {N, F, G, M} can be
reduced using the Q-type internal subnet simplification rule, and the boundedness and
liveness of the original net system can still be preserved.

Corollary 2. Suppose {SN1, SN2, . . . . . . , SNm} is a subnet set of the OOPRES+ net system
Σ = {N, F, G, M}, where ·SNi ∩ ·SNj = ∅, SNi· ∩ SNj· = ∅ (where i, j = 1, 2, . . . , m,
i 6= j). There exists a Q-type internal subnet set

{
S′i1, S′i2, . . . , S′il

}
of SNi (i = 1, 2, . . . , m), where

·S′iu ∩ ·S′iv = ∅, S′iu· ∩ S′iv· = ∅ (where u, v = 1, 2, . . . , l, u 6= v). Let Σ′ = {N′, F′, G′, M′} be
obtained from Σ = {N, F, G, M} using Q-type internal subnet reduction rule to reduce the Q-type
internal subnet set of {SN1, SN2, . . . . . . , SNm}, then Σ′ = {N′, F′, G′, M′} is bounded and live if
and only if Σ = {N, F, G, M} is bounded and live.

4.2. TQ-Type Internal Subnet Reduction

In this section, we will introduce the TQ-type subnet reduction rule of the OOPRES+.
Figure 4 is an example of this reduction rule.
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Figure 4. An example of TQ- type internal subnet reduction rule. 

Definition 11. Let 𝑆𝑁ଵ = {𝑃ଵ, 𝑇ଵ, 𝐼ଵ, 𝑂ଵ, 𝑊ଵ, 𝑄ଵ}  be a subnet of OOPRES+ net system 𝛴 ={𝑁, 𝐹, 𝐺, 𝑀}. 𝑆ଵᇱ = {𝑃ଵᇱ, 𝑇ଵᇱ, 𝐼ଵᇱ , 𝑂ଵᇱ , 𝑊ଵᇱ, 𝑄ଵᇱ } is called a TQ-type internal subnet of 𝑆𝑁ଵ, if and only 
if the following conditions are satisfied. 
1. 𝑃ଵᇱ ⊆ 𝑃ଵ, 𝑇ଵᇱ ⊆ 𝑇ଵ, 𝑄ଵᇱ ⊆ 𝑄ଵ, 𝑎𝑛𝑑 𝑃ଵᇱ ≠ ∅, 𝑇ଵᇱ ≠ ∅, 𝑄ଵᇱ ≠ ∅; 
2. 𝐼ଵᇱ = 𝐼ଵ ∩ {(𝑃ଵᇱ × 𝑇ଵᇱ) ∪ (𝑄ଵᇱ × 𝑇ଵᇱ)}; 
3. 𝑂ଵᇱ = 𝑂ଵ ∩ {(𝑇ଵᇱ × 𝑃ଵᇱ) ∪ (𝑇ଵᇱ × 𝑄ଵᇱ )}; 
4. (∙ 𝑃ଵᇱ ∪ 𝑃ଵᇱ ∙) ∪ (∙ 𝑄ଵᇱ ∪ 𝑄ଵᇱ ∙) ⊆ 𝑇ଵᇱ; 
5. {𝑡௜௡、𝑡௢௨௧}⊆ 𝑇ଵᇱ, where 𝑡௜௡ is the only input transition and 𝑡௢௨௧ is the only output transi-

tion. 

For the transition set 𝑇ଵᇱ of TQ-type internal subnet Sଵᇱ = {Pଵᇱ, Tଵᇱ, Iଵᇱ , Oଵᇱ , Wଵᇱ, Qଵᇱ }, there 
exists the transition function f୘భᇲ . Take Figure 4 as an example. Transitions 𝑡ଶ and 𝑡ସ are 
parallel relations. Transitions 𝑡ଷ  and 𝑡ହ  are parallel relations. Transition sets {𝑡ଵ, 𝑡ଷ, 𝑡ହ, 𝑡଺, 𝑡ଽ}  and {𝑡ଵ, 𝑡ଷ, 𝑡ହ, 𝑡଺, 𝑡ଽ}  are sequence relations. So, 𝑓 భ்ᇲ = 𝑓ଵ ⊙ {(𝑓ଶ ⊙𝑓ସ)||(𝑓ଷ ⊙ 𝑓ହ) ⊙ 𝑓଺}||(𝑓଻ ⊙ 𝑓 ) ⊙ 𝑓ଽ. 

