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Abstract: By providing a 360◦ field of view, spherical panoramas can convey vivid visual impressions.
Thus, they are widely used in virtual reality systems and street view services. However, due to
bandwidth or storage limitations, existing systems only provide sparsely captured panoramas and
have limited interaction modes. Although there are methods that can synthesize novel views based
on captured panoramas, the generated novel views all lie on the lines connecting existing views.
Therefore these methods do not support free-viewpoint navigation. In this paper, we propose a
new panoramic image-based rendering method for novel view generation. Our method represents
each input panorama with a set of spherical superpixels and warps each superpixel individually so
the method can deal with the occlusion and disocclusion problem. The warping is dominated by a
two-term constraint, which can preserve the shape of the superpixel and ensure it is warped to the
correct position determined by the 3D reconstruction of the scene. Our method can generate novel
views that are far from input camera positions. Thus, it supports freely exploring the scene with a
360◦ field of view. We compare our method with three previous methods on datasets captured by
ourselves and by others. Experiments show that our method can obtain better results.

Keywords: viewpoint navigation; 360◦ field of view; multi-view stereo; real-time rendering

1. Introduction

Panoramic images which have a 360◦ field of view allow the viewer to interactively
look around a scene and can provide vivid visual impressions. In recent years, industrial
communities began to manufacture economic spherical cameras for panoramic image cap-
ture and virtual reality headsets for panoramic image display. Thus, these images are more
and more easily obtained and are widely used in computer graphics [1], virtual navigation
[2–4], cultural heritage and the entertainment industry. For example, mainstream web
map service providers feature street view services which provide panoramic images from
positions along streets in the world. The Google Arts & Culture project [5] can let the
public access panoramic views of famous museums. Some video-sharing websites, such as
Youtube and Facebook, have also begun to provide panoramic data streaming services.

However these systems usually only provide a collection of panoramic images cap-
tured at sparse viewpoints, thus they have limited interaction modes, and only support
panning, tilting and zooming from one viewpoint. If the viewer wants to explore the scene
from a different viewpoint, they must hop from the current one to the other one, which
may bring unpleasant visual discontinuity. To smoothly transit between sparsely captured
panoramas, some panoramic view interpolation methods are proposed [6–8]. However,
these methods can only generate panoramic images at viewpoints that are located on the
path connecting two adjacent views and do not support free-viewpoint navigation. Recently,
some other algorithms [9,10] have ben proposed to enable walking through a scene. These
methods all follow the triangulation and warping pipeline [8,11], which first triangulates
the input panoramas based on the feature points and then warps the resulting triangles to
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a novel viewpoint. However, these methods cannot deal with the occlusion problem and
may induce ghosting or artefacts as they do not take the image content into consideration.

The preliminary content of this paper has partially appeared in VR 2019 [12]. The
overall contributions of this extended journal version can be summarized as listed below.

We propose a panoramic image-based rendering algorithm for free-viewpoint navi-
gation of indoor scenes. Unlike previous methods, our method does not assume that the
novel view lies on the line connecting input views and thus can let the user freely explore
an indoor scene. Our method adopts a spherical superpixel-based per-view representa-
tion and locally warps each superpixel individually for novel view synthesis, which can
prevent occlusion problems and artefacts. To be specific, given input panoramic images,
our method first estimates the camera parameters for each image using structure from
motion and densely reconstructs the 3D scene using two different multi-view stereo al-
gorithms. We then over-segment each input panorama into superpixels using a spherical
superpixel segmentation algorithm [13]. As the superpixel boundaries always correspond
to depth discontinuities and image edges, the usage of this representation in warping can
produce much fewer artefacts than triangulation-based methods. We leverage the gener-
ated superpixels to identify the regions that lack depth samples and synthesize missing
ones by combining the complementary depth information from the two multi-view stereo
algorithms. To generate novel views, our method locally warps each superpixel to virtual
viewpoints with reprojection and shape-preserving constraints. As the superpixels are
warped individually, our method does not suffer from occlusion problems and can obtain
much more plausible results.

The pipeline of our method in this paper is shown in Figure 1. The highlights of this
paper are as follows:

• We propose a panoramic image-based rendering algorithm for free-viewpoint navi-
gation of indoor scenes. Unlike previous methods, our method does not assume that
a novel view lies on the line connecting input views and thus can let the user freely
explore the indoor scene.

• We explore a spherical superpixel-based per-view representation and locally warp
each superpixel individually for novel view synthesis, which can prevent us from
occlusion problems and artefacts.

