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Abstract: Gluten is a natural complex protein present in a variety of cereal grains, including species
of wheat, barley, rye, triticale, and oat cultivars. When someone suffering from celiac disease ingests
it, the immune system starts attacking its own tissues. Prevalence studies suggest that approximately
1% of the population may have gluten-related disorders during their lifetime, thus, the scientific
community has tried to study different methods to detect this protein. There are multiple commercial
quantitative methods for gluten detection, such as enzyme-linked immunosorbent assays (ELISAs),
polymerase chain reactions, and advanced proteomic methods. ELISA-based methods are the most
widely used; but despite being reliable, they also have certain constraints, such as the long periods
they take to detect the protein. This study focuses on developing a novel, rapid, and budget-friendly
IoT system using Near-infrared spectroscopy technology, Deep and Machine Learning algorithms
to predict the presence or absence of gluten in flour samples. 12,053 samples were collected from
3 different types of flour (rye, corn, and oats) using an IoT prototype portable solution composed of
a Raspberry Pi 4 and the DLPNIRNANOEVM infrared sensor. The proposed solution can collect,
store, and predict new samples and is connected by using a real-time serverless architecture designed
in the Amazon Web services. The results showed that the XGBoost classifier reached an Accuracy
of 94.52% and an F2-score of 92.87%, whereas the Deep Neural network had an Accuracy of 91.77%
and an F2-score of 96.06%. The findings also showed that it is possible to achieve high-performance
results by only using the 1452–1583 nm wavelength range. The IoT prototype portable solution
presented in this study not only provides a valuable contribution to the state of the art in the use of
the NIRS + Artificial Intelligence in the food industry, but it also represents a first step towards the
development of technologies that can improve the quality of life of people with food intolerances.

Keywords: IoT; deep learning; gluten; near-infrared spectroscopy; machine learning; feature selection;
flour samples

1. Introduction

Gluten is a protein formed by prolamin and glutelin that is found at different percentages
in wheat, barley, rye, and possibly in some cultivars of oats due to cross-contamination [1].
Gluten gives elasticity to dough and glue-like consistency and spongy properties to pasta,
bread, and cakes because of the interaction between prolamin and glutelin in presence
of water and energy. However, prolamin is highly composed of glutamine and proline
amino acids, which are known for being indigestible. They also prevent a complete
enzymatic breakdown of gluten in consumers’ intestines, increasing the concentration
of toxic oligopeptides [2]. Celiac disease (CD), one of the five major illnesses associated
with gluten [3], is a multifactorial autoimmune disease triggered in individuals genetically
predisposed to gluten intake, which has been on the rise in the past 15–20 years [4,5].
The resulting small intestinal inflammatory process is accompanied by the production of
specific antibodies against gliadin (prolamin of wheat) and tissue transglutaminase (TG),
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leading to a variety of gastrointestinal and extraintestinal manifestations of a wide range
of severity [4,6]. Despite the prevalence of CD rising to 1% worldwide; with some studies
reporting a fourfold increase in the past 50 years, CD remains an often underdiagnosed
condition [7–9].

With the number of people suffering from disorders caused by gluten increasing,
Health Authorities have approved label regulations to protect consumers. Europe Commis-
sion Implementing Regulation (EU) No 828/2014 [10] indicates that gluten-free products
should contain <20 mg/kg of gluten and very low gluten products <100 mg/kg. While
these levels of detection can be quantified using highly sensitive methods, such as instru-
mental analytical techniques (capillary electrophoresis, PCR, QC-PCR, RP-HPLC, LC-MS,
and MALDI-TOF-MS), they also imply elevated costs and specialized training [11–13]. The
latest methodologies for quantifying gluten are based on DNA instead of protein extraction.
Although they allow gluten quantification, they are expensive and have limitations with
highly processed foods [12].

With gluten concentration control being essential for the food industry, the need
for reliable, simple to use, and affordable analytical methods has led to the majority of
commercialized gluten detection kits being based on immunochemical methodologies
(ELISA). In fact, AOAC Official Method has validated one of these kits to measure gluten in
various types and forms of food [14]. Although some authors have detected limitations and
variations of 20 ppm among results using ELISA commercial kits for gluten quantification
on heated and processed food [12,13,15], others have noticed some improvements when
applying the methods to dairy products [16] and plant seeds [17], with results that allow
quantification until 5.5 ppm. The ELISA method is quicker and easier to perform than
instrumental techniques, however, it takes time (from 30 min to 2.5 h [13]) and laboratory
equipment is necessary. All aforementioned analytical methods work having the analyte
(protein) as the target, however, in the last few years, indirect analysis based on AI methods
has been proposed more frequently [18]. They work using large databases, offering quick
and cheap solutions to the food industry [19].

Near-infrared spectroscopy (NIRS) sensors have been proposed in some studies to
analyze different proteins, including gluten. In a recent study, a Fourier transform infrared
spectrometer technique was used to determine the total wheat protein and the wet gluten
present in wheat flour. The authors obtained an external validation of 82% for R2, and
concluded that it is possible to predict the gluten protein content of wheat flour using
NIRS [20]. Additionally, in a recent systematic review, it was concluded that the NIRS
is an excellent technique for analyzing the quality and safety of flour and it allows non-
destructive analysis [21]. Similarly, a non-invasive and quick method was developed to
determine the authenticity of vegetable protein powders and classify possible adulterations
using NIRS and chemometric tools [22]. In this study were investigated three potential
powder adulterants: whey, wheat, and soy protein. The authors used the one-class partial
discriminant analysis for the authentication and the partial least squares discriminant
analysis (PLS-DA) for the classification of the adulterants. In total 144 adulterated samples
and 14 pure plant-based protein powder samples were analyzed. They achieved 100%
sensibility and specificity in the prediction set in the proposed PLS-DA model to authen-
ticate pure plant-based protein powder samples and classify adulterants [22]. In another
study, the NIRS was used in the 900–2250 nm wavelength range to assess the protein
content in potato flour noodles in a non-destructive manner. The performance of the model
was evaluated through partial least squares regression (PLSR), and the results indicated
a high degree of accuracy with an R2 value of 0.8925 and RMSE value of 0.1385% for the
prediction set [23]. In another investigation, the NIRS technology was used to predict the
purity of the flour PLSR using six samples of authentic almond flour. The study utilized
three different NIRS devices: a MicroNIRTM working in the 950–1650 nm wavelength
range; a DLPR NIRscanTM Nano working in the 900–1700 nm wavelength range; and a
NeoSpectra FT-NIR operating in the 1350–2500 nm wavelength range. The classification
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results achieved were 100% sensitivity and more than 95% specificity, and with R2 value of
0.90 [24].