For the transition set 𝑇ଵᇱ of TQ-type internal subnet 𝑆ଵᇱ = {𝑃ଵᇱ, 𝑇ଵᇱ, 𝐼ଵᇱ , 𝑂ଵᇱ , 𝑊ଵᇱ, 𝑄ଵᇱ }, there 
exists a minimum transition time delay 𝑎 భ்ᇲ and a maximum transition time delay 𝑏 భ்ᇲ, 
both of which are non-negative real numbers and satisfy 𝑎 భ்ᇲ ≤ 𝑏 భ்ᇲ. Take Figure 4 as an 
example. Transitions 𝑡ଶ and 𝑡ସ are parallel relations. Transitions 𝑡ଷ and 𝑡ହ are parallel 
relations. Transition sets {𝑡ଵ, 𝑡ଷ, 𝑡ହ, 𝑡଺, 𝑡ଽ}  and {𝑡ଵ, 𝑡ଷ, 𝑡ହ, 𝑡଺, 𝑡ଽ}  are sequence relations. So, 𝑎 భ்ᇲ = 𝑎ଵ + max (𝑎଻ + 𝑎଼, max(𝑎ଶ + 𝑎ସ, 𝑎ଷ + 𝑎ହ) + 𝑎଺)  + 𝑎ଽ , 𝑏 భ்ᇲ = 𝑏ଵ + max (𝑏଻ + 𝑏଼ + max(𝑏ଶ + 𝑏ସ, 𝑏ଷ + 𝑏ହ) + 𝑏଺) + 𝑏ଽ. 

Definition 12. (TQ-type internal subnet reduction rule) Suppose 𝑆𝑁ଵ = {𝑃ଵ, 𝑇ଵ, 𝐼ଵ, 𝑂ଵ, 𝑊ଵ, 𝑄ଵ} 
is a subnet of OOPRES+ net system 𝛴 = {𝑁, 𝐹, 𝐺, 𝑀} . Let the reduced subnet 𝑆𝑁ଶ ={𝑃ଶ, 𝑇ଶ, 𝐼ଶ, 𝑂ଶ, 𝑊ଶ, 𝑄ଶ}  be obtained from 𝑆𝑁ଵ = {𝑃ଵ, 𝑇ଵ, 𝐼ଵ, 𝑂ଵ, 𝑊ଵ, 𝑄ଵ}  using transition 𝑡̃  to re-
place the TQ-type internal subnet 𝑆ଵᇱ = {𝑃ଵᇱ, 𝑇ଵᇱ, 𝐼ଵᇱ , 𝑂ଵᇱ , 𝑊ଵᇱ, 𝑄ଵᇱ } of 𝑆𝑁ଵ where,  
(i) 𝑃ଶ = 𝑃ଵ − 𝑃ଵᇱ; 
(ii) 𝑇ଶ = 𝑇ଵ − 𝑇ଵᇱ + 𝑡̃; 
(iii) 𝑄ଶ = 𝑄ଵ − 𝑄ଵᇱ ; 
(iv) 𝐼ଶ = (𝐼ଵ ∩ {(𝑃ଶ × 𝑇ଶ) ∪ (𝑄ଶ × 𝑇ଶ)})∪ (∙ 𝑡௜௡ × 𝑡̃); 
(v) 𝑂ଶ = (𝑂ଵ ∩ {(𝑇ଶ × 𝑃ଶ)∪ (𝑇ଶ × 𝑄ଶ)})∪ (𝑡̃ × 𝑡௢௨௧ ∙); 
(vi) 𝑓௧ሚ = 𝑓 భ்ᇲ; 
(vii) 𝑎௧ሚ = 𝑎 భ்ᇲ, 𝑏௧ሚ = 𝑏 భ்ᇲ. 