• We have tested our method on downloaded and self-captured panoramic datasets.
Experimental results show that our method achieves better performance compared
with baselines.

spherical
panoramas

depth synthesis
and selection rendering result

finallocal warping
for superpixels

before after

Input Offline Processing Online Real-time Rendering

(a) (b) (c) (d) (e) (f)

spherical superpixel
segmentationand multi-view stereo

structure from motion

Figure 1. The pipeline of our method. Given a set of input panoramas (a), we first use structure from
motion algorithm to estimate the camera poses and multi-view stereo for dense reconstruction (b).
Then, we generate spherical superpixels for each image (c), based on which we synthesize missing
depth samples and select some reliable ones for novel view synthesis (d). Finally, we warp each
superpixel locally (e) and render the warped superpixels in real-time (f). See text for more details
about each stage.

The remainder of this paper is organized as follows. Section 2 reviews the most related
work. We describe the overview of our method in Section 3. The 3D reconstruction of the
scene from input panoramas and the generation of depth maps are introduced in Section
4. The spherical superpixel local warping and rendering are described in Section 5. After
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discussing the experimental results in Section 6, we conclude the paper and give avenues
for future work.

2. Related Work

In this section, we introduce related works, including 3D reconstruction from spherical
panoramas, planar and panoramic image-based rendering and free-viewpoint navigation.

2.1. 3D Reconstruction from Panoramas

Free-viewpoint navigation as proposed in this paper relies on scene reconstruction.
Zioulis et al. [14] presented a learning framework to estimate scene depth from a single 360◦

image in a completely supervised manner with ground truth depth. Later, they [15] also
explored spherical view synthesis for learning monocular 360◦ depth in a self-supervised
manner. Depth maps from omnidirectional stereo images were proposed in [16]. However,
the above methods can only estimate depth from one image. When multiple spherical
images are given, the camera parameters of each spherical image cannot be computed.
Wang et al. [17] proposed a novel self-supervised learning approach for predicting the
omnidirectional depth and camera motion from a 360◦ video. This method can only estimate
the relative pose between two images. Kim and Hilton [18] presented a 3D environment
modelling method using multiple pairs of spherical stereo images. For accurate surface
reconstruction, they designed a PDE-based disparity estimation method which produces
continuous depth fields with sharp depth discontinuities. The work in [19] proposed a
novel method for estimating the 3D geometry of indoor scenes based on multiple spherical
images. This method uses optical flow algorithms to obtain point correspondences for
dense depth map estimation. EPAR [20] is an efficient and privacy-aware augmented
reality framework for indoor location-based services, which can improve the quality of
scene reconstruction. Our work reconstructs the scene from multiple spherical images
by extending existing planar structures from motion and multi-view stereo algorithms to
spherical ones.

2.2. Planar Image Based Rendering

Image-based rendering refers to the techniques that rely primarily on the source
images to produce new virtual views. A good survey can be found in [21]. Here, we only
introduce some works that are most related to ours. Chaurasia et al. [22] introduced a
new image-based rendering algorithm that is robust to missing or unreliable geometry,
providing plausible novel views even in regions quite far from the input camera positions.
Their method synthesizes depth for poorly reconstructed regions and locally warps the
input images to novel views. Our method adopts a similar pipeline to this approach,
but takes panoramic images as the input. Hedman et al. [23] proposed an image-based
rendering algorithm for an indoor scene. Their method combines a global mesh from indoor-
friendly depth sensors and depth maps from multi-view stereo for improved reconstruction.
Then a scalable rendering algorithm, which applies mesh simplification and tiling, is
designed to accelerate the rendering speed. Hedman et al. [24] presented a deep blending
approach for image-based rendering, in which held-out real image data are used to learn
blending weights to combine input photo contributions. Additionally, they combined two
complementary multi-view stereo reconstructions, which is also adopted in our work for
3D reconstruction based on panoramic images.

2.3. Panoramic Image Based Rendering

Compared with traditional images, panoramas provide a 360◦ field of view and are
widely used in virtual navigation systems. Uyttendaele et al. [3] filmed a tour of an
environment with panoramic videos and designed a system that let users move freely along
a set of predefined tracks and choose between different directions of motion at decision
points. Chen et al. [25] presented a system that integrates a map with a video automatically
constructed from panoramic imagery captured at close intervals along the route. The speed
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and field of view of the video are automatically varied to highlight turns and landmarks.
Huang et al. [26] proposed an approach that synthesizes new views with a rotational and
translational motion of the viewpoint, so that the input monoscopic panoramic video can
be played in full stereo.