Machine Learning (ML) and Deep Learning (DL) methods have been used in many
application fields, including image recognition, audio classification, and lately natural
language processing [25–27]. These Artificial Intelligence (AI) algorithms have also been
combined with the potential of NIRS technology to solve problems in the food industry, in
most cases related to the evaluation of food samples. In a recent study NIRS technology and
ML models were used to evaluate the quality traits of sourdough bread flour made from
six different flour sources [28]. The results showed that the ML models were able to classify
the type of wheat used for the flours with an Accuracy and precision of 96.3% and 99.4%
respectively by using the NIRS and a low-cost electronic nose. In another study, a rapid
and non-destructive classification of six different Amaranthus species was conducted by
using the Visible and Near-infrared (Vis-NIR) spectra in the ranges between 400–1075 nm
and chemometric approaches [29]. The authors evaluated four different preprocessing
methods to detect the optimal preprocessing technique with the highest classification
Accuracy. The different preprocessing and modeling combinations showed classification
accuracies from 71% to 99.7% after cross-validation. The combination of Savitzky-Golay
preprocessing and Support Vector Machine (SVM) showed a maximum mean classification
Accuracy of 99.7% for the discrimination of Amaranthus species. The authors concluded
that Vis-NIR spectroscopy, in combination with appropriate preprocessing and AI methods,
can be used to effectively classify Amaranthus species. Similarly, a portable low-cost
spectrophotometric device was designed to classify 9 different food types of powder or
flake structures. The device worked in the Vis-NIR region, and it employed ML algorithms
for the data classification [30]. 18 features belonging to each sample were collected in the
optical spectral region in the range between 410–940 nm. The SVM and the Convolutional
Neural Network (CNN) achieved an Accuracy of 97% and 95%, respectively. A recent
investigation used feature selection techniques to determine the most important wavelength
ranges for gluten detection in flour samples. The highest Accuracy obtained was 84.42% by
selecting the 1089–1325 nm wavelength range and using the Random Forest classifier [31].

The main objective of this study and the contribution to the state of the art was to
develop an innovative, rapid, and budget-friendly IoT system using NIRS technology, ML,
and DL algorithms for the detection of the presence or absence of gluten in three types of
flour samples.

The manuscript is organized as follows. Section 2 explains the materials and methods
employed in the study, including the preparation and collection of the data, the implemen-
tation of the hardware and software, and the theory of the methods used. In Section 3, the
results are presented and analyzed in three subsections that include the hyperparameter
tuning methodology used for the ML and DL methods, and their classification results.
Finally, Section 4 presents the discussion and conclusions, highlighting the major findings
of the study.

2. Materials and Methods
2.1. Data Preparation

Among the food that could respond adequately to NIRS technology, we selected
commercial flours. Flour presents a homogenous color and is easy to work with.

We acquired commercial flours of rye, corn, and oat in February 2022 from two
different Spanish brands, as seen in Table 1. They were analyzed in the Food Technology
Department of Leartiker S. Coop twice using the sandwich ELISA commercial kit (Gluten
(gliadin), Biosystem, Spain). High concentrations of gluten were quantified in rye flour
(average of 22.4 g/kg), while very low concentrations were found in the oat flour (13.4 ppm)
and corn samples (3.0 ppm) from El Granero, as seen in Table 1. However, the oat flour
samples from El Alcavaran were quantified with 113 ppm more gluten compared with El
Granero. Thus, the corn flour samples from two brands and the oat flour samples from El
Granero can be labeled as gluten-free products (<20 ppm [10]).
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Table 1. The specifications and natural gluten content of the commercial flours used for the prepara-
tion of the samples.

Type of Flour Brand Specifications Natural Gluten
Content (ppm)

Rye El Alcavaran Whole. Set no.
30620184/189/21 33,650 ± 4413.0

Rye El Granero Organic production. Whole.
Set no. HC091231 11,108 ± 409.41

Corn APASA Set no. 024228 <LOD

Corn El Granero Organic production. Whole.
Set no. HM281031 3.0210 * ± 0.1909

Oat El Alcavaran Organic production. Whole.
Set no. A-40320172-040/21 126.02 ± 89.095

Oat El Granero Organic production. Whole.
Set no. HAI161231 13.402 ± 0.4755

LOD, limit of detection. *, < LQD (limit of quantification, 4 ppm).

We then adulterated each flour with commercial gluten (El Granero, Spain; set no.
GT301131) for the training of the NIRS sensors. Per each kg of flour, 100 g of gluten was
added and mixed (ThermomixR TM6, Vorwerk, Wuppertal, Germany) for 15 min. The
mixing procedure was validated in a previous step, where corn flour from the APASA
brand was adulterated to 20 ppm of gluten. Afterward, we took 4 different samples from
the cup (upper, bottom, two intermediate, and lateral zones) and analyzed them twice
using the ELISA commercial kit (Gluten (gliadin), BioSystem, Barcelona, Spain). Finally,
we divided each flour’s adulterated samples with concentrations of 0 (control), and 100 g
of gluten per kg into subsamples and stored them in identified and airless zip bags that
were sent to the facilities of the University of Deusto.

2.2. Implementation

Once the samples were prepared, we proceeded with the data collection, data analysis,
and creation of the ML and DL prediction models. Figure 1 shows the hardware and
software architecture used to collect the data and the communication among them.
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Hardware and Software Description

Below is the explanation for each stage of the Hardware and software architecture
shown in Figure 1a.
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• NIRS sensor and embedded system: as seen in Figure 1a, the IoT prototype portable
solution is composed of a Raspberry Pi 4 (Raspberry Pi is a small and low-cost com-
puter, which uses a screen a keyboard, and a mouse and can be used by people of all
ages to learn how to program in programming languages as Scratch and Python [32])
and the DLPNIRNANOEVM a compacted evaluation module used for NIRS [33].
The DLPNIRNANOEVM sensor works in the 900–1700 nm wavelength range with a
resolution of 4 nm, so one measure provides a total of 228 variables. The output of
the sensor was the intensity. The DLPNIRNANOEVM sensor was connected to the
Raspberry Pi 4 using the USB protocol and Python scripts were designed for collecting
data from the flour samples. To activate the sensor, we created an HTTP endpoint for
receiving different requests using JSON files. This endpoint receives different informa-
tion, including the sensor’s name and id, as well as the action to execute, with different
parameters such as the sensor’s state and the duration of data collection. The endpoint
then enables an AWS lambda function that changes the status of the shadow in the
AWS IoT microservice, which initiates data collection using the Message Queuing
Telemetry Transport (MQTT) protocol (MQTT is a standard messaging protocol based
on publish/subscribe messaging communication which is ideal for connecting remote
devices [34]).

• Data storing and data analysis: the data was received by AWS IoT and forwarded to
AWS Lambda, which had several functionalities: managing the logic requests to the
database, making the ML and DL predictions, and exposing the endpoints to the final
user (client). The data was stored using AWS DynamoDB. The full explanation of this
architecture is given in [35].

• For the data analysis, we employed ML and DL algorithms programmed using Python
programming language, version 3.9. On the one hand, the ML techniques were trained
using the ml.m4.xlarge instance available in AWS sagemaker [36] equipped with
4vCPU and 16 GiB. On the other hand, the DL models were trained using a local
machine equipped with an NVIDIA GeForce RTX 2060 SUPER graphic card with 8 GB
of VRAM memory and 16 GB of shared GPU memory. We trained the DL algorithms
in an eVida local machine to take advantage of the power of the graphic card but
also because this made it easier to manipulate the system files, something useful for a
custom tuning methodology later explained.

