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Abstract: With the appealing ability of combining both mobility and manipulability, mobile robot
manipulators have been applied to factory automation, telemedicine, warehousing, etc. Due to the
high density of convenience stores in Taiwan, Asia, and other countries, we make further use of
mobile robot manipulators to develop an autonomous replenishment system. The replenishment
task for a convenience store poses challenges given its narrow aisles and the occasional presence
of customers. It thus demands thorough consideration of the planning, navigation, and control of
the robot, in addition to customer safety. Correspondingly, we propose strategies for task and path
planning, in addition to control and sensor fusion. Specifically, a new collision-free path planning
algorithm (the DWA-PS) that consider both customer safety and comfort is developed, along with
replenishment and control strategies that utilize the flexibility of the mobile robot manipulator to
raise working efficiency. For the performance evaluation, we apply the proposed system to conduct a
series of replenishment experiments, including in a convenience store near our university.

Keywords: autonomous replenishment system; convenience store; customer safety; mobile robot
manipulator

1. Introduction

Mobile robot manipulators have gained popularity owing to their salient combination
of both the mobility of a moving platform and manipulability of a multijoint robot manip-
ulator. They thus fit well for applications such as retail business, warehousing industry,
medicine and meal delivery in hospitals, etc. In this paper, we further exploit their capa-
bility in order to develop an autonomous replenishment system for a convenience store.
Facing worldwide shortages of labor and the spread of pandemics, the success of such an
automated system should also be beneficial for the general retail business [1].

Convenience store management is labor-demanding, and Taiwan ranks second in
density of convenience stores in the world, with an average of one for every two thousand
people. Considering feasibility, robots are better suited for tasks such as inventory checking,
replenishment, customer interaction, toilet cleaning, etc. [2]. Among them, automatic
replenishment is our focus, as it is effective in resolving the out-of-stock situation, which is
closely related to the operation of a convenience store. However, the replenishment task is
very challenging, because the aisles between the shelves are in general very narrow and
customers may be in the vicinity.

In previous related studies, Zhang et al. proposed using CNN to train a supermarket
shopping robot for product recognition [3]. Gross et al. proposed designing an interactive
shopping robot for customer guidance [4]. Additionally, Yedla et al. proposed a learning
object detection system [5]. In practical business applications, FamilyMart in Japan has
installed a replenishment robot system that allows the clerk to replenish goods via VR
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remote control [6]. Meanwhile, Decathlon in San Francisco has stationed shelf-scanning
robots that can track the inventory status in real time [7].

Even with this progress, an autonomous robot replenishment system for a convenience
store is still in demand, especially effective strategies for robot path planning, navigation,
and control, along with careful handling of customer safety. To date, there has not been
much research on collision-free path planning that is directly devoted to convenience
store or supermarket environments. Lewandowski et al. proposed a socially aware robot
navigation system for supermarket environments with the DWA algorithm and personal
space adopted for path planning [8]. Their strategy is relatively conservative, as it would
keep the robot distant from the customer during task execution. For the implementation of
smart supermarkets, Zhang et al. proposed a hybrid solution based on actuator networks
and IoT [9]. The robots in their design serve as the shopping assistants, so that the guidance
system is more concerned with how to respond to service demand rather than possible
collisions with customers. To deal with small working spaces and various goods in a
self-service supermarket, Hu et al. proposed a trajectory planning method in the joint space
of a six-DOF goods-picking robot manipulator to realize automatic goods picking [10].
However, their main consideration is to ensure the robot arm does not collide with obstacles,
rather than a person.

In this paper, we first come up with a task planner for determining obstacles’ cor-
responding order on and off the shelf. By utilizing both the movements of the mobile
platform and robot manipulator, we also propose a new collision-free path planning algo-
rithm based on the dynamic window approach (DWA) [11], named DWA-PS, along with a
control scheme based on model predictive control so that the robot can not only be able to
avoid collisions with customers but also maintain its working efficiency. To demonstrate its
effectiveness, we apply the proposed system for the replenishment task in a convenience
store near our university. Compared with previous approaches, we consider the proposed
system to have the following merits:

• A new collision-free path planning algorithm, DWA-PS, is developed that considers
both customer safety and comfort.