Taking sparsely captured panoramas as input, some other methods perform panoramic
image-based rendering. Kolhatkar and Laganière [7] proposed a real-time cubic panorama
generation algorithm, which first computes the optical flow field between the adjacent
panoramas and then uses view morphing to generate virtual viewpoints between existing
views. The Cube2Video [8] framework first detects and matches feature points between
adjacent panoramas, then triangulates the matched points and finally warps corresponding
triangles for novel view generation. These two methods can only generate novel views that
are located on the line connecting two adjacent views and cannot support free-viewpoint
navigation. Following the pipeline of Cube2Video, Kawai et al. [9] proposed a panorama
interpolation technique that enables simplified walk-through in real space. Andersen and
Popescu [10] presented a system that enables the user to acquire a collection of panoramic
images sufficient for virtual navigation by image morphing. All these methods globally
warp the input images and cannot deal with the occlusion problem.

2.4. Free-Viewpoint Navigation

Free viewpoint navigation can also be implemented by light-field rendering [27].
New views from arbitrary camera positions can be generated by simply combining and
resampling the available images without knowing depth information or feature matching.
Considering the large field of view, different strategies have been introduced to compute a
panoramic light field. The method proposed in [28] transforms light fields with small fields
of view into rays in 3D space, then extracts panoramic light fields by blending registered
rays. Taguchi et al. [29] present a wide-angle light-field capturing device based on a
spherical catadioptric imaging system. The light-field data are extracted through accurate
geometric modelling of captured multi-perspective photos. Krolla et al. [30] captured
several panoramic images by moving a spherical camera vertically and combining the
captured images in a panoramic light field. Panoramic light fields can also be recovered
from densely captured hand held video. Please note that although light-field rendering
supports free-viewpoint navigation, the moving range of the virtual view is restricted
because of the parameterization of the light field.

3. Overview

Our method shares the same spirit with that of Chaurasia et al. [22]. Their method
first estimates the camera parameters using the structure from motion algorithm [31] and
reconstructs a 3D point cloud using multi-view stereo [32]. The point cloud is projected into
cameras to obtain depth maps with sparse depth samples. Then, each input image is over-
segmented into superpixels, which are used to identify poorly reconstructed superpixels
and synthesize missing depth values. Finally, a local shape-preserving warp is performed
on each superpixel to allow plausible novel view generation. Our method follows a
similar pipeline as shown in Figure 1, but has made some modifications and adaptions
for panoramic input. Given a set of spherical panoramas taken from multiple viewpoints,
we first estimate the camera parameters using the structure from motion algorithm by
applying an imaging sphere model [33]. We then convert each spherical panorama into
multiple perspective planar images, which are sent to a multi-view stereo algorithm for
dense reconstruction. We over-segment the input panoramas using a spherical superpixel
algorithm [13], which takes the geometry of panoramas into consideration. Finally, we
synthesize depth values for spherical superpixels which do not contain any depth samples.
In the online stage, given the position and orientation of the novel view, we use reliable
depth samples in each spherical superpixel as constraints in the local warping and render
the warped mesh overlaid on each superpixel for novel view generation.
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4. Depth Map Generation

In this section, we introduce how to generate depth maps from the input. We first
estimate the camera parameters for each input panorama and then generate depth maps
with two complementary multi-view stereo algorithms. Finally, we combine the depth
information of these two algorithms and synthesize some missing depth values, which is
followed by reliable depth sample selection for local warping.

4.1. Structure from Motion

Structure from motion is the process of estimating the camera parameters and re-
constructing the sparse 3D structure from a collection of images taken from different
viewpoints. It commonly starts with feature extraction and matching, followed by 3D
structure and camera motion estimation, which is usually implemented by minimizing the
Euclidean reprojection error through bundle adjustment. To extract camera parameters for
the input panoramas, we use the Bundler software package [31]. As the original Bundler is
designed for planar images, three modifications should be made to adapt it to deal with
spherical panoramas.

First, the input spherical panoramas are represented in an equirectangular projection
format, which has large image distortions, especially in polar regions. Thus, traditional
feature detectors and descriptors cannot be used directly on the input images. In this paper,
we convert each spherical panorama into a cube map and detect SIFT [34] features on each
face of the cube map. Then, the features from all six faces are used as the features of the
original panorama, and feature matching is performed to find correspondences between
panoramas. Please note that although there are feature extractors designed for spherical
panoramas, such as [35], we use the above strategy. This is because we also need to convert
input panoramas into cube maps in the following multi-view stereo stage.

Second, given a world point X in 3D space, its projection into a spherical camera is
represented by a unit vector, i.e.,

x =
RX + t
‖RX + t‖ , (1)

where R and t are the rotation matrix and the translation vector of the spherical camera,
respectively. This is different from the imaging model for traditional planar images, which
can be written as x = K[R t]X, where K is the calibration matrix of the pinhole camera [36].
The spherical cameras are implicitly calibrated and we only need to estimate the external
parameters, i.e., R and t, for each input panoramic image.

