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Abstract: Text-to-Speech (TTS) systems have made strides but creating natural-sounding human
voices remains challenging. Existing methods rely on noncomprehensive models with only one-layer
nonlinear transformations, which are less effective for processing complex data such as speech,
images, and video. To overcome this, deep learning (DL)-based solutions have been proposed for TTS
but require a large amount of training data. Unfortunately, there is no available corpus for Turkish
TTS, unlike English, which has ample resources. To address this, our study focused on developing
a Turkish speech synthesis system using a DL approach. We obtained a large corpus from a male
speaker and proposed a Tacotron 2 + HiFi-GAN structure for the TTS system. Real users rated the
quality of synthesized speech as 4.49 using Mean Opinion Score (MOS). Additionally, MOS-Listening
Quality Objective evaluated the speech quality objectively, obtaining a score of 4.32. The speech
waveform inference time was determined by a real-time factor, with 1 s of speech data synthesized in
0.92 s. To the best of our knowledge, these findings represent the first documented deep learning and
HiFi-GAN-based TTS system for Turkish TTS.
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1. Introduction

The rapid advancement of technology and the proliferation of portable electronic
devices has made human–machine interaction even more critical. In order to use speech
information in human–machine interaction, two different core technologies need to be
developed. The first is the Speech-to-Text (STT) system, which converts speech information
into readable text that machines can understand, and the other is the speech synthesis (TTS:
Text-to-Speech) that can address readable text. TTS systems allow audio transmission of
text in digital media to users [1]. The most important application areas of the TTS systems
can be listed as audiobooks, digital museums, and voice assistance systems developed to
facilitate the lives of visually impaired individuals.

TTS systems are developed by combining many different disciplines, such as acoustics,
linguistics, signal processing, and statistics. The main goal in TTS systems is to produce
synthetic speech that is close to the naturalness of the human voice and intelligible. In-
telligibility defines the clarity of the synthesized speech, while naturalness describes ease
of listening. The first approaches to developing TTS systems have focused on the intel-
ligibility of synthesized speech. However, with the development of signal processing
technologies, the research objective of voice synthesis has evolved from intelligibility to
naturalness. Early studies in the field of TTS showed that speech could be synthesized
artificially, although it had poor intelligibility [2].

In 1791, Hungarian scientist Wolfgang von Kempelen showed that not only letters but
full words could be artificially producible [3]. Kempelen developed an acoustic speech
machine using a series of precision bellows, springs, bagpipes, and resonance boxes. Scien-
tists have studied the machine developed by Kempelen until 1930. In the 1930s, the audio
encoder was developed, which could automatically analyze speech based on its basic tones
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and vibrations in Bell Labs. Homer Dudley developed the first electronic voice synthesizer
machine, called Voder, which performed voice synthesizing on this encoder system [4].
The Voder electronic speech synthesizer is known as the first electronic machine to synthe-
size speech without human intervention. After switching from mechanical machines to
electronic systems, Umeda and her colleagues introduced the first system to read general
English text in 1968 [5].

By the early 1980s, numerous speech synthesis systems emerged for commercial
use. Successful systems such as DECtalk, Whistler, and MBROLA catered to different
languages. DECtalk uses a serial/parallel formant synthesizer to simulate the human audio
path [6]. However, the quality of the synthesized speech is not able to meet the practical
demand, as the extraction of the formant parameters is a challenging task. Therefore,
the Pitch Synchronous Overlap and Add (PSOLA) algorithm was introduced to improve
the quality and nature of the synthesized speech [7]. PSOLA works by dividing the
speech waveform into small overlapping sections. Segments are sampled according to
the fundamental frequency or period of the signal, and then the height or length of the
signal is changed using the PSOLA method. The resulting segments are combined using
the overlap insertion technique. Although PSOLA has been successful in regulating the
prosody of the synthesized speech, the results are still not as natural as human speech.
PSOLA requires the pitch period or starting point to be annotated accurately. Any error
at pitch period or starting point will directly affect the quality of the synthesized speech.
To overcome this problem, scientists developed Statistical Parametric Speech Synthesis
(SPSS) systems [8]. The quality and naturalness of the synthesized speech with SPSS-based
studies have been greatly improved. There are two methods commonly used in SPSS-based
approaches. The first is Hidden Markov Model (HMM)-based [9], and the other is based
on a multi-layered artificial neural network [2]. In the synthesis phase, the trained models
attempt to estimate acoustic characteristics parameters. The predicted acoustic feature
parameters are converted to speech using an audio encoder.