• Visualization platform: it was designed using the Django framework and is com-
municated with the AWS platform using HTTP requests. The functionalities of this
platform are the visualization of gluten measures, the collection of new samples, and
the visualization of new predictions. It is worth mentioning that the explanation of
the visualization platform is out of the scope of this study, therefore, we do not go
into details.

To make a new prediction the IoT prototype portable solution takes between 30–60 s
approximately, starting from the flour sample collection until the data is predicted with the
presence or absence of gluten and visualized in the platform.

2.3. Data Collection Procedure

In Figure 1b, the blue and green boxes show the different types of flour with 0 g/kg
and 100 g/kg of gluten concentration respectively. The data collection was carried out
over approximately 2 months by 4 researchers of the eVida research team. We followed an
internal protocol to ensure a correct data collection procedure, which is explained below:

1. For each new measurement, the operator had to change the collecting plate (grams
capacity ≈ 400 mg) (4 in Figure 1b) and then take the flour samples from different
locations of the bag (1 or 2 in the same figure). Hence, he/she scooped flour from
the top, bottom, center, and lateral sides of the bag to randomize the data collection
process as much as possible. Finally, the operator put the samples in the collecting
plate (4 in Figure 1b).
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2. Once the sample was on the collecting plate, the operator smashed the flour trying to
keep it on a smooth surface. This was because, after some experiments, we realized
that when the surface was not smooth, the data collection was not consistent.

3. To avoid cross-contamination of the samples, the operator had to wear different gloves
when collecting the data from different flour types. Furthermore, it was necessary
to use different spoons and collecting plates for each type of flour. The gloves were
thrown away at the end of the day.

4. The time collection per sample was approximately 30 s, during this time window, the
DLPNIRNANOEVM sensor measured the exposed sample and forwarded the data to
the AWS platform.

5. All the samples were collected with the same sensor and embedded system. Therefore,
to measure the data it was necessary to design and print a 3D mechanical system. On
the right in Figure 1b the 3D mechanical system is shown, it is composed of a 3d black
case at the top (it contains the DLPNIRNANOEVM inside) and the blue box at the
bottom (it contains the Raspberry Pi 4). It was used to keep the sensor rigid during
the measuring process, but also to collect the data in a dark environment.

2.4. Classification Framework

Figure 2 shows the pipeline we followed for the creation of a model able to predict the
presence of gluten in the flour samples. Please note that when we refer to the “absence of
gluten”, we are specifically alluding to flour samples that have a doping level of 0 g/kg
of gluten.
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2.4.1. Input Data

In the present study, we focused our efforts on a dichotomic case. Thus, we collected
samples from 3 different types of flour (rye, corn, and oats) and doped them with 0 g/kg
and 100 g/kg of gluten concentration as explained before.

The sensor provided 228 variables (intensity) for each wavelength from 900 nm to
1700 nm. We collected a total of 12,053 observations and split the dataset as follows: 70%
(8438 observations) for the training set, 15% (1807 observations) for the validation set, and
15% (1808 observations) for the testing set. It is important to note that the testing set was
kept apart from the other ones from the very beginning of the collection process by using
different bags. Thus, it was totally unknown for the ML and DL algorithms.

The three different types of flour samples rye, corn, and oat from the training dataset
are represented by the mean of observations in Figure 3. The mean of the flour samples
doped with 0 g/kg is, on average, higher than the mean of the samples doped with 100 g/kg.
However, for low (near 900 nm) and high (near 1700 nm) wavelengths the means overlap.
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2.4.2. Preprocessing

The preprocessing stage was divided into three phases: the cleaning of the data, the
standardization, and the feature selection procedure.

• Data cleaning: Despite the good quality of the data provided by the DLPNIRNA-
NOEVM sensor, we checked that it met the following requirements. First, we checked
the valid data, looking at whether the variable names and values met the required
formats. Second, we checked the complete data, looking for NaN values and re-
placing them with valid values. Third, we checked the consistent data, looking at
the outlier values in the dataset. Finally, we checked the unique data deleting the
duplicate values.

• Standardization: once we cleaned the data, the next step was applying the standard-
ization of the data. We applied row standardization, given the fact that all the columns
had the same unit. During this process, the variables were standardized by removing
the mean and scaling to unit variance [37]. The standard score is given by (1).

z =
x− u

σ
(1)

where x is the wavelength value, u is the mean of all the wavelength variables and σ is the
standard deviation.

• Feature selection: We selected the 3 wavelength ranges to train the ML and DL
algorithms: 1089–1325 nm; 1239–1353 nm and 1422–1583 nm; and the whole spectrum
900–1700 nm, based on our previous study [31]. The purpose was to corroborate the
possibility of predicting the presence or absence of gluten in the flour by only selecting
some of the wavelength variables.

2.4.3. Classification Models
2.4.3.1. Support Vector Machine

SVM is a supervised learning method used for regression, classification, outlier de-
tection, and feature selection problems [38]. The main objective of an SVM algorithm is to
create an optimal hyperplane that separates the classes as much as possible. In the case of a
bi-dimensional space, the hyperplane is a line; in tridimensional space, the hyperplane is
2-dimensional planes; and so on the SVM creates n-dimensional Rn−1 planes, where n is
the dimension or number of features [39]. A kernel function is needed to map the data.
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Given a set of n observations with x representing the training data and y the class of
the label, as seen in (2).

S = {(x1, y1), . . . , (xi, yi)} (2)

The decision function for nonlinear data of the algorithm is given by (3) [39]. Where m
is the bias parameter and α determines the maximal margin classifier, a parameter related
to the input vector.

f (x) = sgn(
N

∑
i=1

αiyKi(xi.x) + m) (3)

where K is the kernel function. In this study, we used the Polynomial, Radial basis function,
and Sigmoid kernels.

2.4.3.2. Extreme Gradient Boosting (XGBoost)

XGBoost algorithm is an implementation of the gradient-boosted decision trees de-
signed for speed and higher performance. The term “Gradient Boosting” was used by
Friedman in 2001 and is applied to structured and tabular data [40]. There are C++, Python,
R, Java, and more implementation libraries of this algorithm proposed by Tianqi Chen [41].

The XGBoost takes advantage of the second-order Taylor expansion of the loss function
and adds a regularization term to balance the complexity of the model and the decline of
the loss function. Equation (4) is used to calculate a prediction having a dataset with n
examples and m features.

ŷi = φ(xi) =
K

∑
k=1

fk(xi), fk ε F (4)

where F = { f (x) = wq(x)}
(
q : Rm → T, w ∈ RT) is the spacing of the trees, q is the

structure of each tree and T is the number of leaves of the tree. Therefore, each f is an
independent tree structure. The regularized objective can be minimized as follows in (5).

L (φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω ( fk) (5)

where Ω( f ) = YT + 1
2 λ||w|| 2.

In this case, l is the convex of the loss function and Ω is the penalization of the
complexity of the model. With the aim of improving the objective i instance and t iteration
are added and using a second-order approximation obtaining (6) [41].