Figure 4. An example of TQ- type internal subnet reduction rule.

Definition 11. Let SN1 = {P1, T1, I1, O1, W1, Q1} be a subnet of OOPRES+ net system
Σ = {N, F, G, M}. S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is called a TQ-type internal subnet of SN1, if

and only if the following conditions are satisfied.

1. P′1 ⊆ P1, T′1 ⊆ T1, Q′1 ⊆ Q1, and P′1 6= ∅, T′1 6= ∅, Q′1 6= ∅;
2. I′1 = I1 ∩

{(
P′1 × T′1

)
∪
(
Q′1 × T′1

)}
;

3. O′1 = O1 ∩
{(

T′1 × P′1
)
∪
(
T′1 ×Q′1

)}
;

4.
(
·P′1 ∪ P′1·

)
∪
(
·Q′1 ∪Q′1·

)
⊆ T′1;

5. { tin, tout} ⊆ T′1, where tin is the only input transition and tout is the only output transition.

For the transition set T′1 of TQ-type internal subnet S′1 =
{

P′1, T′1, I′1, O′1, W′1, Q′1
}

, there exists
the transition function fT′1

. Take Figure 4 as an example. Transitions t2 and t4 are parallel relations.
Transitions t3 and t5 are parallel relations. Transition sets {t1, t3, t5, t6, t9} and {t1, t3, t5, t6, t9}
are sequence relations. So, fT′1

= f1 � {( f2 � f4) ||( f3 � f5)� f6}||( f7 � f8)� f9 .
For the transition set T′1 of TQ-type internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
, there

exists a minimum transition time delay aT′1
and a maximum transition time delay bT′1

,
both of which are non-negative real numbers and satisfy aT′1

≤ bT′1
. Take Figure 4 as an

example. Transitions t2 and t4 are parallel relations. Transitions t3 and t5 are parallel
relations. Transition sets {t1, t3, t5, t6, t9} and {t1, t3, t5, t6, t9} are sequence relations. So,
aT′1

= a1 +max(a7 + a8, max(a2 + a4, a3 + a5)+ a6)+ a9,bT′1
= b1 +max(b7 + b8 +max(b2 +

b4, b3 + b5) + b6) + b9.

Definition 12. (TQ-type internal subnet reduction rule) Suppose SN1 = {P1, T1, I1, O1, W1, Q1}
is a subnet of OOPRES+ net system Σ = {N, F, G, M}. Let the reduced subnet
SN2 = {P2, T2, I2, O2, W2, Q2} be obtained from SN1 = {P1, T1, I1, O1, W1, Q1} using transition
t̃ to replace the TQ-type internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of SN1 where,

(i) P2 = P1 − P′1;
(ii) T2 = T1 − T′1 + t̃;
(iii) Q2 = Q1 −Q′1;
(iv) I2 = (I1 ∩ {( P2 × T2) ∪ (Q2 × T2)})∪

(
·tin × t̃

)
;

(v) O2 = (O1 ∩ {(T2 × P2) ∪(T2 ×Q2)}) ∪
(
t̃× tout·

)
;

(vi) f t̃ = fT′1
;

(vii) at̃ = aT′1
, bt̃ = bT′1

.

Supposition 2. In the OOPRES+ net system Σ = {N, F, G, M}, suppose that each transition of
the TQ-type internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is live and each place of S′1 is bounded.
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Theorem 3. Let OOPRES+ net system Σ′ = {N′, F′, G′, M′} be obtained from Σ = {N, F, G, M}
by reducing the TQ-type internal-subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of the subnet

SN1 = {P1, T1, I1, O1, W1, Q1} of Σ. Then Σ′ = {N′, F′, G′, M′} is bounded if and only if
Σ = {N, F, G, M} is bounded.