It has been observed in the literature that speech synthesis technologies have evolved
over time and the quality of synthesized speech has increased. Many studies have been
conducted, ranging from Formant-based parametric speech synthesis [10] to waveform
unification-based methods [11]. The comprehensibility and naturalness of the synthesized
speech have been greatly improved with the SPSS-based solutions that are frequently used
at present. However, speech still cannot be synthesized in the naturalness of the human
voice. The main reason for this situation is that the existing methods are based on non-
comprehensive (simplified) models that contain only single-layer nonlinear transformation
units. Related studies have shown that noncomprehensive models have good performance
on data with less complex internal structures and weak constraints. However, in real life,
when processing data with complex internal structures, such as speech, video, images,
etc., noncomprehensive models tend to have lower success rate. Therefore, more powerful
modeling capabilities should be used to effectively capture the hidden internal structures of
the data and characterize the data. Many researchers have proposed deep learning-based
solutions in the speech synthesis process [12,13]. Deep learning has become one of the
most remarkable research fields due to its applicable learning abilities in almost every
aspect of human life [14]. DL-based models have made significant advances in many areas,
such as handwritten documents recognition [15,16], medical image analysis [17,18], remote
sensing [19], semantic segmentation [20,21], and others [22,23]. DL-based models have
made significant advances in many areas, such as handwriting recognition, machine trans-
lation, speech recognition, and speech synthesis. However, in order to use deep learning
models in the field of speech synthesis, a large amount of speech-text data is needed. In
resource rich languages such as English, it is easy to find the relevant dataset (corpus) [24].
However, there is no accessible corpus available that can be used in the Turkish TTS process.
Therefore, our study was based on the development of a Turkish speech synthesis system
at the deep learning scale. Specifically, we worked to create a sophisticated system that
utilizes deep learning techniques to generate high-quality synthesized speech in Turkish.
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The task of developing a DL-based TTS system is divided into two according to the
characteristics of the target speaker corpus. In the first method, a large amount of corpus
is obtained from only one speaker. The basic principle of this method is to train a speech
synthesis system with a large amount of speech data obtained from the target speaker. By
utilizing speaker adaptation or speaker encoding operations, the second approach involves
developing a speech synthesis system with only a small number of examples from the target
speaker. As a result, this approach requires fewer speech samples compared to the first
approach. The basic idea of the speaker adaptation process is to train an acoustic model for
the target speaker by fine-tuning a trained model with training data containing the data of
many speakers [25]. The speaker encoding method involves utilizing a speaker encoder in
TTS systems to extract speaker embedding, which characterizes the target speaker’s voice
and style. The main objective of developing TTS systems with this method is to capture
the speaker characteristics by extracting text-independent speaker embeddings from the
target speaker’s voice. Commonly used speaker encoders in TTS systems include d-vector
and x-vector [26]. In order for these methods to be adapted to Turkish speech synthesis
systems, a large-sized speech-text corpus or pre-trained acoustic models are needed [26].
Currently, the lack of a Turkish corpus or a previously trained acoustic model available
makes it difficult to process Turkish in the field of TTS.

Within the scope of this study, a large amount of corpus was obtained from one male
speaker. The previously prepared Turkish texts were voiced by the selected speaker. Then,
text and voice matches were checked by real users and made ready to develop the TTS
system. A DL-based Turkish TTS system was developed with the resulting corpus. Tacotron
2, which includes an acoustic property prediction module and an audio encoder module,
was used in the development of the TTS system [27]. The acoustic feature prediction
module includes a recurrent sequence-to-sequence feature prediction network that predicts
a sequence of mel-spectrogram frames from an input character string. The audio encoder
module converts a character sequence into a hidden feature representation which the
decoder consumes to predict a spectrogram. In this study, instead of the WaveNet audio
encoder, which has a significant effect on the speech synthesis speed, Generative Adver-
sarial Networks (GAN) were used in the audio encoding module, which was originally
proposed for image production [28]. The generation of a speech sample using WaveNet is
inherently slow [29]. In this study, speech was produced with the help of a High-Fidelity
Generative Adversarial Network (HiFi-GAN), which is a convolutional type of network
that uses mel-spectrograms as input to the GAN network. The quality of the produced
speech was determined by real users using the Mean Opinion Score (MOS) [30]. In addition,
the quality of the voice synthesized by means of the Mean Opinion Score-Listening Quality
Objective (MOS-LQO) [31] was evaluated objectively. The first DL- and HiFi-GAN-based
results in the literature are presented in this work for Turkish, based on our best knowl-
edge. In addition, the present work provides useful information in terms of the difficulties
encountered during the development of the Turkish TTS system.

The article is organized as follows. The introduction presents detailed information
about TTS technology and highlights how the quality of synthesized speech has progressed
from mere intelligibility to achieving a more natural speech, as evidenced by the existing
literature. The Section 2 describes the architectural structure used to improve the Turkish
TTS system. In the Section 3, the relevant environments are established, and corpus
preparation is made for experiments carried out within the scope of the study. The Section 4
describes the experimental results and the limits of the study in detail. In the last part,
the results obtained from the study are evaluated and recommendations are presented for
future works.

2. System Architecture

DL-based approaches have proven to be the most successful methods for developing
TTS systems, despite the variety of development methods used in this field over time. A
typical TTS system consists of several blocks, with text data serving as input. In the first
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block, text normalization operations may be applied to convert numbers or abbreviations
into spoken forms. The second block involves a recurrent sequence-to-sequence feature
prediction network that maps phoneme embeddings to mel-scale spectrograms, as shown in
Figure 1. While various methods can be utilized in this block, Tacotron is a popular option
that uses a sequence-to-sequence architecture to produce a set of frequency spectrograms.
With a single neural network trained on the data, Tacotron models the production of
linguistic and acoustic features, simplifying the TTS development process [27,32]. The
spectrograms obtained in the second block are subsequently transformed into a waveform
using a voice encoder and presented to the user.
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Figure 1. Main block diagram of TTS system.