Third, due to the fact that each pixel of spherical panorama is actually a 3D point
located on the unit sphere, the Euclidean distance minimized in the cost function of Bundler
is replaced with the angle between the measured and reprojected pixel position, i.e.,

d(x, x̂) = arccos(x · x̂), (2)

where x is the measured pixel position, x̂ is the reprojected pixel position derived from
estimated 3D point X̂ and camera motion R̂ and t̂ through Equation (1).

4.2. Multi-View Stereo

After the camera parameters for each input panorama are estimated, we perform multi-
view stereo for dense reconstruction. As there are no algorithms designed for spherical
panoramas, we also convert the panoramas into cube maps as shown in Figure 2. Given
a panorama with camera parameters R and t, the camera matrix for face i of the cube
map converted from this panorama is P = KRi[R t], where Ri is the rotation matrix that
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transforms the point from the camera coordinate system of the panorama to that of face i.
The following formulas show each Ri.

R+x =

 0 0 1
0 1 0
−1 0 0

 R−x =

 0 0 −1
0 1 0
1 0 0

 (3)

R+y =

 1 0 0
0 0 1
0 −1 0

 R−y =

 1 0 0
0 0 −1
0 1 0

 (4)

R+z =

 −1 0 0
0 1 0
0 0 −1

 R−z =

 1 0 0
0 1 0
0 0 1

 (5)

The matrix K is the calibration matrix of cube map faces and is expressed as

K =

 −s/2 0 s/2
0 s/2 s/2
0 0 1

, (6)

where s is the size of cube map faces. With all the cube map faces converted from input
panoramas and their camera matrices P, we send them to existing multi-view stereo
algorithms for dense reconstruction.

x

y

z

+x-x

s

-y

+y

-z +z

(a) (b)

Figure 2. (a) Before performing multi−view stereo, we convert each spherical panorama (the sphere)
to a cube map (the coloured cube). (b) The cube map uses the same camera coordinate system as
spherical panorama and has six faces with size s× s which are perpendicular to ±x, ±y and ±z axes
of the camera coordinate system.

There are various multi-view stereo algorithms with different properties [37,38]. Some
of them can give better detail accuracy, while some of them can give better global com-
pleteness. In this paper, we adopt two complementary methods as in [24]. The first one is
CMPMVS [39], which generates a smooth global mesh estimation and can provide infor-
mation in textureless regions. The other one is patch-based multi-view stereo PMVS [32],
which can accurately capture small details but may break down for textureless regions. We
send the faces of cube maps to each of these algorithms and generate dense reconstruction.
Some reconstructed results are shown in Figure 3. We can see that CMPMVS can success-
fully reconstruct textureless regions such as walls, while PMVS can capture small details
such as benches. Please note that in the local warping stage, we need the depth value of
reconstructed pixels. As the output of CMPMVS is a triangular mesh, we use a ray tracing
algorithm to generate depth maps from the mesh. The output of PMVS is a dense 3D point
cloud for the scene and the information about images in which each reconstructed 3D point
is visible. We also transform these data into depth maps. As we send the faces of cube maps
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to multi-view stereo algorithms, we can only obtain the depth map for the faces of cube
maps. We further transform the six depth maps for each cube map to a spherical depth
map for each input panorama. Note that for planar images, the depth is computed as the
distance between the reconstructed 3D point and the camera’s centre in the direction of the
principal ray, while for spherical panorama, the depth is computed as the distance between
the 3D point and camera’s centre, i.e., ‖RX + t‖ in Equation (1). The spherical depth maps
produced by CMPMVS and PMVS are shown in Figure 4b,c, respectively.

Figure 3. CMPMVS (left) can successfully reconstruct the textureless regions (the green square),
while PMVS (right) can capture small details such as the benches (the blue square).

(a) input view (b) depth map of CMPMVS

(c) depth map of PMVS (d) final depth map

Figure 4. The input view (a) and depth maps (b,c,d). As the output of CMPMVS is a triangular mesh,
the depth map of CMPMVS is much denser than that of PMVS. (b) In the depth map of CMPMVS,
a cold colour means a small distance. (c) In the depth map of PMVS, each white pixel corresponds
to a depth sample. (d) After depth synthesis and selection, the textureless regions will have depth
samples, while some redundant depth samples in texture regions would be removed. Please zoom in
and see subfigures (c,d) for comparison.