• Novel replenishment and control strategies are developed for coordinating the move-
ment of the entire mobile robot manipulator to achieve higher working efficiency
under the strict constraint of customer safety.

• Via integration with the developed task planner that can determine a proper order for
replenishment and the sensor-fusion method that leads to the required accuracy in
both position and orientation, the proposed system is capable of conducting a field
study at a convenience store.

The rest of this paper is organized as follows: Section 2 describes the proposed system,
including modules of task and path planning, control scheme, and multisensor fusion.
Experimental results in our laboratory and also a convenience store are reported in Section 3.
Finally, concluding remarks are given in Section 4.

2. Proposed System

Figure 1 shows a conceptual diagram of the proposed autonomous replenishment
system based on the mobile robot manipulator, which includes modules for task plans,
navigation and control, and sensor fusion. For its daily operation, the proposed system
will routinely send out the mobile robot manipulator to check the shelves for goods that
are out of stock and then determine a proper order for replenishment via the task planner,
described in Section 2.1. A corresponding path will then be planned, which consists of
two parts: one for reaching a given shelf and the other for replenishment. Both of them
need to deal with the presence of the customers, but they have their respective constraints
during navigation and replenishment, and thus solicit different strategies, as described in
Section 2.2. The path for navigation will be converted into motion commands for execution
directly, while for replenishment, which involves movements of both the mobile platform
and multijoint robot manipulator, it will be further modulated by the model predictive
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controller, described in Section 2.3. Meanwhile, the module for sensor fusion is utilized to
achieve the desired accuracy for execution of the planned path, described in Section 2.4.
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Figure 1. A conceptual diagram for the proposed autonomous replenishment system.

2.1. Task Planning

The goal of the task planner is to find a replenishment order that leads to the effective
supply of out-of-stock goods. For this purpose, the system adopts the A* algorithm to look
for the shortest path among all possible routes. First, the robot conducts a daily patrol of
the shelves, and the system records the types and quantities of missing goods, along with
their corresponding locations on the shelves, and stores them in a database. Assuming that
there are N items out-of-stock goods, and the robot can carry m goods in one run, the A*
algorithm will then need to search for the shortest path among N permutations of goods,
with m goods for a trip. As the number of searches may be very large, two rules are set up
in advance to remove unnecessary searches: (1) goods of the same type and (2) goods on
the same shelf must be adjacent, as illustrated in Figure 2. Finally, the combination that
corresponds to the shortest path will be used as the goal for path planning by utilizing the
strategies described in Section 2.2. Based on the aforementioned plan, the algorithm for
effective replenishment is organized as follows:

Step 1: Send out the robot for patrol and record the information of the missing goods into a
database.

Step 2: Among all N permutations of the goods, retain those conforming to the two rules.
Step 3: From the remaining combinations, apply the A* algorithm to find the combination

that results in the shortest path.
Step 4: Output that combination as the goal for path planning.
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2.2. Navigation and Replenishment

After the task planner comes up with the most efficient replenishment order, the
system proceeds to plan paths in the environment of a convenience store. In responding to
different constraints for navigation and replenishment, two kinds of planning strategies
are proposed accordingly. For navigation, the presence of customers and staff is mainly
taken into consideration. The proposed strategy should not only prevent the robot from
colliding with them but also keep a distance to alleviate feelings of oppression, as described
in Section 2.2.1. As for replenishment, in addition to the safety concern, the strategy will
also take advantage of the mobility of the mobile robot manipulator to maintain its working
efficiency, even when people are close by, as described in Section 2.2.2.