Tacotron relies on the Griffin–Lim algorithm to convert spectrograms into speech [33],
but this method produces lower sound quality than other approaches, such as WaveNet.
As a result, various voice encoder approaches have been integrated into the Tacotron
structure to enhance the quality of speech generated from spectrograms. Tacotron 2 is
the current version of this structure, which offers a fully neural network-based approach
to speech synthesis. This sequence-to-sequence model generates mel-spectrograms and
utilizes a WaveNet [34] audio encoder. The Tacotron 2 architecture, shown in Figure 2,
is trained directly on normalized character sequences and corresponding speech wave-
forms. The resulting speech are incredibly natural-speech and often indistinguishable from
human speech.
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As shown in Figure 2, Tacotron 2 consists of two main components. In the first
component, mel-spectrograms are obtained from the input sequence and given to the
feature prediction network from sequence to sequence. The second component of the TTS
system includes WaveNet, which is responsible for generating time-domain waveform
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samples. After the recurrent sequence-to-sequence feature prediction network generates
spectrograms from the input text, these spectrograms are then transformed into time-
domain waveform samples using the WaveNet.

Using a representation calculated from time-domain waveforms in the Tacotron 2 ar-
chitecture requires training the two components separately. The mel-frequency spectrogram
is related to the linear frequency spectrogram, namely the Short-time Fourier Transform
(STFT) magnitude. It is obtained by applying a non-linear transformation to the frequency
axis of the STFT, inspired by the measured responses from the human auditory system.
The use of an auditory frequency scale in this way highlights details at lower frequencies
that are critical for speech intelligibility. However, while linear spectrograms discard phase
information, algorithms such as Griffin–Lim [33] can predict this discarded information.
The Griffin–Lim structure used in Tacotron 1 makes time domain transformation possible
via inverse STFT. The mel-spectrograms used in Tacotron 2 discard more information,
presenting a challenging inverse transformation problem. However, when compared to
the linguistic and acoustic features used in WaveNet, the mel-spectrogram is a simpler,
lower-level acoustic representation of the audio signals. Therefore, it is possible to produce
high-quality speech from mel-spectrograms using a WaveNet structure.

WaveNet, which is the basis of Tacotron 2’s architecture, represents an auto-regressive
convolutional neural network that predicts speech samples from linguistic features. Spec-
trograms are used instead of linguistic features as input in the WaveNet structure. The
main drawback of the sound encoders prepared with the specified structure is that they can
produce only one speech example at a forward pass. WaveNet is an autoregressive model
that uses previous samples to generate each new sample. As a result, WaveNet needs to
process the previous samples one-by-one to generate the waveform, which can increase
the processing time. Many WaveNet architectures have been presented, trying to solve
this problem, and streaming-based audio encoders have been proposed [35]. Models of
this type predict the conditional distribution of a speech signal conditioned on acoustic
characteristics. However, studies in this area have presented limited improvements. For
this reason, it has been proposed to use GANs instead of WaveNet [28].

GANs are often used in TTS to enhance the realism of the speech waveforms generated
by models such as WaveNet, which are commonly used for speech synthesis. The GAN
architecture consists of two networks: a generator network that produces realistic-looking
examples and a discriminator network that attempts to distinguish these examples from
real ones. The generator network is trained until it produces speech examples of the
desired quality and naturalness. Although GANs are efficient in terms of computational
time, they are weaker in terms of speech quality than autoregressive models. However, to
overcome this disadvantage of GANs, HiFi-GAN has been proposed [36]. HiFi-GAN can
produce high-quality speech samples by processing mel-spectrograms, which represent
the frequency spectrum of speech signals. However, achieving high sampling rates is
necessary for producing natural and high-quality speech. Therefore, HiFi-GAN performs
upsampling, increasing the speech samples to a higher sampling rate. This is achieved
using a Convolutional Neural Network (CNN) structure based on the properties of the
generator network. The CNN structure aims to increase the quality of the speech sample by
upsampling a speech sample given at a low sampling rate with mel-spectrogram features
to a higher sampling rate. Additionally, the Multi-Receiver Field Fusion (MRF) module
is used in the HiFi-GAN structure to achieve high-quality sound synthesis. MRF helps to
combine multiple source signals (multi-speaker) used for voice synthesis. The MRF module
is used to appropriately select between source signals from multiple speakers to produce
a higher-quality speech synthesis. This module also combines different characteristics of
different speakers to produce a synthesized speech signal that covers a wider acoustic field.
The basic manufacturer architecture is shown in Figure 3.
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Figure 3 illustrates the architecture of the MRF module and the structure of a residual
block. The MRF module has a hidden size of |hu| and uses convolutions with a kernel size
of |ku| and dilation rate of |Dr|. To match the temporal resolution of the raw waveforms, the
generator upsamples mel-spectrograms up to |ku| times. The MRF module adds features
from |kr| residual blocks with different kernel sizes and dilation rates. Within the MRF
module, the n-th residual block has a core size of kr[n] and expansion ratios of Dr[n]. The
MRF module returns the sum of the outputs from multiple residual blocks to capture
different periodic patterns underlying speech signals, which consist of sinusoidal signals
with various periods. To further enhance the model’s ability to capture sequential patterns
and long-term dependencies, two discriminator structures are used, as proposed in [37].
The Multi-Period Discriminator (MPD) consists of several sub-separators, each processing a
part of the input speech periodic signals. Meanwhile, the Multi-Scale Discriminator (MSD)
evaluates speech samples at different levels sequentially. These discriminators work to-
gether with the MRF module to improve the quality of the generated speech. The proposed
approach, as described in [37], can effectively identify different periodic and sequential
patterns in the input data, which is essential for generating realistic-sounding speech.