Proof. (If) since Σ = {N, F, G, M} is bounded, then ∀p ∈ N(P), there exists a posi-
tive integer K0 such that ∀M ∈ R(M0), M(p) ≤ K0, and ∀q ∈ N(Q), there exists a
positive integer B0 such that ∀M ∈ R(M0), M(q) ≤ B0. Obviously, there exist posi-
tive integers K1, B1, such that ∀p ∈

(
N(P)− SN1

(
P′1
))

, M(N(P)−SN1(P′1))
(p) ≤ K1, ∀q ∈(

N(Q)− SN1
(
Q′1
))

, M(N(Q)−SN1(Q′1))
(q) ≤ B1 (M(N(P)−SN1(P′1))

is the vector after remov-
ing the relevant component of P′1 of M, and M(N(Q)−SN1(Q′1))

is the vector after removing the
relevant component of Q′1 of M). According to Definition 12, N′

(
P′
)
= N(P)− SN1

(
P′1
)

and N′
(
Q′
)
= N(Q) − SN1

(
Q′1
)
. Thus, ∀p ∈ N′

(
P′
)
, M(N′(P′))(p) ≤ K1, ∀q ∈ N′

(
Q′
)
,

M(N′(Q′))(q) ≤ B1.
(Only-if) Since Σ′ = {N′, F′, G′, M′} is obtained from Σ = {N, F, G, M} using the TQ- type
internal subnet rule to reduce the TQ-type internal subnet of
SN1 = {P1, T1, I1, O1, W1, Q1}, according to Definition 12, N(P) = N′(P′) ∪ SN′1

(
P′1
)

and
N(Q) = N′(Q′) ∪ SN′1

(
Q′1
)
. By Supposition 2, SN′1

(
P′1
)

and SN′1
(
Q′1
)

are bounded. Since
Σ′ = {N′, F′, G′, M′} is bounded, then both N′(P′) and N′(Q′) are bounded. There-
fore, both N(P) and N(Q) are bounded. In summary, the OOPRES+ net system Σ =
{N, F, G, M} is bounded. �

Theorem 4. Let OOPRES+ net system Σ′ = {N′, F′, G′, M′} be obtained from Σ = {N, F, G, M}
by reducing the TQ-type internal-subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
of the subnet SN1 =

{P1, T1, I1, O1, W1, Q1} of Σ. Then Σ′ = {N′, F′, G′, M′} is live if and only if Σ = {N, F, G, M}
is live.

Proof (If) Since Σ = {N, F, G, M} is live, then ∀t ∈ N(T), t is live. Since
(

N(T)− S′(T1′)
1

)
⊆

N(T), then ∀t ∈
(

N(T)− S′(T1′)
1

)
, t is live. According to Supposition 2, in the net system

Σ = {N, F, G, M}, each transition of the TQ-type sub-internet S′1 =
{

P′1, T′1, I′1, O′1, W ′1, Q′1
}

is live. By Definition 12, f t̃ = fT′1
, at̃ = aT′1

, and bt̃ = bT′1
, therefore, t̃ is live. Since

N′(T′) =
(

N(T)− S′1
(
T′1
))
∪
{

t̃
}

, then ∀t ∈ N′(T′), t is live, i.e., the net system
Σ′ = {N′, F′, G′, M′} is live.
(Only-if) Since Σ′ = {N′, F′, G′, M′} is live, then t̃ is live. According to Definition 12,
f t̃ = fT′1

, at̃ = aT′1
, bt̃ = bT′1

. By Supposition 2, it follows that in Σ = {N, F, G, M}, each
transition of S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
is live. Since the net system Σ = {N, F, G, M} is

obtained from Σ′ = {N′, F′, G′, M′} using the TQ- type internal subnet reduction rule to
replace the transition t̃ with the internal subnet S′1 =

{
P′1, T′1, I′1, O′1, W ′1, Q′1

}
, then the net

system Σ = {N, F, G, M} is live. �

Note that in the subnet SN1 = {P1, T1, I1, O1, W1, Q1} of the net system
Σ = {N, F, G, M}, if there are multiple TQ-type internal subnets, as long as these in-
ternal subnets do not have the same pre-set and post-set, the above TQ-type internal subnet
reduction rule can still be used to reduce the net system and preserve the boundedness and
liveness of the original net system.

