
Citation: Jalil, Z.; Nasir, M.; Alazab,

M.; Nasir, J.; Amjad, T.; Alqammaz, A.

Grapharizer: A Graph-Based

Technique for Extractive Multi-

Document Summarization.

Electronics 2023, 12, 1895. https://

doi.org/10.3390/electronics12081895

Academic Editor: Ping-Feng Pai

Received: 21 February 2023

Revised: 7 April 2023

Accepted: 10 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Grapharizer: A Graph-Based Technique for Extractive
Multi-Document Summarization
Zakia Jalil 1,* , Muhammad Nasir 2, Moutaz Alazab 3,* , Jamal Nasir 4 , Tehmina Amjad 1

and Abdullah Alqammaz 5

1 Department of Computer Science, International Islamic University, Islamabad 44000, Pakistan
2 Department of Software Engineering, International Islamic University, Islamabad 44000, Pakistan
3 Department of Intelligent Systems, Faculty of Artificial Intelligence, Al-Balqa Applied University,

Al-Salt 19117, Jordan
4 School of Computer Science, University of Galway, Galway H91 TK33, Ireland;

jamal.nasir@universityofgalway.ie
5 Department of Cyber Security, College of Information Technology, Zarqa University, Zarqa 13110, Jordan
* Correspondence: zakia.jalil@iiu.edu.pk (Z.J.); m.alazab@bau.edu.jo (M.A.)

Featured Application: A graph-based technique tested on a benchmark dataset and augmented
by machine learning techniques to provide a concise, informative, and grammatically correct
summary.

Abstract: In the age of big data, there is increasing growth of data on the Internet. It becomes frustrat-
ing for users to locate the desired data. Therefore, text summarization emerges as a solution to this
problem. It summarizes and presents the users with the gist of the provided documents. However,
summarizer systems face challenges, such as poor grammaticality, missing important information,
and redundancy, particularly in multi-document summarization. This study involves the devel-
opment of a graph-based extractive generic MDS technique, named Grapharizer (GRAPH-based
summARIZER), focusing on resolving these challenges. Grapharizer addresses the grammaticality
problems of the summary using lemmatization during pre-processing. Furthermore, synonym map-
ping, multi-word expression mapping, and anaphora and cataphora resolution, contribute positively
to improving the grammaticality of the generated summary. Challenges, such as redundancy and
proper coverage of all topics, are dealt with to achieve informativity and representativeness. Graphar-
izer is a novel approach which can also be used in combination with different machine learning
models. The system was tested on DUC 2004 and Recent News Article datasets against various
state-of-the-art techniques. Use of Grapharizer with machine learning increased accuracy by up to
23.05% compared with different baseline techniques on ROUGE scores. Expert evaluation of the
proposed system indicated the accuracy to be more than 55%.

Keywords: big data; automatic text summarization; extractive multi-document summarization;
graph theory; machine learning; anaphora; cataphora; pronoun resolution; grammaticality; topic
modeling; ChatGPT

1. Introduction

With automation occurring in every domain, people’s reliance on computers has
increased tremendously. As a result, there has also been exponential growth in the number
of online documents. Bidoki et al. [1] reported that, each day, about 4 million blog posts
are published on the Internet, which represents a huge addition to the existing volume of
big data. It is becoming increasingly difficult to find important information from such a
huge body of online raw data. Automatic text summarization (ATS henceforth) has been in
use for the last six decades to handle this issue. Internet users can become frustrated when

Electronics 2023, 12, 1895. https://doi.org/10.3390/electronics12081895 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081895
https://doi.org/10.3390/electronics12081895
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4992-4189
https://orcid.org/0000-0003-2823-4776
https://orcid.org/0000-0003-0035-192X
https://doi.org/10.3390/electronics12081895
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081895?type=check_update&version=1

Electronics 2023, 12, 1895 2 of 26

finding redundant information when they search, instead of receiving news updates on
their topic of interest.