L(t) '
n

∑
i=1

[
l
(

yi, ŷi
(t−1) + gi ft(xi) +

1
2

hi f 2
t (xi)

)]
+ Ω( ft) (6)

where gi = ∂ŷl
(

yi, ŷi
(t−1)

)
and hi = ∂2

ŷ(t−1) l
(

yi, ŷi
(t−1)

)
are first and second order gradient

statistics on the loss function. Removing the constant terms and defining I_j = { i|q(x_i)= j}

as the instance of j [41]. Also, defining w∗j = −
Σi∈I j gi

Σi∈I j hi+λ finally (7) is obtained. This can be

used as a scoring function to measure the quality of a tree.

L(t)(q) = −1
2 ∑ T

j=1

(
Σi∈I j gi

)2

Σi∈I j hi + λ
+ γT (7)

2.4.3.3. Deep Neural Network

The functionality of DNN is mainly described in two processes: the forwarding and
the backpropagation process. The Deep feedforward networks, also known as multilayer
perceptron (MLP), are the quintessential DNN models and have the objective of approxi-
mating a function f* [42]. These models are called feedforward because the computation
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starts from the input x, going through the intermediate computations until obtaining the
result of the output y. The feedforward networks are represented by a composition of
multivariate functions.

f = g ◦ f k ◦ . . . ◦ f 2 ◦ f 1 (8)

where k is the last hidden layer and g is the output function. The function maps its inputs
into the outputs f: Rm -> Rs; where m is the dimension of the x inputs and s is the dimension
of the output. Each hidden layer is composed of multivariate functions.

fi(x) = a(wix + bi) (9)

Replacing (9) in (8).

f (x) = g(a(. . . a(w2a(w1x + b1) + b2) . . . + bK)) (10)

where fi are the hidden layer functions, w is the weight, b is the bias and a is the output
activation. Each linear combination plus the bias produces the output of the node.

As we said before, the forward process takes the input x and propagates up to the
hidden layer until obtaining the ŷ. During this process is produced a scalar cost J(θ). The
backpropagation propagates then the information backward through the network, with
the purpose of calculating the gradient [42]. Suppose that x ∈ Rm, y ∈ Rs, f and g both
map from real number to real number Rm -> Rs, and f maps Rn to R. If y = g(x) and z = f(y);
z = f(g(x)), then using the chain rule.

∂z
∂xi

= ∑
j

∂z
∂yi

∂yi
∂xi

(11)

∇xz =

(
∂y
∂x

)>
∇yz (12)

In (12), (11) is rewritten in vector notation, where ∂y
∂x is the n x m Jacobian matrix of g.

It is possible to obtain the gradient of a variable x by multiplying the Jacobian matrix by a
gradient ∇yz. Thus, the backpropagation is the result of multiplying the Jacobian gradient
for each operation in the graph [42].

2.4.3.4. Hyperparameter Tuning Methodology for DNN

For the DNN hyperparameter tuning we proposed a methodology based on the
operation principles of the Hill climbing and the Grid Search methods. The idea of the
proposed methodology is to tune each hyperparameter in the desired order and to tune
each hyperparameter individually looking to obtain the higher metrics for each iteration.
We decided to use this methodology because the literature lacks a method interested in the
order in which the hyperparameters should be tuned. It is worth mentioning that we are
not suggesting a general specific order of the hyperparameters in this study, however, the
methodology is designed to investigate the hyperparameter order for future investigations.
Likewise, we still do not refer to the methodology as a new framework, because it lacks
an optimal implementation that cares about time, and, at this point, in time it is only
implemented using sequential logic.

Table 2 shows the pseudocode for the methodology proposed. The following abbrevi-
ations were used to simplify the process.



Electronics 2023, 12, 1916 10 of 25

Table 2. Pseudocode of the proposed tuning methodology.

1. Input: HM, fhm, m
2. Initialize MV = (r)
3. for hmi in HM

3.1. for mvk in MV
3.1.1. for hmij in hmi

3.1.1.1. train_DNN (mvkj, hmij)
3.1.1.2. m_val <- calculate (m)
3.1.1.3. s[skj]<- set_score(m_val)

3.1.2. (mv11, mv12, . . . , mvfhmi
j) <- select_max f hmi

(s11, s12, . . . s1j)
3.2. MV <- (mv11, mv12, . . . , mvkj)); k = 0.

4. Output: fmv <- MV

• Hyperparameters Matrix (HM =
(
hmij

)
; 1 ≤ i ≤ l, 1 ≤ j ≤ n): it is a matrix of

hyperparameters and its values. The hyperparameters will be tuned in the row (i)
order indicated.

• Filter (f hm =
[

f hmi

]
): it is a vector (for each hyperparameter) of thresholds that limit

the number of models that pass to the next hmi iteration (See Table 2, step 3.1.2).
• Metrics (m): it is a vector of the metrics to evaluate the performance of the models.

The metrics will determine the score for each model.
• Model values (MV =

(
mvkj

)
; 1 ≤ k ≤ fhmi

, 1 ≤ j ≤ n): it is a matrix that contains the
best hyperparameter values for each model selected during each hmi iteration. (See
Table 2, step 3.2).

• Final model values (fmv): it is a vector of the hyperparameter values for the best model
selected at the end of the process.

• Score(s): it is a vector of the scores for each ij iteration. The vector is rewritten for each
j iteration.

• Random vector (r): it is a random vector.

where i is the hyperparameter iterated, j is the respective values, l is the number of
hyperparameters, and n is the number of hyperparameter values. Furthermore, we followed
the matrix notation: the matrixes are in capital letters and bolded, the vectors are in
lowercase and bolded, and the scalars are in lowercase.

The algorithm takes as inputs the HM matrix and the f hmi
, m vectors. The values of

the HM matrix are randomly initiated. The algorithm then is going to look for the bests
MV model values for each hyperparameter hmi; for this, the algorithm is going to train the
DNN algorithm, calculate the metrics and set a score for each model. The set_score method
used in this study consists of giving the models a rating number for the metrics m selected,
however, it could be changed for any other method to score the models. Once all the values
have been tested, the algorithm sorts the s vector and selects the number of fhmi

models.
The mv vector that contains the values is assigned to the MV matrix and the k value is
restarted to zero (i.e., the algorithm only keeps the mv values of the current iteration and
removes the values of past hmi iterations). For the second iteration, the procedures from
3.1.1 to 3.1.2 will be executed again, but this time considering the best mv values from the
previous hmi iteration. Finally, the vector of values at the end of the hmi iterations will be
assigned to the fmv vector and those are the values tuned at the end of the algorithm. It is
worth noting that the last values fhmi

= fhml
= 1 because only one model is selected.