2.2.1. Navigation

With the order of replenishment derived above, the system moves on to plan a path
that can reach the target shelves sequentially and dynamically adjusts its speed to avoid
collisions with customers during navigation. Among previous research on mobile robot
navigation, Everett, Chen, and How proposed applying deep reinforcement learning for
collision avoidance among a variety of types of dynamic agents without assuming they
follow any particular behavior rules [12]. Li et al. also proposed an online learning naviga-
tion method based on deep reinforcement learning for obstacle avoidance in an unknown
environment [13]. Liao et al. proposed the Stack-RRT* and combined it with different
parameter curve-based smoothing schemes for smooth path planning [14]. For those related
to human-aware navigation, Ferrer, G. and Sanfeliu proposed applying the extended social
force model for robot navigation in crowded urban environments [15]. Weinrich et al.
proposed conducting lifelong learning of people’s behavior for the mobile robot to adapt
its behavior [16]. Chen et al. proposed applying deep reinforcement learning to model
human–robot and human–human interactions occurring in dense crowds [17]. Additionally,
Kruse et al. conducted a survey of the approaches for human-aware navigation [18]. While
these studies were intended for mobile robots, the concepts are helpful in designing the
proposed safety and comfort schemes based on mobile robot manipulators.

We first utilize the A* algorithm to plan a path to reach the target shelf in the presence
of static obstacles, e.g., the shelves along the aisle or walls, and then assign the mobile
platform with its maximum allowable speed for path following. However, when a customer
comes up, its speed needs to be adjusted to ensure not only collision avoidance but also
customer comfort. To meet these two demands, we propose a novel algorithm based on the
dynamic window approach [11], the DWA-PS, which also takes into account the effect of
the personal space (PS) of the customer [19], discussed later.

Figure 3 shows how the A* algorithm and DWA-PS are combined together to derive
a path with an appropriate execution speed. In Figure 3, the red line indicates the path
SA planned by the A* algorithm that serves for the DWA-PS to determine proper linear
and angular velocity VB (vB, ωB), which may lead to a new path SB (the green line) that
deviates from the original one due to the incoming customer for collision avoidance. With
the same SB path to follow, the DWA-PS will further slow down or maintain the speed VC
in response to customer comfort. Details of the A* algorithm for path planning are omitted
here because of its popularity, and those of DWA-PS are as follows.

As a famous online collision avoidance strategy for mobile robots, the DWA utilizes
velocity for path planning. To determine the linear and angular velocities (v, ω) along
the path, three main factors need to be considered: the angle (ang) between SA and SB,
indicating their closeness, the distance (dis) between SB and the nearest customer, and
the execution velocity (vel). The goal is to find the maximum allowable (v, ω) that may
minimize ang but maximize dis. As customers may show up unexpectedly, the DWA-PS
is set to adjust speed for every m seconds, and it will run for n times during that period
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(m = 2 and n = 20 were used in the experiment). Among the n simulated paths, SB is chosen
to be the one with the highest score according to cost function G(v, ω):

G(v, ω) = α·(π-ang(v, ω))|n + β·dis(v, ω)|n + γ·vel(v, ω)|n (1)

where (π-ang(v, ω)), dis(v, ω), and vel(v, ω) (both v and ω included) should be normalized
for the n simulations to be compared on the same basis, symbol “ |n ” stands for normaliza-
tion, and α, β, and γ are the weighting factors to be determined according to the designer.
Note that dis(v, ω) should be at least 0.8 m for safety concerns, and both v and ω are
limited to allow enough time for deceleration to prevent the mobile platform from hitting
the customer.
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For VB that corresponds to SB derived above, it will be further modified to be VC based
on the concept of personal space, which is defined as a physical area surrounding an indi-
vidual that is considered personal or private. People usually do not like others, including
robots, to stay too close them. According to [19], it is considered to be uncomfortable when
the relative distance D between a person and robot is within 0.46 m and to be all right when
beyond 3.7 m, while feelings vary between individuals. Consequently, we set VC = VB
when D > 3.7 m and VC = 0, i.e., a full stop when D < 0.46 m. In between, the speed will
decrease gradually along with the closeness of the person to the robot.