Text summarization tools can address such needs and reduce redundancy [2]. Text
summarization techniques can produce a variety of summaries. Based on the nature of the
technique used to shrink documents, the summary can be abstractive or extractive. The
process of creating a brief and succinct summary that encapsulates the key concepts of the
source text is known as abstractive text summarization. The generated summaries might
include new words and phrases that may not appear in the source text. Extractive text
summarization deals with the selection of important sentences from the document(s) and
combines the extracts to form the summary [3]. The input for the summarization task can be
a single document, making it single-document summarization (SDS), or several documents,
making it multi-document summarization (MDS henceforth) [4]. The output of both SDS
and MDS is a concise summary of the input text. The supervised learning technique of text
summarization needs training data so that the model is trained to learn about important
sentences in documents for a summary, whereas in an unsupervised technique, the model
does not need training data. Moreover, there are two ways a summary can be generated.
Either you want to generate a summary from the document(s) on a particular topic or
you want to know the gist of the entire document cluster(s). The former is known as
query-based summarization, while the latter is a generic technique of summarization [4].
Figure 1 shows the hierarchical representation of these categories of ATS. The red dotted
lines in Figure 1 represent the scope of this study.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 27

in use for the last six decades to handle this issue. Internet users can become frustrated

when finding redundant information when they search, instead of receiving news updates

on their topic of interest.

Text summarization tools can address such needs and reduce redundancy [2]. Text

summarization techniques can produce a variety of summaries. Based on the nature of the

technique used to shrink documents, the summary can be abstractive or extractive. The

process of creating a brief and succinct summary that encapsulates the key concepts of the

source text is known as abstractive text summarization. The generated summaries might

include new words and phrases that may not appear in the source text. Extractive text

summarization deals with the selection of important sentences from the document(s) and

combines the extracts to form the summary [3]. The input for the summarization task can

be a single document, making it single-document summarization (SDS), or several docu-

ments, making it multi-document summarization (MDS henceforth) [4]. The output of

both SDS and MDS is a concise summary of the input text. The supervised learning tech-

nique of text summarization needs training data so that the model is trained to learn about

important sentences in documents for a summary, whereas in an unsupervised technique,

the model does not need training data. Moreover, there are two ways a summary can be

generated. Either you want to generate a summary from the document(s) on a particular

topic or you want to know the gist of the entire document cluster(s). The former is known

as query-based summarization, while the latter is a generic technique of summarization

[4]. Figure 1 shows the hierarchical representation of these categories of ATS. The red dot-

ted lines in Figure 1 represent the scope of this study.

Figure 1. Hierarchical representation of categories of ATS.

Extractive MDS is one of the most popular methods used in automatic summary gen-

eration [2,5–7]. Extractive MDS aims to mark important sentences in the document cluster

and create the summary in such a manner that repetition of the different documents does

not result in the duplication of information in the summary. The summary should also

not miss important facts found in the multiple documents, while handling the issue of

redundancy [1].

There are several challenges that extractive MDS suffers from. One such challenge is

the poor grammaticality of the resultant summary [8,9]. A lot of research is currently fo-

cusing on improving the sentence quality of the summary. Since input documents may

Figure 1. Hierarchical representation of categories of ATS.

Extractive MDS is one of the most popular methods used in automatic summary
generation [2,5–7]. Extractive MDS aims to mark important sentences in the document
cluster and create the summary in such a manner that repetition of the different documents
does not result in the duplication of information in the summary. The summary should
also not miss important facts found in the multiple documents, while handling the issue of
redundancy [1].

There are several challenges that extractive MDS suffers from. One such challenge
is the poor grammaticality of the resultant summary [8,9]. A lot of research is currently
focusing on improving the sentence quality of the summary. Since input documents may
contain similar content in different words and formats, it is important to process words
and phrases that have a similar meaning in a similar way. This can be achieved using

Electronics 2023, 12, 1895 3 of 26

synonym mapping during pre-processing. Some articles contain phrases, such as phrasal
verbs, proper nouns, compound nominals, and idioms for expression, known as multi-
word expressions (MWE) [8]. If all the MWE are substituted with appropriate single-word
synonyms, the resultant concise summary will have a better grammatical basis.

Grammaticality suffers mostly in anaphora and cataphora. Sentences containing
nouns may not be picked up for the summary. However, if sentences with pronouns are
included in the summary without their original noun referents, the summary will become
ambiguous. Therefore, pronoun replacement must be carefully performed to keep the
summary grammatically correct [3,9].

The query-focused summarization process is straightforward, i.e., the model picks all
the sentences containing the keywords of the query to prepare the summary [7]. The generic
technique, however, can suffer from omitting important topics that are not referred to clearly
in documents. In this regard, if topic modeling is used before preparing the summary, the
probability of missing any topic will be minimized. Modern research is mainly focused on
addressing these challenges in the development of summarization systems.