The architecture of MSD is taken from the main architecture of GAN. MSD is a mixture
of three sub-separators that work at different input scales. Each of the sub-separators
in MSD refers to a stack of step-by-step and grouped convolution layers with Rectified
Linear Unit (ReLU) activation. The discriminator size is increased by reducing the step and
adding more layers. Weight normalization is applied except for the first sub-splitter, which
works on raw sound. Instead, an attempt is made to stabilize training by applying spectral
normalization [37]. Thus, the quality of speech synthesis is improved, and the speed of
inference is reduced.

Based on Tacotron, WaveNet, and HiFi-GAN studies, whether existing TTS systems
can reach human-level quality has been tested on the LJSpeech dataset. In general, stud-
ies have been conducted on FastSpeech 2 + HiFi-GAN, Glow-TTS + HiFi-GAN, and
GradTTS + HiFi-GAN systems [38]. The results obtained through these systems have
shown that the speech can be synthesized with high quality. More natural and understand-
able speech could be synthesized by implementing the WaveNet in Tacotron 2. However,
the quality of speech is still not at the desired level. For this reason, HiFi-GAN audio
encoder was added instead of WaveNet in the pipeline of the DL-based TTS system in the
present study. In Figure 4, the pipeline of the architectural structure presented within the
scope of the study is presented.
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Tacotron 2 was used to estimate mel-spectrograms after performing pre-processing on
Turkish texts. The prediction of mel-spectrograms was based on the Tacotron 2 architecture
in the natural TTS synthesis in the study prepared by Shen and her colleagues [27]. Mel-
spectrograms provide a visual representation of the frequency components of speech and
how they change over time. However, accurately extracting mel-spectrograms can be
challenging due to the nuances of speech, such as emphasis, rhythm, tone, and the presence
of high or low-frequency components. Incorrectly derived mel-spectrograms can lead to
issues with synthesized speech, such as incorrect intonation, distorted accents, or blending
of voices. Therefore, the quality of the mel-spectrograms directly impacts the quality of the
synthesized speech.

When acquiring mel-spectrograms, the number of channels is a crucial factor in
obtaining a detailed visualization of the spectral content of the speech signal. Higher
channel counts offer a higher frequency resolution, but this requires more processing
power in the synthesis process and longer training times. Therefore, when determining the
number of channels, Tacotron 2’s results for different languages were considered, and a
mel-spectrogram channel number of 80 was set using STFT, as in Tacotron 2 [39,40]. The
STFT size was converted to the mel scale using an 80-channel mel filter bank ranging from
125 Hz to 7.6 kHz and then log dynamic range compression.

Hifi-GAN was added to the pipeline to produce a waveform from mel-spectrograms.
HiFi-GAN can generate high-quality speech samples regardless of the spoken language,
as it learns the common characteristics of speech signals, such as loudness, tone, and
accent. This is particularly advantageous for Turkish, which has limited resources for
training speech synthesis models. However, the performance of the model may vary
depending on the language used for training. For example, a HiFi-GAN trained in English
speech may not perform well in non-English speech. In such cases, the model needs to
be fine-tuned to the target language, such as Turkish. The original Tacotron 2 architecture
used WaveNet for the vocoder. However, it was suggested to use the HiFi-GAN vocoder
instead of WaveNet in the present study. A GAN architecture was proposed to be used in
the scope of this study. Based on the Multi-Resolution Discriminator approach proposed
by You et al., each residual block was similarly combined, with two convolution layers
processing patterns on the temporal axis and frequency axis, respectively [41]. In the
proposed method, the first layer performs group-based convolution, which provides a very
large kernel size with few parameters. The standard kernel size of the second convolution
layer is 3, but an exponentially increasing expansion is present. The primary objective of this
architecture is to enhance the diversity of the generator and to assess the generalizability
of the multi-resolution discriminating framework. The residual net wires WaveNet-like
skip connections from every residual block to the 1 × 1 convolution postnet [41]. Thus,
a more efficient synthesis process was carried out. The Universal HiFi-GAN model was
adapted for Turkish. A previously trained model for English can be used for the HiFi-GAN
model in the proposed architecture. However, the waveform for Turkish may produce
suboptimal results at the inference stage. Therefore, a fine-tuning of a universal HiFi-GAN
model was performed with the original Turkish data. Thus, an attempt to minimize data
inconsistency was made during the synthesis phase. As a result, a ready-made structure
for an end-to-end Turkish TTS system is presented. Thus, the developed framework in
the present study will allow the researchers to develop a new system by fine-tuning the
pre-trained model.



Electronics 2023, 12, 1900 8 of 19

3. Experimental Setup
3.1. Preparing a TTS Corpus

When the studies on TTS in Turkish were reviewed, it could be seen that studies are
conducted to prepare syllable-based datasets and diphone-based datasets [42,43]. How-
ever, corpus-based datasets should be prepared for statistical parametric speech synthesis
and DL-based speech synthesis systems. DL models are often used for processing high-
dimensional data such as visual, audio, and natural language data. As the amount of
data increases, these models can better understand the structural complexities in the data,
leading to more accurate analyses. Therefore, incorporating large-scale corpus-based data
in TTS models can significantly improve their performance. It has been observed that
corpuses prepared for Turkish speech synthesis are applied to speech recognition systems
and statistical parametric speech synthesis systems [44]. However, it can be seen from the
literature that the corpus characteristics differ, and this difference has a direct effect on the
overall success of the TTS system. Therefore, a new Turkish corpus was prepared in the
present study. The features that should be considered in preparation for a corpus are listed
in Table 1.

Table 1. Table of characteristics/units for the corpus.