For a better understanding, we also graph the tuning process as seen in Figure 4.
The red color represents the inputs while the blue one represents variables calculated
during the process. In Figure 4 each hyperparameter hm1, hm2, . . . , hml, of the matrix
HM is represented as a green box. During each hmi iteration the MV matrix is updated
depending on the score calculated, the filters fhm1 , fhm2 , . . . , fhml

and the metrics m. In
Figure 4, can be noted that the order of the hyperparameters matters. Thus, during the first
iteration the hm1 hyperparameter is tuned, subsequently, in the second iteration, the hm2
hyperparameter is tuned, using the hyperparameter values found in the previous iteration
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hm1. Therefore, the algorithm will tune the hyperparameters during each iteration until the
end of the process. In Figure 4, the Experiment Numbers (ENi) correspond to the number
of executed experiments for each hyperparameter. ENi was multiplied by three, because
we repeated each training three times, and for each result we computed the mean of the
training. This was done to reduce the randomness in the results.
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2.4.4. Output

The output ŷ for the ML and DL models is the label indicating if the flour sample
contains gluten or not. In this study “1” represents the presence of gluten and “0” represents
its absence. To measure the performance of the classifiers, we calculated the metrics
Accuracy and F2-score. We are particularly interested in the F2-score since it gives more
weight to recall than the precision, which is particularly important considering overlooked
False Negatives (FN) are more detrimental than False Positives (FP) in the prediction of
the presence of gluten. For instance, wrongly predicting the absence of gluten in the flour
will cause the user to consume gluten and suffer from potential adverse health effects. The
equations for the Accuracy and F2-score are given by (13) and (14) respectively.

ACC =
TP + TN

TP + FP + TN + FN
(13)

F2 =
TP

TP + 0.2FP + 0.8FN
(14)

The true positives (TP) represent the flour samples that were correctly predicted with
the presence of gluten, while the true negatives (TN) represent the samples that were
correctly predicted with the absence of gluten. The FP represents the samples that were
predicted with the presence of gluten but did not have it, and finally, the FN represents the
samples that were predicted with the absence of gluten but actually had it.

3. Results

This section provides the results obtained for the ML and DL algorithms. We focused
our effort on trying to get the best models for each wavelength range proposed for both ML
and DL methods. The ML results for each wavelength range model were compared because
they were trained under similar conditions (same tuning method, same machine, and the
same amount of training). Likewise, the DL methods were compared with the results for
each wavelength range, and we show the results using the proposed methodology for
hyperparameter tuning. However, despite employing a similar amount of training for the
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ML and DL models, it is not possible to make a fair comparison between them, because they
were trained using different machines. It is important to mention that the sections about
hyperparameter tuning 3.1 and 3.2 only present the results obtained for the validation set.

3.1. Machine Learning Hyperparameter Tuning

The AWS Sagemaker hyperparameter tuning tool was used to adjust the hyperpa-
rameters of the ML algorithms. The hyperparameters tuning experiments for SVM and
XGBoost were executed 10 times, with each execution having 100 iterations. The selected
tuning method was the Bayesian Optimization process available in AWS Sagemaker [43].

The Bayesian optimization algorithm differs from grid search or random search since
it considers all the historical evaluations [44]. It can be solved mathematically as follows by
Equation (15) [45,46]. The objective function is defined in the domain of X; f : X → R .

x∗ ∈ arg maxx∈X f (x); (15)

3.1.1. SVM

We considered the following hyperparameters for this study: C is the regularization
parameter; gamma defines the reach of the influence of a single training, with low values
and high values meaning far and close, respectively; and the kernel function that transforms
the input data in a high dimensional space. The ranges of the parameters used for the
tuning are shown in Table 3.

Table 3. Search space of the SVM method.

Hyperparameters Lower Limit Upper Limit Kernel Types

C 0.000001 1000,000 -
kernel - - poly, rbf, sigmoid

gamma - - scale, auto

Below are the results of the hyperparameter tuning of the ML methods. The results
revealed the impact of applying hyperparameter optimization in the different wavelength
ranges. After the optimization procedure, the maximum Accuracy and F2-score were
approximately 95% for the first two wavelength ranges and 80% for the third one. Fur-
thermore, the same figure suggests that the models for the 900–1700 nm wavelength range
were overfitting.

Additionally, Figure 5 shows the bivariate distribution for C and training time. There-
fore, a darker red color indicates more concentration or values repeated while the light red
color represents the opposite case. From this figure, it can be appreciated that the Bayesian
optimization considers the historical results during the training as we expected. This
means that, after the first execution iteration where the hyperparameter combinations were
random, the Bayesian optimization algorithm found regions where it executed experiments
more frequently. This behavior was repeated for the four wavelength ranges as observed in
Figure 5, but it can be clearly appreciated in the 1089–1325 nm wavelength range, where
most of the experiments were executed in the values close to 1× 106, where the training
times were low, with most of them less than 100 s. For the 900–1700 nm wavelength range,
the C values with higher scores may be assumed close to 0–5000 as shown by the darker
red color in the left-bottom from the same Figure. For the next 1239–1353 nm wavelength
range, there are two possible values of C; the first is between 0 and 5000 and the second is
between 650,000 and 800,000. However, the second one should be considered, because of
the shorter training times. Finally, for the 1422–1583 nm wavelength range, the C values to
be selected are close to 200,000 due to the low average training times and high Accuracy
and F2-score.
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Figure 5. (a–d) show the Accuracy, F2-score, and time vs. the C hyperparameter. (e,f) show the
accuracy vs. the kernel and gamma hyperparameters.

As seen in Figure 5e,f the sigmoid kernel did not work well, therefore, it is best to
choose either the poly or rbf kernels, due to the high Accuracies sometimes exceeding
90%. For the gamma, both types are eligible since the Accuracy result is similar for all
wavelength ranges.

3.1.2. XGBoost

Four hyperparameters were considered for this study: alpha is the L1 regularization;
lambda is the L2 regularization term on weights; max_depth is the maximum depth of a tree;
and num_round is the number of rounds for the boosting. The ranges of the parameters
used for the tuning are shown in Table 4.

Table 4. Search space of the XGBoost method.

Hyperparameters Lower Limit Upper Limit

alpha 0 1000
lambda 0 1000

max_depth 0 10
num_round 1 4000

Figure 6 shows the Accuracy and F2-score for the model with higher performance
(from 10 repetitions) generated by the Bayesian optimization. In this case, we only included
the graph for one wavelength range (1422–1583 nm), since the others were similar, to
analyze the four numerical hyperparameters and avoid making the analysis extensive. The
maximum Accuracy and F2-score were 95%.
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In the case of max_depth, the best results values may be assumed close to 2–4 or 10; as
shown by the darker red color and the blue line in Figure 6a. Furthermore, the training
time is low and stays under 120 s for most of the values. In the case of lambda, there is no
tendency, so many values can be selected. However, as can be seen in Figure 6b, there is a
slightly greater proportion of darker tones around the values 0–200, with shorter training
times (under 70 s). Hence, these values could be selected. For the case of alpha, it is possible
to observe a tendency in the results; hence, as long alpha approaches zero, the F2-score
and Accuracy increase. Finally, like for lambda, while many values can be selected for the
num_round, the ones around 0–500 or 3000–4000 could be chosen due to the high repetition
of experiments.

Table 5 shows the hyperparameter selected by the Bayesian optimization method.
As can be seen, the hyperparameters selected coincide with the best values analyzed in
Figures 5 and 6 for both ML methods in all the wavelength ranges.