Figure 4 shows an illustration of the personal space, which has a larger front area,
formulated as half of an ellipse, as people care more about the incoming object. Its influence
on speed adjustment depends on the relative distance D and orientation θ between the
customer and robot. We use a Gaussian distribution function f (x, y) for its formulation,
where (x, y) is the position of the robot, with

(
σx, σy

)
as the standard deviation along the

x and y axis, respectively, selected as 2.8 and 0.24 to match the values of 3.7 and 0.46 for D,
and formulate it as

f (x, y) = e−( fx+ fy) (2)

where

fx =
(D ∗ cos θ)2

2 ∗ σx2 , fy =
(D ∗ sinθ)2

2 ∗ σy2 (3)

From (2) and (3), f (x, y) reaches a maximum value of 1 when (x, y) = (0, 0) and
decreases as D and θ increase. We utilize this property to come up with the weighting
factor ps(x, y) for VC adjustment, described in (4) and (5):

VC = ps(x, y) ∗VB (4)
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with

ps(x, y) =


0, D ≤ 0.46

1− f (x, y), 0.46 < D ≤ 3.7

1, D > 3.7

(5)

Electronics 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

the customer and robot. We use a Gaussian distribution function 𝑓(𝑥, 𝑦) for its formula-
tion, where (𝑥, 𝑦)  is the position of the robot, with 𝜎 , 𝜎   as the standard deviation 
along the x and y axis, respectively, selected as 2.8 and 0.24 to match the values of 3.7 and 
0.46 for D, and formulate it as 𝑓(𝑥, 𝑦) = 𝑒 ( ) (2) 

where 𝑓 = ( ∗  )∗ , 𝑓 = ( ∗  )∗  (3) 

From (2) and (3), 𝑓(𝑥, 𝑦) reaches a maximum value of 1 when (𝑥, 𝑦) = (0,0) and de-
creases as D and 𝜃 increase. We utilize this property to come up with the weighting factor 𝑝𝑠(𝑥, 𝑦) for 𝑉  adjustment, described in (4) and (5): 𝑉 = 𝑝𝑠(𝑥, 𝑦) ∗ 𝑉   (4) 

with 

𝑝𝑠(𝑥, 𝑦) = 0   , 𝐷 ≤ 0.461 − 𝑓(𝑥, 𝑦) , 0.46 < 𝐷 ≤ 3.71   , 𝐷 > 3.7  (5) 

 
Figure 4. Illustration of the personal space. 

2.2.2. Replenishment 
After the robot reaches the target shelf via path SB derived above, the system contin-

ues to plan the path for replenishment, which considers both customer’s safety and work-
ing efficiency. According to the distance between the robot and customer, we specify sev-
eral safety zones around the robot [20], as shown in Figure 5. When a customer is present 
inside the stop zone, the robot needs to be at full stop and decrease its speed within the 
deceleration zone, while the speed is maintained when staying in the normal zone. The 
size of the stop zone, subject to variation, is set to be 1.5 m, which is determined based on 
the speeds of the mobile platform and the customer (set as 1.6 m/s), as well as the working 
range of the robot arm. By adding another 0.5 m, it forms the deceleration zone, which 
serves as a buffer between the normal and stop zone. To allow a smoother transition from 
the initial speed 𝑉   in the normal zone to that in the deceleration zone 𝑉 , it is deter-
mined by following a sigmoid function, described in (6) and (7): 𝑉 = 𝑑𝑒(𝐷) ∗ 𝑉   (6) 

with 𝑑𝑒(𝐷) = 11 + 𝑒 ( . ) (7) 

Figure 4. Illustration of the personal space.

2.2.2. Replenishment

After the robot reaches the target shelf via path SB derived above, the system continues
to plan the path for replenishment, which considers both customer’s safety and working
efficiency. According to the distance between the robot and customer, we specify several
safety zones around the robot [20], as shown in Figure 5. When a customer is present
inside the stop zone, the robot needs to be at full stop and decrease its speed within the
deceleration zone, while the speed is maintained when staying in the normal zone. The
size of the stop zone, subject to variation, is set to be 1.5 m, which is determined based
on the speeds of the mobile platform and the customer (set as 1.6 m/s), as well as the
working range of the robot arm. By adding another 0.5 m, it forms the deceleration zone,
which serves as a buffer between the normal and stop zone. To allow a smoother transition
from the initial speed Vini in the normal zone to that in the deceleration zone Vdec, it is
determined by following a sigmoid function, described in (6) and (7):

Vdec = de(D) ∗Vini (6)

with
de(D) =

1
1 + e−β(D−1.75)