Feature Unit

Language of Speech Turkish, English, Spanish etc.
Total Duration of Speech Hour

Category of Speech Domain of Text
Speaker’s Gender Female/Male

Age or Age Level of the Speaker Child, elderly, 18 and over, or Young
Speaker’s Dialect Type Istanbul Turkish, Aegean or Black Sea Dialect

Average Duration of a Speech Piece Second
Minimum Duration of the Speech Piece Second

Maximum Duration of Speech Piece Second
Unique Word/Sentence Count Piece

Total Number of Words/Sentences Piece

The domain of the dataset prepared in the corpus type can be everyday conversations,
a literary text, newsletter content, consecutive independent texts, or a series of independent
sentences that have no logical connection. These subjects should be carefully selected
by diversifying. The total number of words and the number of unique words should be
increased so that the corpus has a large vocabulary. Especially for Turkish, which has
an agglutinative language structure, more unique words need to be voiced. Using more
unique words allows the system to learn more language examples. It also makes the
synthesized speech have a more natural and realistic intonation. Conversations that are
paired one-to-one as text and audio recordings should be stored in short speech fragments.

While preparing the Turkish corpus, Turkish proverbs, news bulletins, reports, book
chapters, religious, literary, and historical writings, names of world countries, provinces,
districts, various neighborhoods and street names of the Republic of Turkey, names of
various institutions and organizations of the Republic of Turkey, numbers, and a series of
independent sentences with no logical connection were used. The prepared text data were
voiced by a volunteer speaker who had previously received professional training. Speech
recordings were obtained with the help of an Audio Technica branded studio-type cardioid
condenser microphone. The most important features in choosing this microphone are its
simple use, noise-free and versatile sound. A pop filter was used to reduce environmental
noise and sonic booms during recording. A studio was prepared by soundproofing in the
office environment for receiving recordings. The statistical characteristics of the obtained
corpus are given in Table 2.
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Table 2. Table of feature units for the Turkish corpus.

Feature Turkish Corpus Value

Total Word Count 109.826 Pieces
Unique Word Count 35.050 Pieces

Total Number of Characters 745.011 Pieces
Total Speech Length 12 h 38 min 59 s

Total Number of Speech Pieces 8.480 Pieces
Average Speech Piece Length 5.19 s

Minimum Speech Piece Length 0.54 s
Maximum Speech Piece Length 9.85 s

Average Number of Words Per Speech 12.95 Pieces
Speaker’s Gender Male

Speaker’s Age Level Young
Speaker’s Dialect Type Istanbul Turkish

The prepared corpus consists of a total of 109,826 words. Of the 109,826 words, 35,050
are unique words. This dataset, which is 12 h 38 min 59 s in total, consists of 8480 pieces
of speech. The average length of speech fragments is 5.19 s, with a minimum length of
0.54 s and a maximum length of 9.85 s. The number of words per part of speech is about
13 pieces. The prepared texts were voiced by a young, volunteer male speaker. The speaker
voiced the previously prepared texts by using Istanbul Turkish. The speech was recorded
at 22.05 kHz mono.

3.2. Corpus Preprocessing

TTS systems require clear and low-noise speech samples to accurately process a specific
language and accent. Long periods of silence in speech samples can reduce clarity, while
noise in speech samples can disrupt the integrity of speech, making it difficult for TTS
systems to process the samples correctly and resulting in lower quality synthesized speech.
There should be no areas of noise and silence in the prepared corpus. Therefore, preliminary
processing was carried out on the prepared corpus. VAD was used to extract quiet areas [45].
First, a binary flag was created to determine whether there was a pronunciation in the
speech section. The speech signal was segmented into multiple frames and each frame
was labeled based on whether it contains silence or speech. These labels were then used to
group small speech samples into larger ones. The detection of the relevant gaps and noises
in the speech data was performed automatically with VAD and then manually passed
through real human control. In the text data, the text equivalents of the numbers were
obtained. Abbreviations are not in a standard form in Turkish. Therefore, various processes
were applied for different abbreviations. Abbreviations consisting of a single letter were
not preprocessed. However, the pronunciation of the abbreviations read as they are written
was added to the corpus. For example, the abbreviation “TRT” was added to the corpus
as “te-re-te”. Another type of abbreviation in Turkish is abbreviations with completely
different pronunciations, which are not read as they are written. Different pronunciations
of these abbreviations were added to the corpus. For example, the abbreviation “AIDS”
was added to the corpus as “eydz”. There was no preprocessing for abbreviations that are
read as written. Finally, abbreviations in the text data were checked manually. Punctuation
marks are important to be able to achieve emphasis in pronunciations. For this reason,
punctuation marks were paid attention to in the texts contained in the corpus and the
spaces between the letters were removed.

After the pre-processing on the corpus, the data to be used in training, testing, and
model validation processes were separated. The distribution of the data is given in Table 3.
The data used in the testing and verification processes were selected similarly in terms of
word characteristics to make a balanced distribution. The data reserved for the test and
verification process were not used in model training.
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Table 3. Corpus distribution.

Corpus Name Number of
Words

Number of
Unique Words Voices Total Duration

Train 107.308 33.230 8.280 741 min
Test 1.193 875 100 8 min 59 s

Validation 1.325 945 100 9 min
Total Data 109.826 35.050 8.480 758 min 59 s

As shown in Table 3, the lengths of the data used in the testing and verification
processes are similar. The audio recording with the shortest talk time used in the testing
and verification processes is 2 s. The voice recording with the longest talk time is 8 s long
in the test data and 9 s long in the verification processes. The corpus distribution graph is
given in Figure 5.
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3.3. Parameter Settings

The experiments were carried out using a single Graphics Processing Unit (GPU). The
training process was performed on the Tesla P100 GPU card. Since the NVIDIA Tesla P100
contains 3584 Nvidia CUDA cores, complex models can be successfully trained. For the
test, a desktop computer with an Intel i7 and 16 MB RAM capacity was used. The network
architecture of the model is based on PyTorch. The parameters given in Table 4 were used
to obtain mel-spectrograms from the raw audio data.