In this paper, we propose a generic, graph-based extractive multi-document summa-
rization system and call it Grapharizer. We address some of the prominent problems that
are faced by summarization systems, which concern maximizing coverage of all the topics
and reducing redundancy. The proposed methodology increases the informativity and
representativeness of all topics, and improves the grammatical quality of the resultant
summary, while mitigating redundancy in the summary. In our system, summaries are
generated by plotting the sentences as a word-graph that returns the shortest sentences
related to a topic in the form of short paths in the graph. Graphs are prepared for each topic
individually; therefore, there is a representation of every topic in the summary, without
repetition of the sentences of the same topic in the summary.

The proposed system is evaluated using the DUC 2004 and Recent News Article
datasets. These datasets contain a variety of topics; each topic has ten files which discuss
different aspects of the same news event. The nature of these datasets fits exactly with the
challenges that modern summarization systems face. Evaluations undertaken using Recall
Oriented Understudy for Gisting Evaluation (ROUGE) variants showed 23.05% accuracy
by Grapharizer with ML on ROUGE-1 recall and a 6.49% F-score, while the results for
Grapharizer alone were also promising when compared with different baselines techniques.
A manual evaluation was also performed that indicated 55% accuracy of the summary
generated by Grapharizer in comparison with reference summaries.

The rest of the paper is arranged as follows: In Section 2, we briefly discuss existing
approaches related to text summarization, specifically papers on the graph-based method
of extractive summarization. Section 3 contains a detailed discussion of the proposed model
that improves the grammaticality of the resultant summary. Section 4 contains details of
the experiments conducted. Discussion of the results relating to variations in treatment
on the model is provided in Section 5. Finally, we conclude our study in Section 6 with
discussion of future directions for researchers.

2. State-of-the-Art Multi-Document Summarization Techniques

There are many techniques to facilitate extractive MDS tasks, including ontology-
based [10–12], t-based [13–18], clustering-based [19–25], latent semantic analysis [26–33],
and graph-based [8,34–42] techniques. Since our proposed technique, Grapharizer, pro-
duces summaries from the input text using the graph technique, in this section, we discuss
the literature related to the use of graph theory in ATS in detail.

The use of graph theory for generating summaries is not new. It has roots that are
deep in the field of ATS. Erkan and Radev [34] used graph theory for the first time for
summarization in 2004. They devised the LexRank algorithm, which was an adaptation
of the PageRank [35] algorithm. The sentence salience in a graph is computed using the
eigenvector centrality to compute the importance of the node in the sentence graph. The
algorithm was tested over variants of DUC and evaluated via ROUGE.

Electronics 2023, 12, 1895 4 of 26

Once graph theory was shown to work successfully in MDS, much work started in this
field. Baralis et al. [37] adapted the a priori technique of association rule mining in MDS to
find the correlation between terms in datasets and ranked sentences using PageRank [35].
Christensen et al. [42] used directed graphs for sentence selection and ordering to generate
coherent summaries. Similarly, Sukumar and Gayathri [41] worked to achieve sentence
ordering using an entailing method employing WordNet alongside graph theory. John and
Wilscy [39] incorporated Euler’s graph theory and named their approach the Vertex Cover
algorithm for MDS. Sentences were mapped into vertices. Vertices with high relevance
scores qualified to appear in the summary.

Sentence compression is also an important aspect of text summarization since it makes
the text concise for readers. ShafieBavani [8] compressed sentences using a word-graph
technique, while maintaining the grammaticality of the summaries extracted from the
unstructured dataset. They also mapped MWE with their single-word equivalents, whereas
Canhasi [36] presented a five-layered heterogeneous graph for MDS. Tzouridis et al. [40]
extended the idea of compressing individual sentences to summarize documents. They
presented the word-graph method and compressed similar sentences by finding the shortest
path in the graph. Machine learning was also used to classify candidate sentences in the
graph for the summary.

The idea of summarization has also attracted researchers from domains other than
text. For instance, it has been adopted heavily in computer vision. Chen et al. [43] used
the deep learning techniques of CNN and RNN to summarize multi-modal text. Similarly,
Celikkale et al. [44] adopted the idea of automatic summarization to generate structural
summaries for a huge collection of images. Shingrakhia et al. [45] extended the benefits of
summarization to the cricket ground by devising a technique to generate match summaries.
Similarly, Radarapu et al. [46] used video summarization for security purposes. ATS has
also been used for opinion mining [5,47,48]. Nathania et al. [5] exploited the ATS technique
for hotel reviews, whereas Marzijarani and Sajedi [47] carried out the same task using the
clustering-based method. Similarly, Abdi et al. [48] extended this idea to movie reviews.