(7)

where de(D) is the weighting factor, with D as the distance between the customer and robot
and β as a constant, which is selected to be large enough to make de(D) approximate 1
when D > 2 m and 0 when D < 1.5 m, as shown in Figure 6.
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To raise the working efficiency when a customer is present in the deceleration zone,
the proposed strategy is to move the mobile platform along the opposite direction a certain
distance, so that he/she would then be located at the normal zone to have a higher execution
speed. As the aisle is in general very narrow and the robot arm also needs to be close to the
shelf, only horizontal movement is taken, as shown in Figure 7. In Figure 7, with the mobile
platform moved to leave a distance of d to change that between the customer and robot
from D1 to D2, the customer is now located at the normal zone (outside of the red line),
instead of the original deceleration zone (between the green lines). Note that the length of d
is limited to be about half of the moving range of the robot arm in the horizontal direction,
as the robot arm still needs to have enough space to conduct the replenishment task.
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2.3. Model Predictive Control

The path for navigation, along with its speed assignment derived above, involves
only the movement of the mobile platform and can be converted into corresponding
motion commands sent to the robot controller directly. However, that for replenishment
would solicit simultaneous movements of both the mobile platform and multijoint robot
manipulator and needs to be further modulated before its execution. We thus propose a
controller based on model predictive control (MPC) for their coordination, which is deemed
to be effective in dealing with multivariable and multirestricted planning problems [21].

Figure 8 shows the system block diagram for the proposed MPC-based controller,
which aims to derive the optimal control input that leads to the goal under system con-
straints and cost function. In Figure 8, the module of path planning first designs two paths,
one for the mobile platform to move distance d intended for raising working efficiency,
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described in Section 2.2.2 above, and the other for the robot manipulator to conduct replen-
ishment by utilizing cubic polynomial for achieving velocity continuity, denoted as XD as a
whole. The optimizer will then derive the optimal control command U sent to the mobile
robot manipulator according to system constraints and cost function. Finally, robot state X,
along with U, will be sent to the predictive model to predict a future path Xp. The process
will be executed repeatedly until path XD is finished.
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The constraints are set to be the maximum and minimum of the working range of
the robot manipulator, as well as those for the velocities and accelerations for both the
robot manipulator and mobile platform. The cost function J for the optimizer is intended to
minimize the errors between the desired and the predicted position and velocity along the
path, chosen to be

J =
N

∑
i=0

∆XTWX∆X +
N

∑
i=0

∆UTWU∆U (8)

where X = [θ P]T and U = [ω V]T with θ = [θ1 . . . θ6] and ω = [ω1 . . . ω6], and
P =

[
px py pz

]
and V =

[
vx vy vz

]
stand for the joint angle and velocity of the robot ma-

nipulator and position and velocity of the mobile platform, respectively, ∆X = XD(k + i)−
X(k + i) and ∆U = UD(k + i) −U(k + i) with k indexing a given moment, N = Tp/Ts
with Tp as the period for prediction and Ts the sampling time, and Wx and Wu are the
weighting matrices. The predictive model is formulated as

X(k + 1) = AX(k) + BU(k) (9)

where A is selected to be I9, a unit matrix, and B = ts ∗ I9 with ts as the sampling time.
Finally, the process for finding an optimal U is formulated as a quadratic programming
problem and solved by utilizing the OSQP in [22] in real time.

2.4. Sensor Fusion

To achieve the required accuracy in both position and orientation for path navigation,
we equipped the LiDAR, inertial measurement unit (IMU), and odometer sensors on the
mobile robot manipulator. The LiDAR is considered to have positional advantage and is
also fast in data collection, and its combination with IMU and odometer can lead to higher
position and orientation accuracy, especially the latter. Due to their characteristics, e.g.,
the IMU is susceptible to drifting from environmental interference and the odometer is
prone to accumulated errors, their effectiveness on measurement varies under different
conditions. Therefore, we propose a method for effective sensor fusion.