Table 4. Audio data parameters.

Parameters Value

Sampling rate 22.05 kHz
Filter length 1.024 points
Window size 1.024 points

Number of mel-spectrogram channels 80
Mel minimum frequency 0.0 Hz
Mel maximum frequency 8000.0 Hz

Tacotron 2 was the basis of the experimental environment prepared for the present
study. However, the parameters contain corpus and Turkish-specific improvements that
were prepared in our work. In summary, the prepared architectural structure used an
optimized sequence-to-sequence model with a set of features that encode the sound corre-
sponding to a string letters. Each frame calculated according to the parameters in Table 4
was converted into an 80-dimensional sound spectrogram. These spectrograms captured
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not only the pronunciation of words but also the speaker’s tone, loudness, and speed, as
well as important points such as the emphasis on words and the intonation of a sentence
according to its meaning. The encoder model parameters used for the spectrograms are
given in Table 5.

Table 5. Model parameters.

Parameters Value

Initial learning rate 0.0005
Model embedding size 512

Model hidden layer size 512
Model layers 3

Batch size 32
Learning Optimizer Adam optimizer

The encoder model consisted of three convolutional layers, each of which contained
512 filters in the form of 5 × 1. These layers were followed by batch normalization and
ReLU activation functions. There was an attention network that takes the output of the
encoder model as input and summarizes the encoded sequence as a fixed-length context
vector. The output of the convolution layer was passed through a bidirectional LSTM layer
containing 512 units (256 in each direction) in order to obtain the encoded properties.

3.4. Training Details

The proposed system was trained on a 16 GB Tesla P100 GPU with 32 GB of RAM
with a batch size of 32. The model was recorded at different epoch values to clearly see the
effect of epoch values in the training process. The training process was performed from
250 to 7000 epochs. When a certain number of epoch values was reached, the relevant
models were recorded and used in the test processes. The model was trained with an
initial learning rate of 5 × 10−4 and exponential decay starting at 1.5 k steps. The learning
rate was reduced by 0.1 per thousand steps until it reached the minimum learning rate
of 1 × 10−5.

3.5. HiFi-GAN Fine-Tuning

A HiFi-GAN model trained for another language can be used to generate a Turkish
speech sample from Turkish speech mel-spectrograms. However, there may be some
contexts specific to Turkish, which must be learned successfully during model adjustment.
For this reason, a Universal HiFi-GAN model was used, which was trained with English
multi-speakers and a large-sized corpus. The used HiFi-GAN model was fine-tuned
according to the audio data received from a Turkish-speaking speaker.

Aligned spectrograms of the speech samples used in the training process were created.
These spectrograms helped the HiFi-GAN learn the sound of the Tacotron model. More
than 5000 epochs were proposed for training HiFi-GAN. Thus, the HiFi-GAN model with
7000 epochs was fine-tuned and trained with Turkish data. In fine-tuning the HiFi-GAN
model, the learning rate was set at 0.0002 and the learning decay at 0.999. The choice of
learning rate in transfer learning can be influenced by the difference between the source
speaker and the target speaker. Therefore, since the universal HiFi-GAN model was
optimized for Turkish speakers, a small learning rate was used in the training. In addition,
FFT, frequency and window size were optimized to be similar to the Tacotron 2 model.

4. Experimental Results

While evaluating the results of the studies conducted in the field of TTS, naturalness
and intelligibility were considered. Subjective and objective evaluation methods were used
in the assessment of naturalness and intelligibility. MOS or A/B testing in the literature
is usually used in subjective methods. Speech quality in objective methods is generally
evaluated by comparing the synthesized speech with reference speech, with no human
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involvement in the comparison process, and measuring the spectro-temporal similarity of
the speech signals.

A diverse dataset is essential to achieving statistically significant results with the
MOS evaluation technique. Experiments should be conducted in controlled environments
with specific acoustic properties and setups to ensure that each participant adheres to the
same instructions or encounters similar influences. Real users were asked to rate speech
recordings on a scale of 1 (bad) to 5 (excellent) to calculate the MOS value. In this study,
a web interface was developed for MOS value determination, enabling users to listen to
relevant conversation recordings and assign scores through the inter-face, as illustrated in
Figure 6.
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Figure 6 shows the web interface where users can listen to speech recordings. Users
can log in to the system with the username and password set for them and make scores.
Through the developed interface, users can listen to speech recordings multiple times.
After the listening process is complete, users can rate and save the recording. Twenty male
and twenty female volunteer listeners were selected to perform MOS scoring via the web
interface. The volunteer listeners, who were between the ages of 18 and 55, were informed
before the evaluation.

Kappa statistics were utilized in this study to determine the degree of agreement
among 40 different evaluators. The Kappa statistic, which is typically used for two raters,
was generalized by Fleiss to measure agreement among more than two raters [46,47].
Kappa values range from −1 to +1, with positive values indicating higher agreement
among raters than would be expected by chance. For each of the five different evaluation
categories (Poor = 0.32, Low = 0.53, Medium = 0.68, High = 0.76, Best = 0.87), Kappa
values were calculated to assess agreement among the 40 evaluators. The positive Kappa
values for each category indicated a higher level of agreement among the evaluators
than would be expected by chance. The lowest agreement was observed for the “Poor”
category (Kappa = 0.32), while the highest agreement was observed for the “Best” category
(Kappa = 0.87).