4.3. Depth Synthesis and Selection

As the two used multi-view stereo algorithms have complementary accuracy and
completeness tradeoffs, we combine the depth information from these two methods for
better depth map generation. To be specific, as our local warping strategy warps each super-
pixel individually, we first over-segment each input panorama into spherical superpixels.
We identify target superpixels, which do not contain any depth samples reconstructed by



Electronics 2023, 12, 1954 8 of 16

PMVS. Then we use that from CMPMVS to refine the depth maps or synthesize missing
depth samples by borrowing from source superpixels which are visually similar and close
to the target superpixels. Finally, for each spherical superpixel, we select reliable depth
samples for local warping.
Superpixel Segmentation. Superpixels group similar pixels into perceptually meaningful
atomic regions, which always conform well to the local image structures. These local
image structures always correspond to object boundaries or occlusions. Thus, superpixels
preserve depth discontinuities well, which is helpful in image-based rendering applications
[22]. Most existing superpixel segmentation algorithms are designed for planar images.
They do not deal with the image distortions of panoramas and cannot preserve coherence
across panoramic image boundaries. In this paper, we adopt the SphSLIC method [13]
for spherical superpixel segmentation. This method resembles the fundamental idea of
the mature SLIC algorithm [40] and uses clustering to generate superpixels by explicitly
considering the geometry for spherical images. It first initializes the superpixel centres with
Hammersley points sampled on the sphere. Then it iterates between the assignment step,
which associates each pixel to its nearest cluster centre, and the update step, which adjusts
the cluster centres. Both the assignment step and update step take cosine dissimilarity as
the spatial distance measure. The superpixels generated by SphSLIC reserve the coherence
across panoramic image boundaries and have regular size and shape when mapped to the
sphere.
Depth Synthesis. As PMVS is friable to textureless regions, there are some target superpix-
els that do not contain any depth samples. As we warp each superpixel individually, if a
superpixel does not contain any depth samples, it would be warped incorrectly. We deal
with this problem via a two-step strategy. In the first step, we check whether CMPMVS
has reliable depth samples at target superpixels, where a reliable depth sample means it
has good photometric consistency and would not induce visibility conflict as in [32]. If
CMPMVS has reliable depth samples, we assign the depth value of these samples to that of
PMVS. Otherwise, we use the method in [22] to synthesize depth samples for the target
superpixels. Specifically, for each target superpixel, we first identify a set of visually similar
superpixels, where the similarity is measured by the χ2 distance between LAB histograms
of two superpixels. Among these similar superpixels, we select the three closest source
superpixels for depth synthesis. This is accomplished using a graph traversal algorithm,
where the nodes of the graph are the spherical superpixels and the edge weights are χ2 dis-
tance between LAB histograms of the adjacent superpixels. Note that the superpixels near
the left boundary of the panoramic image are also treated as to be adjacent to those near the
right boundary of the panoramic image. Benefiting from spherical superpixel segmentation,
we do not need to consider this explicitly. The distance between one target superpixel and
its visually similar superpixel is defined as the shortest path between the two nodes of the
graph corresponding to two superpixels. Once the three source superpixels are determined,
we can synthesize depth samples for the target superpixel by interpolating depth samples
from the source superpixels with interpolation weights as the probability density function
of depth samples.
Depth Selection. Please note that although there are target superpixels that do not contain
any depth samples, there are also superpixels that contain redundant depth samples. As
the depth samples for each superpixel have many similar values, the use of redundant
depth samples in local warping could not obviously improve the rendering quality but
could increase the computational complexity of the optimization problem in Section 5.1.
Therefore we select a subset of depth samples that are distributed uniformly within each
superpixel and use the selected depth samples in local warping. The depth map after depth
synthesis and selection is shown in Figure 4d.

5. Local Warping and Rendering

In this section, we introduce how to warp the spherical superpixels for real-time novel
viewpoint rendering.
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5.1. Superpixel Local Warping

After we have estimated the camera parameters, computed the accurate depth map
and generated compact spherical superpixels for each input panoramic image, we can
synthesize the view for novel viewpoints by locally warping the spherical superpixels
as shown in Figure 5. Unlike the work in [26], our method does not warp each input
panoramic image globally, therefore it can synthesize parallax when the novel viewpoint is
far from the input ones. Unlike the work in [22], our work warps superpixels on the surface
of the unit sphere and is specifically designed for spherical panorama input.

(a) before warping (b) after warping

Figure 5. The illustration for local warping. In subfigure (a), there are three superpixels indicated by
colour patches. We locally warp each superpixel individually. After warping, the blue superpixel
slides under the red one, while the green superpixel moves away from the red and the blue one. This
makes local warping can handle occlusions and disocclusions. In subfigure (b), the colour curves
represent the warping mesh for each superpixel, and the black curves represent the boundaries of
superpixels.