Corollary 3. Suppose SN1 = {P1, T1, I1, O1, W1, Q1} is a subnet of the net system
Σ = {N, F, G, M}. In SN1 there exists a TQ-type internal subnet set

{
S′11, S′12, . . . , S′1k

}
, where

·S′1i ∩ ·S′1j = ∅, S′1i· ∩ S′1j· = ∅ (where i, j = 1, 2, . . . , k, i 6= j). Let Σ′ = {N′, F′, G′, M′}
be obtained from Σ = {N, F, G, M} using TQ-type internal subnet reduction rule to reduce the
TQ-type internal subnet set

{
S′11, S′12, . . . , S′1k

}
of SN1, then Σ′ = {N′, F′, G′, M′} is bounded

and live if and only if Σ = {N, F, G, M} is bounded and live.
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Further, for the subnet set {SN1, SN2, . . . . . . , SNm} of the net system Σ = {N, F, G, M},
if these subnets do not have the same pre-set and post-set between them, and there are
multiple disjoint TQ-type internal subnets in each subnet, the net system Σ = {N, F, G, M}
can be reduced using the TQ-type internal subnet reduction rule, and the boundedness and
liveness of the original net system can still be preserved.

Corollary 4. Suppose {SN1, SN2, . . . . . . , SNm} is a subnet set of the OOPRES+ net system
Σ = {N, F, G, M}, where ·SNi ∩ ·SNj = ∅, SNi· ∩ SNj· = ∅ (where i, j = 1, 2, . . . , m, i 6= j).
There exists a TQ-type internal subnet set

{
S′i1, S′i2, . . . , S′il

}
of SNi (i = 1, 2, . . . , m), where

·S′iu ∩ ·S′iv = ∅, S′iu· ∩ S′iv· = ∅ (where u, v = 1, 2, . . . , l, u 6= v). Let Σ′ = {N′, F′, G′, M′}
be obtained from Σ = {N, F, G, M} using Q-type internal subnet reduction rule to reduce the
TQ-type internal subnet set of {SN1, SN2, . . . . . . , SNm}, then Σ′ = {N′, F′, G′, M′} is bounded
and live if and only if Σ = {N, F, G, M} is bounded and live.

5. Application

This section applies the proposed OOPRES+ reduction rules to the modeling and
analysis of the embedded control system of a smart restaurant, and verifies the reliability
and effectiveness of the proposed reduction rules.

In the following, an OOPRES+ is applied to model and analyze a smart restaurant em-
bedded control system. Figure 5 shows the net system OOPRES+ model Σ = {N, F, G, M}
of this embedded control system. The four control modules of reservation, meal dispensing,
purchasing and decision making are modeled as object subnet systems SN1 , SN2, SN3, SN4,
respectively.
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Figure 5. Embedded control system model of a smart restaurant Σ = {N, F, G, M}.

In Figure 5, t1: request restaurant data; t2: obtain display data; t3: submit meal data;
t4: submit evaluation data; t5: complete data upload; t6: submit meal preparation data;
t7: complete data upload; t8: make production plans; t9: request inventory data; t10:
obtain inventory data; t11: submit raw material data; t12: submit inventory transfer data;
t13: complete data upload; t14: submit recipe data; t15: complete data upload; t16: request to
obtain purchase data; t17: obtain purchase data; t18: submit order data; t19: complete data
upload; t20: request purchase data; t21: obtain procurement data; t22: upload costing data;
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t23: request access to evaluation data; t42: obtain evaluation data; t25: submit feedback data;
t26: complete evaluation data upload; t27: complete procurement data upload. gi: gateway;
fi: the transition function of the corresponding transition; [ai, bi]: the transition time delay
of the corresponding transition. By Definitions 7 and 8, the net system Σ = {N, F, G, M} is
bounded and live.