4.1. Comparison with Human Recordings

A comparison was made between real human speech recordings and synthesized
speech recordings. Therefore, real and synthesized speech recordings were presented to
the volunteer listeners by mixing. One hundred real human speech recordings and one
hundred synthesized speech recordings were played to real users and they were asked to
score them. The results of the MOS scoring are listed in Table 6. The synthesized speech that
was played to real users was prepared with the model obtained as a result of 7000 epochs.
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Table 6. MOS comparison between synthesized speech and human recordings.

Human Recordings Synthesized Speech

4.61 4.49

As shown in Table 6, the synthesized speech gave quality results similar to real human
speech. When the speech recordings that were given a low-quality score were examined,
it was observed that although the speech intelligibility was good, there was slight noise
or interference in the recording. Spectrograms were obtained to be able to observe the
difference between the synthesized speech and the original speech recordings. “Acele ile
menzil alınmaz” was the synthesized speech recording spectrogram of the sentence, and is
shown in Figure 7, and the spectrogram of the original speech recording is given in Figure 8.
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The spectrograms show how the frequency domain content of a speech signal changes
over time. When the related spectrograms were examined, it was seen that similar graphs
were obtained. In the same way, similarities were also seen on waveform. However, the
assessments here are subjective and the perception of listening can vary from person to
person. For this reason, objective MOS-LQO experiments were carried out. The VisQOL
toolkit was used in the realization of these experiments [31]. VisQOL offers an objective,
fully referenced measurement technique for the perceived sound quality. VisQOL, MOS-
LQO score of similarity between the reference signal to produce a test file with a speech
spectro-temporal uses a measure. The quality scores obtained using VisQOL are given in
Table 7.

Table 7. MOS-LQO comparison synthesized speech.

Epoch Level MOS

7000 4.32
6000 4.31
5000 4.29
4000 4.21
3000 4.17
2000 3.74
1000 3.70
750 3.53
500 3.51
250 3.44

It can be seen from Table 7 that the epoch value has a direct effect on MOS scoring.
However, there is little improvement in the success of the model after 5000 epochs as
illustrated in Table 7. It can be objectively observed from the table that there is an improve-
ment in speech quality. The synthesized speech recordings obtained with the developed
system were uploaded to Google Drive. The relevant speech files can be accessed by
using the “Synthesized Speech” link in the Supplementary Materials. In addition, the
Nikola Tesla documentary, voiced by the developed TTS, can be accessed via the link in the
Supplementary Materials.

4.2. Comparison with Previous Turkish TTS Systems

The quality scores obtained within the scope of the study were compared with the
previous Turkish TTS systems. For this purpose, previous Turkish TTS studies were
examined in detail. The methods used in previous studies and the MOS values they
obtained were investigated. The results of the Turkish TTS systems in the literature were
compared with the system by using Tacotron 2 in our study. The system in our work used
HiFi-GAN audio encoder in the predicted mel-spectrograms for better synthesis quality.
The MOS results of the Turkish TTS studies in the literature are given in Table 8. It can
be seen from the table that the results obtained in this study have better sound quality in
terms of MOS than the other studies in the literature.

Corpus-based combined speech synthesis systems have been generally proposed and
applied in the speech synthesis studies for Turkish. In previous studies, a Turkish phoneme
set suitable and sufficient to represent all sounds in Turkish was prepared. In addition, a
pronunciation dictionary was prepared for root words in Turkish in previous studies. Then,
merged speech synthesis systems based on unit selection were developed. However, the
developed systems have not paid attention to the prosody of Turkish. In many studies, it
has been suggested to add a prosody generation module. Prosody can also be achieved
with rule-based approaches. However, the rule table will be quite extensive for Turkish,
which has a generative agglutinative structure. Therefore, it is not preferred.
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Table 8. MOS comparisons between Synthesized Speech and previous TTS systems.

References System Method MOS

This Study Deep Learning Tacotron 2 +
HiFi-GAN 4.49

[48] Concatenation
Synthesis Corpus Based 4.2

[49] Concatenation
Synthesis TD-SOLA 3.85

[42] Concatenation
Synthesis

Rc8660 Voice
Synthesizer 3.29

[50] Concatenation
Synthesis

Statistical/Unit
Selection 3.27

[51] Concatenation
Synthesis PSOLA 2.97

[43] Concatenation
Synthesis PSOLA 1.78

[52] Concatenation
Synthesis PSOLA 1.86

Combinational speech synthesis studies were conducted not only based on software-
based, but also on hardware. The RC8660 speech synthesis platform was used in the Turkish
speech synthesis system carried out by Hakan et al. [42]. The RC8660 uses the merging
method, one of the TTS techniques, for the speech synthesis task [42]. The pre-recorded
speech units were combined in a rule-based way. The occurrence of curtain distortions
during the assembly negatively affects the success of this method. The TTS model presented
within the scope of the study also took advantage of the superior success of HiFi-GAN
and produced higher quality sounds. The obtained subjective and objective MOS values
showed that deep learning-based methods give more successful results for Turkish.