The warping is controlled by a triangular mesh overlaid on the unit sphere. To
construct a nearly regular grid, we begin with an icosahedron inscribed inside a unit sphere
and subdivide its faces into finer resolutions. For each spherical superpixel of the reference
input panorama, we first determine a sub-mesh that covers this superpixel. We then warp
the sub-mesh by disturbing its vertices v. Denoting the camera matrix for input viewpoint
i and novel viewpoint n as Ci and Cn, respectively, our goal is to find the disturbed vertices
v′ that correspond to initial vertices v by minimizing an energy function involving two
terms, which is widely used in video stabilization and image-based rendering applications
[22,26,41]. The first term is the reprojection term or data term, which encourages the warped
feature point to be close to its reprojected position; the second term is the shape-preserving
term or regularization term, which tries to preserve the shape of the superpixel during
warping.

For each spherical superpixel s, we use the set Ds of pixels that have depth samples
after depth selection. For each pixel x ∈ Ds, we find the triangle4v1v2v3 that pixel x falls
in, then the reprojection energy for x is computed as

EP(x) = ‖αv′1 + βv′2 + γv′3 −Cn(C−1
i (x))‖2, (7)

where α, β, γ are the barycentric coordinates of x in 4v1v2v3, i.e., x = αv1 + βv2 + γv3.
The symbols v′1, v′2, v′3 are the vertex positions after warping that we want to optimize.
The function C−1

i (x) takes the position and depth of pixel x as input, and outputs the 3D
point in the scene projected to x based on the camera matrix Ci. Function Cn(·) denotes
the reprojection process of Equation (1). The shape-preserving energy is defined for each
triangle t of the sub-mesh that covers superpixel s. Denote the vertices of t as vt1, vt2 and
vt3, the energy is defined as

ES(t) = ‖v′t1 − (v′t2 + u(v′t3 − v′t2) + vRt
90(v

′
t3 − v′t2))‖2, (8)
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where (u, v) are the coordinates of vt1 represented in the local coordinate system formed by
the vector vt3 − vt2 and the vector perpendicular to vt3 − vt2. Rt

90 is the 90◦ rotation matrix
defined by triangle t. v′t1, v′t2, v′t3 are the disturbed vertex positions to be optimized. The
overall optimization problem for superpixel s is then

arg min
v′

∑
x∈Ds

EP(x) + ∑
t∈Ts

ES(t), s.t. ∀v′, ‖v′‖2 = 1, (9)

where Ts is the set of triangles contained in the sub-mesh that covers superpixel s. The
constraints ‖v′‖2 = 1 are added to ensure that the disturbed vertex positions v′ are located
on the surface of the unit sphere.

After the above problem is solved, we can warp the superpixel s in the reference
panorama into novel views. During warping, we render a mesh with v′ as the vertex
position and v as the texture coordinates.

5.2. Real-Time Rendering

Given the camera pose of the novel view, we select four input panoramic images whose
cameras are closest to the novel camera position. Please note that because panoramas
have a 360◦ field of view, we do not consider the orientation of input cameras when
selecting the input ones. We then warp the superpixels of each selected image as described
previously and render the warped superpixels of each input image in a separate render
target. When rendering the superpixels, we set the depth of each warped superpixel as
the reprojected median of all depth samples contained within this superpixel and enable
the depth test. This can let us deal with the occlusion and disocclusion problems. For
example, some background superpixels would be occluded by foreground superpixels due
to local warping. After the selected input panoramic images are warped and rendered, we
blend the four rendering results together using the weights defined in the unstructured
lumigraph rendering algorithm [42], which contain the angle term and distance term.
Finally, inpainting is carried out as holes may appear when the novel view is significantly
away from input cameras.

6. Experimental Results

In this section, we introduce the experimental results, including implementation
details, the used dataset and the comparisons with previous algorithms.

6.1. Implementation Details

There are some issues we should pay attention to when solving the optimization
problem in Section 5.1. First, as pixel x is located on the surface of the unit sphere, the
barycentric coordinates of x do not satisfy α + β + γ = 1. Second, unlike in the planar
superpixel warping, the rotation matrices Rt

90 are not identical for different triangles t. This
is because the triangles are not on the same 3D plane. Third, instead of imposing the con-
straints ‖v′‖2 = 1 explicitly to the minimization problem, we first solve the unconstrained
problem and then normalize the resulting vertex vectors to unit vectors. We minimize the
energy function for each superpixel by building a sparse linear system and solving it using
CHOLMOD [43].