During the measurement process, the odometers equipped on the wheel are used to
provide the initial position and orientation and the LiDAR and IMU for later updating
along the navigation. To determine which sensing data should be used at each sampling
time, we compare the moving distance and angle of the robot pM(∆dM, ∆ϑM) measured
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by the sensors with pP(∆dP, ∆ϑP) predicted by the extended Kalman filter (EKF) [23].
The comparison is based on the Mahalanobis distance (MS) [24], which is basically a
normalized Euclidean distance in multidimensional space, and a small (large) MS implies
a better (worse) prediction from the EKF. Consequently, we set the rule for measurement
data selection as

When the MS for the position (orientation) is smaller (larger) than the chosen
threshold value for position (orientation), the measurement from the LiDAR
(IMU) is used for the next prediction, otherwise, it will be ignored.

By applying the proposed sensor fusion method and the adaptive Monte Carlo lo-
calization algorithm [25], which is efficient for adjusting the sampling points to adapt to
environmental changes, the mobile platform achieves an accuracy of less than 4 cm and
1 cm in the direction along the aisle and that facing the shelf, respectively, which is much
better than 10 cm by using the LiDAR alone for mobile robot navigation, as reported in [26].
Meanwhile, it reaches an accuracy of less than 3◦ in orientation.

3. Experiments

We conducted a series of experiments to evaluate the performance of the proposed
system, including a field study in a convenience store. In order to recognize the customers
and objects for replenishment during the experiments, the system first analyzed point cloud
information collected by the equipped depth camera [27], with examples of customer and
bottle images shown in Figure 9, followed by coordinate transformation to obtain their
relative position with the robot. In the study, we only dealt with bottle-type objects, which
are solid and easy to grab. In our next stage of research, this will be extended to objects
of various shapes and stiffnesses. To support real-time execution, the proposed system
is equipped with a computer with an Intel Core i5-6500TE CPU, an Nvidia GeForce GTX
1650/4GB, and the Ubuntu 16.04 operating system, along with the ROS Kinetic.
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As there may be plenty of items to be replenished in a convenience store, we first
examined the effect of the proposed task planner described in Section 2.1. Even with only
a few items, the number of possible replenishment orders can be very large. Taking 6
missing items for 4 shelves as an example, and assuming a case of 3, 1, 0, and 2 missing
item(s) on each of them, it can lead to 360 combinations in total. By applying the algorithm
for effective replenishment, the combinations can be cut down to 24 feasible ones, which
allows the A* algorithm to locate the desired replenishment order with the shortest path
more efficiently.

We started with the first set of experiments to check whether the proposed system
could guide the robot to reach the target shelves with the desired accuracy. Figure 10a
shows a scene in our laboratory that emulates the environment in a convenience store,
and Figure 10b the corresponding simulated one. It was arranged to have one warehouse
(number 0 in blue) and four shelves (number 1–4 in orange), with one missing item for each
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shelf. In the path shown in Figure 10b, the robot started from the warehouse, conducted
replenishment from shelf 1 to 4 sequentially, and then returned to the warehouse. A total of
five laps were executed. Tables 1 and 2 list the position errors in reaching the shelves in X
and Y direction to be less than 4 cm and 1 cm, respectively, where X is the moving direction
and Y that for replenishment. As the accuracy achieved satisfied task requirements, the
system was ready for the following experiments in the real environment.
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Table 1. Position error in X direction (unit: cm).

Lap Shelf 0 Shelf 1 Shelf 2 Shelf 3 Shelf 4 Average Deviation

1 0.57 −0.57 0.89 −3.60 2.09 −0.12 2.16
2 −0.31 1.38 −2.72 −0.48 −1.26 −0.68 1.49
3 −0.32 0.98 −0.19 −1.96 −2.03 −0.71 1.28
4 0.41 −1.18 −2.21 −0.86 −2.71 −1.31 1.22
5 0.26 2.59 3.51 −1.91 1.53 1.19 2.12

Table 2. Position error in Y direction (unit: cm).