4.3. Speech Synthesis Latency

The speech signals produced by the developed system have shown superior success
compared to previous studies in terms of intelligibility and naturalness. However, the
system as a whole is expected to voice texts quickly. Multilayer deep architectures and
spectrogram transducers are inherently late responding. However, in order for the devel-
oped system to become widespread, it is expected that the synthesized speech quality will
be high, and the inference time of the system will be short. Studies in the literature have
focused exclusively on improving the quality of speech. Therefore, no speech synthesis
latency has been found for applicable systems.

Sentences with different words were prepared to test the speech synthesis time of the
developed system. A test environment with an 8-core Intel i7 process and 16 GB of RAM
memory was used to measure latency times. The experimental results were evaluated using
Real-Time Factor (RTF). The time taken for synthesizing a waveform of 1 s (in seconds) was
obtained by RTF [53]. It was found that the RTF value was 0.92 s on average in the test
conducted on 100 different speech texts. The inference time of the system lasted longer in
sentences using Turkish characters. In addition, the inference time took longer in sentences
using punctuation marks because the intonation changes according to punctuation marks.
Google Cloud TTS, Azure TTS, which provides Turkish TTS service, was used to compare
the extraction times. The comparative results of the inference periods are given in Table 9.

Table 9. Inference speed comparison.

System Latency Time

Azure TTS 2.41
Google TTS 3.85

Our TTS 6.96
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Turkish TTS system developed in this study and the inference time of the systems
providing TTS services in Turkish are compared in Table 9. A 100-character text was
used in the comparison. The waveform generated in exchange for the text is 5 s. Turkish
characters and punctuation marks are included in the text. When the comparative results
were considered, it could be seen that the Azure TTS system gives the best result. However,
our knowledge about the background of Azure and Google TTS systems is limited. For this
reason, it is unclear on which hardware the compared systems were operated. It is seen
that, even in the case where the infrastructure is unclear, the system we have developed
provides acceptable delay rates related to the inference speed.

4.4. Discussion and Limitations

Although speech synthesis presents different challenges for each language, similar
technologies are being used for its development. Compared to combined speech synthe-
sis methods, the intelligibility and naturalness of speech synthesized using SPSS-based
methods are higher. However, HMM-based speech synthesis methods require the use of
context decision trees to share speech parameters, limiting the naturalness of the synthe-
sized speech. DL-based speech synthesis methods have overcome this limitation by using
multiple hidden layers to map context properties to high-dimensional acoustic properties,
resulting in improved speech quality. However, this process also increases the complexity
of the synthesis process.

In deep TTS models, using many network parameters and hidden layers can improve
synthesized speech quality, but it can also result in longer speech synthesis time. An
insufficient corpus leads to overfitting, and a large amount of corpus is required for training,
which can be expensive and time-consuming. High computational capability is necessary
for processing a large corpus, and parallelization is used to improve network efficiency,
although writing GPU code can be a time-consuming and laborious task. Intelligent
programming tools are needed to facilitate TTS development in different languages. While
many TTS development interfaces are available for languages with accessible corpus, there
is currently no framework and corpus available for Turkish.

In languages with an additive structure, such as Turkish, the additive synthesis method
has mostly been used in the speech synthesis task. According to the results obtained, it has
been determined that the speech synthesis system from standard text has good intelligibility
in general, but the emphasis and intonations are missing. The speech synthesized with the
architecture presented within the scope of the study gave the most successful results in
the available literature for Turkish. Code parts were prepared for Turkish to facilitate the
TTS development process. In particular, studies were conducted to undertake the task of
text normalization. The same spellings, but different meanings and readings of different
abbreviations in Turkish, were determined and added to the system. The code parts that
obtained the equivalent of the numbers in Turkish writing were prepared. It is expected
that Turkish TTS system development studies will become widespread by sharing these
frameworks.

5. Conclusions and Future Work

This study utilized the HiFi-GAN audio encoder in the development of a Turkish
TTS system, leveraging the strengths of the Tacotron architecture. The HiFi-GAN encoder
was fine-tuned for Turkish using a pre-trained universal model, resulting in synthesized
speech with quality close to that of natural speech in listening tests. The achieved MOS
value of 4.49 exceeded results reported in previous Turkish TTS studies. Additionally,
MOS-LQO calculations, a more objective approach, produced a value of 4.32, indicating
an acceptable quality for the synthesized speech. While the study focused on Turkish, the
Tacotron 2 + HiFi-GAN architecture presented here can be applied to other languages.

In future studies, there is the potential to explore the synthesis of natural speech in
more challenging scenarios, such as long contextual prose in audiobooks or producing
sounds for songs. Researchers can benefit from the presented dataset and pre-trained model.



Electronics 2023, 12, 1900 17 of 19

Moreover, future TTS studies should integrate natural language processing techniques
to enhance emphasis and intonation in synthesized speech. Synthesizing the correct
pronunciation of words based on their contextual meaning can improve vocalization,
thereby achieving a speech quality closest to human speech.

Supplementary Materials: The following supporting information can be downloaded at: https:
//youtu.be/-Jn6z43zprQ (accessed on 21 February 2023), Video S1: Nikola Tesla documentary,
voiced with the developed TTS. In this article, the Turkish TTS development codes obtained from
our study can be accessed via the following link: https://github.com/saadinoyucu/Turkish-TTS
(accessed on 21 February 2023). You can access the examples of “Synthesized Speech” obtained in this
study from the following link. https://drive.google.com/drive/folders/187kcirx-gwQLg4nfzovhX2
FNrMTz9njc?usp=sharing (accessed on 21 February 2023).
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