In the implementation, we generate the controlling mesh in advance and pre-compute
the barycentric coordinates for each pixel and the rotation matrix for each triangle of the
controlling mesh. The input spherical panoramas are converted into a cube map format
as the graphics library natively supports cube map texturing. The spherical superpixel
segmentation result is also represented in a cube map format, which is used to define
an alpha matte when warping each superpixel. To assign a depth to one superpixel, we
cannot set the depth of rendered fragment corresponding to the superpixel directly in the
shader. This is because the warped superpixel is located on the unit sphere instead of a
plane. In this paper, we scale the vertices of the controlling mesh of each superpixel by the
depth and send the scaled vertices to the rendering pipeline for superpixel local warping.
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For input spherical panoramas with 2048× 1024 resolution, our current implementation
achieves 25.24 FPS on a computer installed with Intel(R) Core(TM) i5-7500 CPU@3.40GHz
and NVIDIA GeForce GTX 780 GPU.

6.2. Dataset

There are three sparsely captured panoramic image datasets used in this paper. The
first two are downloaded from Google Arts & Culture [5], an online platform through which
the public can access high-resolution images of artworks. The images of these two datasets
are captured in Staatliches Museum Schwerin (termed SCHWERIN) and the CaRezzonico
Museum of 18th Century Venice (termed CAREZZONICO), respectively. The last dataset
is captured by ourselves and is termed HISTORY. Compared with the first two datasets,
this dataset is more densely captured. That is to say, the distance between two adjacent
views in this dataset is smaller. Another fact is that the HISTORY dataset is captured along
a path, while the input views of the first two datasets are sparsely distributed in the scene.
In Table 1, we give the number of input views and the number of reconstructed points for
each scene of the three datasets. One reference input view and the 3D reconstruction results
of PMVS for each scene are shown in Figure 6.

Table 1. The. number of input views and reconstructed points for each scene of the datasets.

Scene Name ] Input Views ] Reconstructed Points

SCHWERIN 9 176,999
CAREZZONICO 11 152,429

HISTORY 97 1,106,558
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Figure 6. One input view and corresponding reconstruction result for each scene of the datasets.

6.3. Discussion

In this section, we compare our method with three existing panoramic image-based
rendering methods. The first method is an optical-flow-based algorithm [7], which first
computes the optical flow between the corresponding faces of two adjacent cubic panora-
mas and then morphs the views based on the interpolated optical flows for novel view
generation. The second method is Cube2Video [8]. It first triangulates the matched feature
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points between adjacent panoramas, then warps corresponding triangles through triangle-
to-triangle homography determined by the relative pose between two input panoramas.
The third method [26] has a similar pipeline to ours, but does not over-segment each input
panorama into superpixels and warps the input views globally. As the input of the first two
methods are cubic panoramas, we convert the spherical images in each dataset to cube maps
for these two methods. Another fact is that the first two methods are designed for view
interpolation, while the third method theoretically supports free-viewpoint navigation.
View Interpolation. We first compare different methods in the view interpolation task,
where the novel viewpoints are located on the path connecting two adjacent input views. In
this paper, we set the position and orientation of the novel views using the method given in
Cube2Video [8]. To be specific, we denote the position of two adjacent views as 3D vector
C1 and C2, respectively, and the orientation of these two views as a 3 × 3 rotation matrix
R1 and R2, respectively. The position Cn of novel view is linearly interpolated as

Cn = (1− t)C1 + tC2, (10)

where t ∈ [0, 1] is the interpolation weight. The orientation Rn of the novel view is
computed by interpolating the matrix R1 and R2 using spherical linear interpolation of a
quaternion (Slerp), i.e.,

qn = Slerp(q1, q2; t) =
sin[(1− t)θ]

sin θ
q1 +

sin(tθ)
sin θ

q2, (11)

where q1, q2 and qn is quaternion corresponding to rotation matrix R1, R2 and Rn, re-
spectively. θ = arccos(q1 · q2) is the angle between q1 and q2. For the optical-flow-based
method, we scale the flow field from view at C1 to view at C2 with weight t and the flow
field from view at C2 to view at C1 with weight 1− t. Then the two scaled flow fields are
used for novel view interpolation.

We first compare view interpolation results on the HISTORY dataset. The generated
results of different methods and corresponding zoomed-in images are shown in the first
and the second row of Figure 7, respectively. We can see that all four methods can obtain
plausible interpolation results. This is because the HISTORY dataset is captured densely
along a path, which is suitable for the view interpolation task. However, if we look at the
zoomed-in images, we can find that global warping and our method can obtain the best
interpolation results. Since the computation of optical flow cannot make the best tradeoff
between the accuracy and the smoothness of the flow field, the results of the optical-flow-
based method [7] contain obvious noise and artefacts. As the Cube2Video algorithm [8] is
based on the triangulation of matched feature points, there would be ghosting artefacts or
distortions if incorrectly matched feature points exist. Compared with these two baseline
methods, global warping [26] and our method can generate results that are free from noise
and ghosting artefacts.