As shown in Figure 6, the Q-type internal subnet (generated by {p17, t21, t22, q11, q12})
of SN1 of the OOPRES+ net system model Σ = {N, F, G, M} is reduced to the message
place q̃, and then the reduced net system Σ1 = {N1, F1, G1, M1} is obtained. It is easy to see
that each place of this Q-type internal subnet is bounded and each transition is live. By
Theorems 1 and 2, the net system Σ1 = {N1, F1, G1, M1} is bounded and live if and only if
Σ = {N, F, G, M} is bounded and live.
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Figure 6. Σ1 = {N1, F1, G1, M1} obtained using the Q-type internal subnet reduction rule.

As shown in Figure 7, the TQ-type internal-subnet (generated by { p2, p3, p4, t1, t2, t3, t4, t5}
of SN1, the TQ-type internal subnet (generated by {p6, p7, p8, p9, p10, p11, p12, t6, t7, t8, t9, t10, t11,
t12, t13, t14, t15, q5, q6}) of SN2, the TQ-type internal subnet (generated by {p14, p15, p16, t16, t17,
t18, t19}) of SN3, and the TQ-type internal subnet (generated by {p18, p19, p20, t23, t24, t25, t26})
of SN4 of the OOPRES+ net system model Σ1 = {N1, F1, G1, M1} are reduced to the transitions
t28, t29, t30, and t31, respectively, and then the reduced net system Σ2 = {N2, F2, G2, M2}
is obtained. It is easy to know that each place of the above four the TQ-type internal sub-
nets is bounded and each transition is live. Since the above the TQ-type internal subnet
reductions satisfy the conditions of Theorems 3 and 4, it is easy to see that the net system
Σ2 = {N2, F2, G2, M2} is bounded and live if and only if Σ1 = {N1, F1, G1, M1} is bounded
and live.
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Figure 7. Σ2 = {N2, F2, G2, M2} obtained using the TQ-type internal subnet reduction rule.

Note that, the boundedness and liveness of the OOPRES net system Σ = {N, F, G, M},
Σ1 = {N1, F1, G1, M1} and Σ2 = {N2, F2, G2, M2} in Figures 5–7 can also be verified by the
modeling tool software Tina 3.7.0. (Tina 3.7.0 is a simulation tool used only for simulation
analysis and viewing property analysis results.) The verification of boundedness and
liveness of the original OOPRES+ net system and the reduced OOPRES+ net system can be
seen from Figures 8–11.
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It can be seen from Figures 9 and 11 that the original smart restaurant OOPRES+
model and the reduced OOPRES+ model are all bounded and live.

In summary, the original OOPRES+ net system is reduced by using the Q-type internal
subnet reduction rule and the TQ-type internal subnet reduction rule. Some sufficient and
necessary conditions for the reduction rules given in this paper can make the target network
system keep the boundedness and liveness of the original network system unchanged, so
that the boundedness and liveness of the original network system can be studied with the
reduced net system, and the purpose of studying the large system with the small system
can be achieved, so as to alleviate the “state space explosion” problem of the OOPRES+ net
system.

6. Conclusions

Aiming at the problem of formal modeling and verification analysis of embedded
systems, this paper presents two internal-subnet reduction rules of an object-oriented PRES+
(OOPRES+), and investigates the problem of preserving the liveness and boundedness of
the reduction operation. This paper proposes certain necessary and sufficient conditions
for the reduction operation to preserve the boundedness and liveness of the original net
system, and applies these reduction rules to the modeling and analysis of the intelligent
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restaurant embedded control system. The research results of this paper will provide a new
way for the analysis of large-scale complex embedded system model.

The next research work is to give broader conditions and investigate the preservation of
other important properties (such as timing, reachability, and functionality) of the reduction
operations of OOPRES+.
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