Table 5. Hyperparameters selected for the ML methods by applying the Bayesian optimization method.

Model 900–1700 nm 1089–1325 nm 1239–1353 nm 1422–1583 nm

SVM
‘C’:3732.752,

‘gamma’: ”scale”,
‘kernel’: “rbf”

‘C’: 985,957.277,
‘gamma’: ”scale”,

‘kernel’: “rbf”

‘C’: 752,630.194,
‘gamma’: ”auto”,
‘kernel’: “poly”

‘C’: 237,515.537,
‘gamma’: ”auto”,

‘kernel’: “rbf”

XGBoost

‘alpha’: 0.0,
‘lambda’: 0.0,

‘max_depth’: 6,
‘num_round’: 729

‘alpha’: 0.0128,
‘lambda’: 0.982,
‘max_depth’: 10,

‘num_round’: 1599

‘alpha’: 1.283,
‘lambda’: 60.669,
‘max_depth’: 8,

‘num_round’: 142

‘alpha’: 0.0,
‘lambda’: 150.466,

‘max_depth’: 3,
‘num_round’: 4000

3.2. Deep Learning Hyperparameter Tuning

For the hyperparameter tuning of the DNNs, we used the proposed methodology
explained in Section 2.4.3.4. Figure 7 shows the structure, the hyperparameter values, and
the other parameters used for the tuning methodology.
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As shown in Figure 7, the order followed during the tuning methodology was: (1) Hid-
den layers, (2) Optimizer, (3) Learning rate, (4) Epochs, (5) Activation function, and (6)
Custom loss function. The metrics used to rate the experiments during each hmi iteration
were Accuracy, F2-score, and training time. The total number of experiments executed
was 381. The tuning methodology implemented in Python allows the user to select the
order of the hyperparameters, which we selected considering some studies in the literature
and after executing a few experiments. We only included the most relevant experiments;
otherwise, the study would have turned out to be very long.

The number of hidden layers was the first hyperparameter we selected to be tuned
by the methodology. Secondly, the optimizer and learning rate was selected based on [47],
which suggests tuning the learning rate first could save a lot of experiments. Subsequently,
the epochs were tuned to adjust the underfitting or overfitting models. The activation
function was next selected. At this point, expecting to have a model with good performance,
we selected a custom loss function and slightly modified it to maximize the FN, considering
the importance of these values in the prediction of the presence of gluten, as explained in
Section 2.4.4.

• Hidden layers

We did a few experiments and realized that when increasing the hidden layer, while
the performance did not see major changes, the time increased considerably. This suggests
that our binary classification problem can be solved without using hundreds of hidden
layers. Furthermore, in a literature review was reported that among different studies
good results were obtained by using no more than 10 hidden layers [48]. Therefore, we
provided the tuning methodology with a vector from 1 to 10 and all the hidden layers with
10 neurons each. Figure 8 shows the score metrics obtained in the hm1 iteration by the
hidden layers hyperparameter in the four wavelength ranges.

The first aspect to highlight from Figure 8 is that if the number of hidden layers
increases the training time increases, as expected. Regarding the Accuracy and F2-score,
in the 900–1700 nm and 1089–1325 nm wavelength ranges, the higher values are located
between 6 and 8 hidden layers, but the scores, in general, are very similar. However, In the
1422–1583 nm wavelength range, if the number of hidden layers increases, the Accuracy
and F2-score slightly increase.
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• Optimizer

We selected three different optimizers with the default learning rates. They were tuned
taking into account the hidden layers selected in the hm1 iteration.

Figure 9 shows the experiments developed for all the wavelength ranges using three
different optimizers: SGD, Adam, and Adadelta. The black lines located on the top of the
bars correspond to the error with a 95% confidence interval. This Figure makes it very clear
that the Adam optimizer did not work well and obtained results under 60% for Accuracy
and under 50% for F2-score. It can also be noted that the results for SGD and Adadelta are
similar. Regarding wavelength ranges, the 2 higher results are for the 900–1700 nm and
1422–1583 nm wavelength ranges, with slightly better performance for the first one.
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• Learning rate

Once the proposed tuning methodology selected the SGD and Adadelta optimizer in
the hm2 iteration, 5 values starting from 1× 10−5 to 0.1 were evaluated. Figure 10 shows
the Accuracy and training time obtained for each wavelength range. We did not graph
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the F2-score because it overlapped with the Accuracy in the shadow zones, making the
visualization difficult. The shadow zones represent the mean and 95% confidence interval.
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The first aspect to mention is that the Accuracy scores observed in Figure 10 are higher
than the ones obtained in the previous iterations hm1 (hidden layers tuned) and hm2
(optimizer tuned), achieving Accuracies and F2-scores over 90% in the 900–1700 nm and
1422–1583 nm wavelength ranges. Thus, the improvements in performance are remarkable
for each wavelength range. Another aspect to highlight is that the variability in the SGD
optimizer was higher than the Adadelta optimizer, increasing when the learning rate values
were higher as seen in Figure 10c,d. The conclusion is that higher results were obtained for
the Adadelta optimizer with high values for the learning rate. For the training time, there
are no remarkable differences in comparison with the previous hmi iterations.

• Epochs

All the previous hmi iterations were executed using 100 epochs. When checking the
135 experiments for the epochs hyperparameter, we observed that most of the models were
underfitting and a few other models needed more epochs to finish the learning. It is worth
clarifying that all these graphs were obtained at the end of the training by the proposed
tuning methodology, therefore, there may be existing underfitting and overfitting models.
Unfortunately, this is an aspect that our methodology cannot avoid as we did not consider
the loss curves in the metrics m to rate the models.

Figure 11 shows the result of increasing the epochs for the 900–1700 nm wavelength
range, the only one we included because the results of the others were very similar. As can
be seen in this Figure, when increasing the epochs, the Accuracy, F2-score, and stability of
the graphs improve. However, if this value is highly increased, for example in the case of
400 epochs, the model will be overfitting.

• Activation function

The next value to tune was the activation function. The higher results were obtained
with the tanh activation function for all the wavelength ranges, therefore, there are no
remarkable differences to show, because all previous experiments were executed in the
hmi iterations already used this activation function.
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• Loss function

At this point, expecting to have a model with good performance, we selected a custom
loss function and slightly modified it to maximize the FN. To modify the loss function, we
only introduced the weights α and β to the binary cross entropy equation as shown in (16).

Loss = − 1
n

n

∑
i=1

(
αYi· log Ŷi + β(1−Yi)· log(1− Ŷi)

)
(16)

The above equation gives more weight to the predictions of FN than FP. After a few
experiments, we realized that the loss function worked well for values of β over 0.7 and
α = 1 − β. Therefore, we executed some experiments around these values which are shown
in Figure 12.

On the one hand, if the value of β is very high, then the FN has more importance
in the prediction, as seen in the F2-score in Figure 12. On the other hand, when β starts
decreasing the F2-score and Accuracy are almost the same. Thus, it is necessary to obtain a
tradeoff of how much the FN can be maximized without losing too many prediction rates
for the FP.