We next compare view interpolation results of different methods on the SCHWERIN and
CAREZZONICO datasets. As the input views of these two datasets are sparsely distributed
in the scene, we manually specify a path along which the input views are interpolated. The
interpolation results of different methods on these two datasets are given in the third and
fifth row of Figure 7, respectively. The zoomed-in images of the interpolation results are
given in the fourth and sixth rows. The optical-flow-based method [7] assumes that the
image contents of the corresponding faces of two input cubic panoramas are similar and
computes the flow between the corresponding faces. However, for some adjacent views
in these two datasets, the camera movement is relatively large and contains orientation
rotations. Thus, the assumption is not satisfied and the interpolation results are incorrect.
Furthermore, as the flows are computed independently for each face, the consistency
between flows from different faces is not guaranteed. Therefore, the interpolation result
may contain seams as shown in the first zoomed-in image of the result of the CAREZZONICO

dataset. Cube2Video algorithm [8] assumes that the region of each triangulated triangle
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falls on a plane, which is not always true. Its interpolation results have obvious ghosting
artefacts. For the global warping [26], it cannot deal with the occlusion problem well. It
may generate unreasonable results such as the second zoon-in image on the CAREZZONICO

dataset. In contrast, our method can still obtain satisfactory results. Please note that, even
though we give the interpolation results of Cube2Video [8] here, it cannot successfully
interpolate between every two adjacent views of these two datasets.

Optical Based Method Cube2Video Global Warping Our Result

Figure 7. The view interpolation results of different methods on the HISTORY, SCHWERIN and
CAREZZONICO datasets. Here we also give the zoomed-in images for more detailed comparisons.

Free-viewpoint Navigation. We next evaluate our method with a free-viewpoint navi-
gation task on the SCHWERIN and CAREZZONICO datasets. As the optical-flow-based
method [7] and Cube2Video [8] is designed for view interpolation task, we only compare
our method with global warping [26]. For comparison purposes, we pre-define the free
viewpoint paths and camera poses. In our setting, the cameras move along a circle. The
generated results at novel viewpoints are shown in Figure 8. For global warping [26], as
all the triangles of controlling mesh are warped globally, some of them may be stretched
if the depth samples are not distributed evenly. At the same time, global warping cannot
deal with the occlusion and disocclusion problems. Thus, it may produce results with
distortions. In contrast, our method can obtain more reasonable results. However, our
result contains visible seams due to different exposures, which is a limitation that will be
discussed in the next section.

6.4. Limitation

Although our method can obtain reasonable results for both view interpolation and
free-viewpoint navigation tasks, there are still some limitations. First, our method heavily
replies on the quality of multi-view stereo reconstruction and depth synthesis. It is chal-
lenging to obtain high-quality reconstructions for indoor scenes which may contain very
close objects. It is also necessary to fully reconstruct the scene, as our method generates
panoramic novel views. Otherwise, the unreconstructed regions will appear as holes, which
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would be overly smoothed by inpainting. Second, when capturing each dataset, different
views may have different exposures. This may induce obvious seams between warped
superpixels on the generated novel view. Simply using the definition of blending weights
in [42] cannot deal with the problem well. Furthermore, if we move from one novel view
to another, the lighting condition would also be changed suddenly. Third, we solve the
optimization problem in Equation (9) on CPU; this may limit its parallelization.

Global Warping Our Result

Figure 8. The free-viewpoint navigation results of global warping and our method on the SCHWERIN

and CAREZZONICO datasets.

7. Conclusions

In this paper, we propose a panoramic image-based rendering method, which supports
free-viewpoint navigation. Our method represents each input panorama with a set of
spherical superpixels and warps each superpixel individually. The warping is controlled
by energy, which can preserve the shape of the superpixel and ensure the superpixel is
warped to the correct position. Thus, our method can generate plausible novel views. The
experiments on the downloaded and self-captured datasets show that our method can
obtain better results.

In the future, firstly, we would like to adopt deep-learning-based methods in each step
of the pipeline of our method. To be specific, we would use deep-learning-based bundle
adjustment [44] and multi-view stereo [45] to improve the estimation of camera parameters
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and refine the dense reconstruction of the scene. Deep blending algorithms [24] may be
used for blending weights computation. Furthermore, deep-learning-based single image
novel view synthesis [46] can also be incorporated into the pipeline of our method. Finally,
we will introduce sensors to improve the performance of the reconstruction, so that our
method is more adaptable to the environment.
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