Lap Shelf 0 Shelf 1 Shelf 2 Shelf 3 Shelf 4 Average Deviation

1 0.07 −0.08 0.33 −0.08 −0.08 0.03 0.18
2 −0.17 0.13 −0.14 0.14 −0.09 −0.02 0.15
3 −0.14 −0.02 −0.43 0.09 −0.31 −0.16 0.21
4 0.01 −0.12 −0.31 0.20 0.15 −0.01 0.21
5 −0.03 0.09 −0.54 −0.04 0.03 −0.10 0.25

The second set of experiments were conducted in a convenience store near our univer-
sity to investigate how the proposed system would respond when the staff or customers
showed up during replenishment. Figure 11a shows a situation in which the robot needed
to pass a customer on the way to the target shelf. To avoid collision with the customer and
also consider his personal space, the system activated the DWA-PS algorithm described in
Section 2.2.1, which would deviate the robot from the original path and also slow down
its speed. Figure 12 shows the corresponding speed adjustment, which occurred between
4.5–9.5 s. After that, the robot returned to its normal speed and continued following the
planned path, as shown in Figure 11b. Figure 13a shows another situation in which the
robot faced an incoming customer and needed to pass him. Figure 13b shows the resultant
paths by applying the DWA and DWA-PS algorithm, respectively. With the person’s space
taken into account, the DWS-PS led to a path that kept a larger distance when passing the
customer when compared with that of DWS. For the case of a customer coming up from
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behind, the robot would maintain the original speed when he/she moved slowly and slow
down and slightly turn to the side for safety when the customer moved fast to pass by.
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To evaluate the performance of the proposed replenishment and control strategies,
Figure 14a shows a situation where a customer approached from the other side of the
aisle when the robot was conducting replenishment. As the safety zones were set up
around the robot, it needed to slow down and even stop when the customer stepped
into the deceleration or stop zone. To raise working efficiency, the system then moved
the mobile platform forward to let the customer be located within the normal zone, as
shown in Figure 14b, so that the robot manipulator could still maintain the same speed
to replenish. Figure 15a shows the relative distance between the customer and the robot
during the process, where the blue and red lines indicate it before and after the mobile
platform movement, respectively. In Figure 15a, the customer entered the deceleration zone
at 7 s, which solicited the mobile platform to move 20 cm forward, as shown in Figure 15b,
and later at 17 s, he further stepped in another 10 cm, which again propelled the mobile
platform to move forward the same distance, letting the robot still be able to conduct the
replenishment task.
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For further investigation, we conducted the third set of experiments for cases involving
multiple customers. Figure 16a shows the situation in which the robot needed to pass three
customers during navigation. The proposed system successfully found a collision-free
path, as shown in Figure 16b. However, when the aisle was too crowded for the DWS-PS to
derive a feasible path, it might search for an alternative one first if possible; otherwise, the
proposed system would simply command the robot to stop and wait. Figure 17 shows a
scene in which the robot managed to conduct replenishment between two customers. Both
of them entered the robot’s deceleration zone and stopped at positions approximately 1.6 m
and 1.9 m from its front and back side, respectively. Because the target shelf was located
close to the customer on the left, the proposed system moved the robot to the right to make
room for raising the replenishment speed. Meanwhile, to ensure the safety of the customer
on the right, the robot was constrained not to move too close to him. Figure 18 shows the
process of distance adjustment for the robot to reach a proper location between the two
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customers. In sum, successful execution of these three sets of experiments demonstrates
that the proposed system was able to execute the replenishment tasks in the presence
of customers under the demands of both safety and working efficiency. Please find the
connection to the video that shows the experiments conducted in the convenience store at
https://youtu.be/xXabdGyErKs in Supplementary Materials.
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4. Conclusions

In this paper, we proposed an autonomous replenishment system based on a mobile
robot manipulator and applied it to a convenience store. To achieve safe navigation in
narrow aisles and maintain working efficiency in the presence of customers, we specifically
developed the DWA-PS path planning algorithm that considers both customer safety and
comfort and the replenishment and control strategies that well utilize the flexibility of
the mobile robot manipulator to raise working efficiency, along with a task planner and a
sensor fusion scheme for system integration. Extensive experiments involving single and
multiple customers under various situations were conducted for demonstration, including
ones which were actually executed in a convenience store. For further study, we plan to
enhance the capability to deal with more complicated and challenging environments.

Supplementary Materials: Please find the connection to the video that shows the experiments
conducted in the convenience store at https://youtu.be/xXabdGyErKs (accessed on 21 March 2023).
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