• Summary of the proposed tuning methodology

We included a summary of the whole procedure in one graph, including the loss
function, Accuracy, and F2-score graphs.

Figure 13 shows the higher results for the 6 hmi iterations for the 900–1700 nm wave-
length range. In the hm1 iteration (hidden layers tuned), it can be noted that the F2-score
and the loss were good during the training process after tuning the hidden layers, but very
unstable for the validation process. Subsequently, in the hm2 iteration (optimizer tuned)
the F2-score and loss improved the stability, and while the score of the former slightly
increased, that of the latter slightly decreased. In the hm3 iteration (learning rate tuned),
there was a remarkable increase in the F2-score. Afterward, in the hm4 iteration (epochs
tuned), the F2-score and the loss function improved, with the latter continuously declining.



Electronics 2023, 12, 1916 19 of 25

However, the model seems to be a little overfitting. In the hm5 iteration (activation function
tuned), there is no difference with hm4. Finally, in the hm6 iteration (loss function tuned),
where the custom loss function was used, it can be appreciated that the F2-score is slightly
higher than the Accuracy.
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Table 6 shows the hyperparameters selected for all the wavelength ranges after com-
pleting the proposed tuning methodology. It can be appreciated that the hyperparameters
are similar for all the wavelength ranges, having the same optimizer and activation function
and almost a similar learning rate. The hidden layers and loss function have different
values for each wavelength range.
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Table 6. The hyperparameters selected after the proposed tuning methodology.

Hyperparameter Hidden Layers Optimizer Learning Rate Epochs Activation
Function Loss Function

900–1700 nm 6 Adadelta 0.01 400 tanh α = 0.175
β = 0.825

1089–1325 nm 4 Adadelta 0.1 500 tanh α = 0.2
β = 0.8

1239–1353 nm 3 Adadelta 0.1 300 tanh α = 0.3
β = 0.7

1422–1583 nm 8 Adadelta 0.1 500 tanh α = 0.15
β = 0.85

3.3. Classification Results

Table 7 shows the Accuracy and F2-score with the higher results for the SVM and
XGBoost methods for each wavelength range evaluated. The metric scores were obtained
by predicting the testing set which contained 1808 observations of flour samples of rye,
corn, and oats, as detailed in Section 2.4.1. The models used the hyperparameters from
Table 5.

Table 7. Classification results of the ML models.

Model 900–1700 nm 1089–1325 nm 1239–1353 nm 1422–1583 nm

SVM
ACC = 0.9131 ACC = 0.7863 ACC = 0.7814 ACC = 0.8893

F2 = 0.9445 F2 = 0.8966 F2 = 0.8963 F2 = 0.8550
TT = 72 s TT = 117 s TT = 128 s TT = 97 s

XGBoost
ACC = 0.7769 ACC = 0.7625 ACC = 0.5755 ACC = 0.9452

F2 = 0.8675 F2 = 0.8603 F2 = 0.6658 F2 = 0.9287
TT = 383 s TT = 854 s TT = 143 s TT = 1026 s

ACC, Accuracy; F2, F2-score; TT, Training time.

In Table 7, it can be appreciated that the best model for SVM was in the 1422–1583 nm
wavelength range, achieving an Accuracy of 88.93% and an F2-score of 89.28%. It is worth
mentioning that, despite the SVM reaching an Accuracy of 91.31% and an F2-score of
90.79% in the range of 900–1700 nm wavelength range, this model is not considered the best
one because it used all the features during the training and could be overfitting, as seen
in Figure 6a. The higher and the best results among the ML models were obtained by the
XGBoost model in the 1422–1583 nm wavelength range, achieving an Accuracy of 94.52%
and an F2-score of 92.87%. This model also has the advantage of only using 50 features for
the training.

Table 8 shows the classification results of the DNN models with higher scores (1st row)
and the DNN models after completing the hm6 iteration of the proposed tuning methodol-
ogy (2nd row). The testing set evaluated was the same as for the ML methods.

Table 8. Classification results for the DNN model.

Model 900–1700 nm 1089–1325 nm 1239–1353 nm 1422–1583 nm

Higher classification
results for DNN

ACC = 0.9503 ACC = 0.7089 ACC = 0.7020 ACC = 0.9177
F2 = 0.9447 F2 = 0.8936 F2 = 0.8998 F2 = 0.9606

TT = 575.8121 s TT = 586.9577 s TT = 582.0159 s TT = 575.8121 s

DNN after completing
the tuning

methodology

ACC = 0.9064 ACC = 0.7089 ACC = 0.7020 ACC = 0.9177
F2 = 0.9370 F2 = 0.8936 F2 = 0.8998 F2 = 0.9606

TT = 521.2503 s TT = 586.9577 s TT = 582.0159 s TT = 766.5958 s

ACC, Accuracy; F2, F2-score; TT, Training time.



Electronics 2023, 12, 1916 21 of 25

As seen in Table 8, the higher Accuracy and F2-score are in the 900–1700 nm and
1422–1583 nm wavelength ranges. For the 1089–1325 nm, 1239–1353 nm, and 1422–1583 nm
wavelength ranges, the higher Accuracy and F2-score results (1st row) are the same as
those obtained after completing the tuning methodology (2nd row). However, for the
900–1700 nm wavelength range, the best Accuracy and F2-score (listed in the first row)
were achieved in the hm4 iteration (epochs tuned), therefore, the last 2 hmi iterations did
not contribute to improving the model.

The training time for most of the experiments was higher for the DNN in comparison
to the ML methods, as expected. However, this does not pose a problem for the prediction
of the presence of gluten in new samples because the models are already trained, and the
forward propagation time was <1 s for all the experiments. This is very positive for the
implementation of a rapid gluten detection technique.

Finally, considering the ML and DL experiments, the best model was the DNN in
the 1422–1583 nm wavelength range, achieving an Accuracy of 91.77% and an F2-score
of 96.06% in the prediction of the presence or absence of gluten in three different types
of flour.

4. Discussion and Conclusions

This study presents a rapid, innovative, budget-friendly, and accurate IoT solution to
predict the presence (doped with 100 g/kg + gluten naturally contained) and the absence
(0 g/kg + gluten naturally contained) of gluten in 3 different types of flour samples (rye,
corn, and oats). The development of the IoT prototype required a difficult and lengthy
process comprised of data collection, the development of a serverless architecture for storing
and data analysis, the creation of AI models to make predictions, and the visualization
of the results. The results section showed very optimistic results in terms of performance
metrics in the prediction of the absence or presence of gluten. The best DL model obtained
91.77% for Accuracy and 96.06% for F2-score, and similarly, among the ML models, the
best result was obtained by the XGBoost model achieving an Accuracy of 94.52% and
F2-score of 92.87%. Both models achieved high performances; however, we selected the
DL models because we want to prioritize the F2-score giving more importance to the FN.
This was done with the users of the prototype in mind; for whom it is more important to
identify when the prototype wrongly predicts the samples as lacking gluten (output of the
DNN: zero) when they actually contain it. For instance, in a real-life scenario, the wrong
prediction of the absence of gluten in the flour would cause the user to consume gluten
and suffer from potential adverse health effects. While the FPs also are important, the
erroneous prediction of the presence of gluten does not pose a risk to the user, as he/she
would simply not eat flour that is in reality gluten-free.

Regarding the proposed tuning methodology for the DNNs, one aspect to highlight is
that we achieved good results executing a low number of experiments (327), given the total
of possible combinations (3750) of the 28 hyperparameters evaluated. Furthermore, the total
number of experiments could be reduced to 109 without repetition in the DNNs training.

We cannot make a fair comparison in terms of Accuracy and F2-score between our
results and those of other studies due to the difference in the evaluation metrics and
analytical methods employed. While other studies make use of instrumental analyses such
as chromatography or enzyme immunoassay as ELISA, direct methodologies where the
analyte (protein) is the target to be measured, in our approach (NIRS + AI) we used the
data obtained from electromagnetic spectrum and emitted by food matrix to quantify the
target analyte indirectly. Nevertheless, we can highlight the differences in the execution
in terms of time and complexity of the experiment. Regarding the time needed to make
a prediction, our IoT prototype portable solution provided optimistic results with the
DL and ML models needing less than 1 s to predict an observation. Together with the
duration of the collection in the platform (measuring time + storing time), which varies
between 30–60 s, the time needed to predict the presence of gluten in any of the new rye,
corn, and oat flour samples of ≈400 mg adds up to <1 min. Regarding the training time,
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the best DNN model needed ≈575.8121 s to complete the training. However, this will
not be an issue for the final application because the models would be trained already. In
terms of the complexity of the experiment, our IoT prototype portable solution also has
a great ease-of-use advantage, because the user only needs the kit (sensor, Raspberry Pi
4, DLPNIRNANOEVM sensor, 3D Mechanical system, and collecting plate) and a device
with an internet connection (mobile, tablet or pc), and to put the samples into the collecting
plate and press a few clicks to make the prediction. Instead, other analytical methods take
significantly more time, counting from the sample preparation until the data recovery;
around 0.5–2.5 h for ELISA [13]; ≥0.5 h for HPLC [49]; and > 3 h for PCR [50]. Other
studies have achieved very good results while decreasing the detection time, to illustrate,
a recent study designed an optical nanosensor for rapid detection of the gluten content
of samples containing wheat. They obtained results for the determination coefficient (R2)
with 0.995 for folic acid-based-carbon dots molecularly imprinted polymer (FA-CDs-MIP)
and 0.903 for FA-CDs none-imprinting polymer (FA-CDs-NIP), within a range of gluten
detection of 0.36 to 2.20 µM [51]. They reported less than 4 min as the response time
for the florescent nanosensor. In another investigation, a real-time artificial intelligence-
based method was employed to detect adulterated lentil flour samples that contained
trace levels of wheat (gluten) or pistachios (nuts) [19]. The authors used images taken
with a simple reflex NIKON camera, model D5100, to train the network, with a total of
2200 images collected in a well-lit room without any spotlight illuminating the samples.
Despite the difference in the input data and food samples employed, this study is one
of the most similar to ours, as it achieved an accuracy of 96.4% in the classification of
wheat flour, showing the potential of the NIRS technology. At first, the method seems
to be accurate and particularly quick, with the photo capturing and the prediction of the
CNN networks being instantaneous (the authors mention seconds). However, in contrast
with our study, it raises several concerns regarding its implementation in an environment
production, such as the difficult setup when using a big camera, the users involved, and
the changing environmental conditions depending on the light to which the samples are
exposed. Other authors conducted a multiclass classification study using ML approaches
and the Fourier-Tranform (FTIR) Spectroscopy to detect and quantify cross-contact gluten in
flour [52]. The samples used were non-gluten (corn flour) and gluten flours (wheat, barley,
and rye) with a total of 640 samples (200 × 3 for contaminated samples and 10 × 4 pure
samples). The supervised classification method was the Partial Least Square Discriminant
Analysis (PLSDA) achieving true positive rates (TPR) of 0.87500, 0.81250, 0.9333, and 1.0
respectively for barley flour, wheat, rye, and corn flour classes. While the analytical method
employed was different, the study showed optimistic results in addressing problems of
multiclassification and quantification of gluten in the flour, a topic we plan to investigate
in our future research. With regards to the time and resources employed, the authors
stated that the study was developed in non-real time and that the samples were prepared
using the FTIR spectrometer (Nicolet iS 50 Waltham, MA, USA, North America), laboratory
equipment that due to its nature presents limitations, such as the need for user training
and the difficult transportation among others. This highlights the value of the method
employed in our study, which can be easily taken anywhere by the user and does not
require any specific training. Finally, with the best results achieved in the present study (the
DNN model in the 1422–1583 nm wavelength range), we improved the results achieved in
our previous study, where we employed the Random Forest classifier [31], overcoming the
Accuracy by 5% and the F2-score by 9%. It is worth mentioning that in that study the main
objective was to find the best wavelength ranges using feature selection techniques.

Our study suffers from several limitations. First, it is only able to classify the presence
or absence of gluten considering samples of 0 g/kg and 100 g/kg of gluten concentration.
Therefore, the IoT prototype portable solution has a high chance of failure with middle
concentrations samples, for example, 50 g/kg, while other experiments can quantify the
gluten in samples under 100 mg/kg by using highly sensitive methods, such as enzyme
immunoassay techniques or instrumental analytical techniques (capillary electrophoresis,



Electronics 2023, 12, 1916 23 of 25

PCR, QC-PCR, RP-HPLC, LC-MS, and MALDI-TOF-MS). However, these methods also
imply elevated costs and specialized training [12,13,15]. While our prototype could not
be considered low budget, with the overall costs amounting to 1200 euros, it is still less
expensive than other methods [53–57] (around 1000–17,000 euros) and does not require
specialized training. The methodology employed in our study has other limitations. First,
few previous experiments are required to know the order of the hyperparameters. For
example, in this study, we used the tanh activation function from the hmi iteration, because
it showed to have better performance of Accuracy than other activation functions. It is
worth mentioning that these experiments are not executed to obtain higher or the best
results, but they are useful to choose the initial hyperparameters. The lack of an optimal
code implementation in our proposed tuning methodology constitutes another limitation,
making it not possible to perform a fair comparison with other existing methods, such as
Random Search, Bayesian Hyperparameter tuning, or Grid Search, since it ignores aspects
such as vectorization and modular programming.

When it comes to future steps, we are considering working first on a multiclass
problem that allows classifying the content of gluten in different levels and applying
further DL and ML regression, which lets us quantify the amount of gluten in the samples
examined. We also want to implement the proposed tuning methodology as a full Python
framework, making it possible to validate it with different datasets and to compare the
performance with other existing tuning hyperparameters frameworks.

The binary classification results obtained in this study are promising for the future
designing of real-time IoT devices that allow rapid detection of the presence or absence of
gluten and can be used by any ordinary person. Therefore, this study contributes to the
state of the art of NIRS + Artificial Intelligence applied in the food industry and is aligned
with the requirements of the 4.0 industry.
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