Optimization of the resultant summary is an equally important task. Bidoki et al. [1]
devised a technique for extractive MDS employing statistical, graph, and machine learning
techniques to optimize the resultant summary. They focused specifically on improving the
extraction of short sentences in text by expanding them with suitable words and tuning the
overall sense in them.

Cross-language platforms are also adopted in ATS. For example, if the provided
documents’ cluster is not in a language familiar to the user, instead of translating the
entire cluster, it is wiser to convey the gist of it in the target language to the user. Pontes
et al. [49] handled this issue with promising results. The compressive approach was applied
at multiple, as well as single, sentence levels so that a French-to-English summary could
be generated. One major objection to this study is that the authors relied on the Google
Translate system for translations, which usually fails to translate the MWE across languages.

The EdgeSumm method proposed by El-Kassas et al. [50] is a mixed approach com-
bining graphical, statistical, semantic, and centrality-based methods. The authors proposed
a combination of four algorithms to resolve the task of summarization. The approach
involves constructing a text-graph, scanning the graph for summary candidate selection,
and then adjusting it up to the set limit of length. The EdgeSumm algorithm was claimed
to provide results comparable to SOTA algorithms.

The KUSH summarization system by Uçkan et al. [7] used sentence relations to
maximum levels. They exploited the idea of independent sets to analyze the graph nodes
to select the most representative sentence that, in summary, contained the maximum
information. Sentences were ranked and selected using eigenvector centrality. An increase
in informativity and a decline in redundancy were reported in the results.

Another attempt to discover cross-sentence relations was undertaken by Wang et al. [51]
using the technique named HeterSumGraph. They constructed a sentence-graph and en-
riched it with semantic nodes at different levels. Sentences were connected with semantic

Electronics 2023, 12, 1895 5 of 26

nodes that were constituted using words in sentences. The graph was scalable through
the multi-documents by introducing document nodes. The technique can be extended for
improved results by extending the features to topics and entities.

Since its beginnings, the bio-inspired firefly metaheuristic algorithm has gained a lot of
attention and has been used in a variety of applications. Tomer and Kumar [52] employed
it with an improved fitness function to evaluate features, and to generate a summary with
highly relevant sentences concerning the given topic. Based on the attraction of less bright
fireflies towards the brighter ones, this algorithm was utilized in MDS to move non-optimal
solutions toward optimal ones. The algorithm performed better according to ROUGE
1 and 2 scores on DUC dataset variants in comparison to other nature-inspired algorithms.

Medical documents are very significant, and they have special meaning in diagnosis.
Davoodijam et al. [53] proposed an unsupervised multi-layered graph-based system to
summarize medical documents and named their system MultiGBS. The multiple layers of
an undirected graph were found useful to cover multiple features. Employing the features,
sentences were ranked using the MultiRank algorithm, a PageRank-like algorithm, to rank
the sentences of a multi-layered graph. Evaluation of ROUGE and BERTScore gave better
F-measure scores. The MultiGBS needs to be evaluated on benchmarked datasets to better
assess the results claimed for medical documents.

A technique of interaction networking for extractive and abstractive summarization
was adopted by Jin et al. [54] by treating documents, sentences, and words at different
levels in a hierarchical relation graph. The system was tested on the Multi-News dataset
and showed promising results.

Similarly, Lierde and Chow [55] presented a query-focused ATS system based on
hypergraphs, where sentences were mentioned as graph nodes and hyperedges combined
the nodes of similar topics. Li et al. [56] argued that summarization systems either fail
to contain the sentiments in the summary, or give wrong sentiments from the original
document sets altogether. They used graph theory for summarization as well as to main-
tain the sentiment vector for sentences to keep the sentiments of the documents in the
summary intact.

The main motivation for developing Grapharizer was to overcome the limitations
of existing ATS systems. On the other hand, Grapharizer exploits the desired features
of existing ATS methods. Grapharizer combines grammar-focused pre-processing with
the latent Dirichlet allocation (LDA) algorithm of topic modeling, and uses graph-based
methodology with the support vector machine (SVM), multivariate linear regression (MLR),
and artificial neural network (ANN) techniques of machine learning in the following way:

• Proposing a supervised and domain-independent framework that does not require
data to be present in annotated form.

• Developing a dataset named Recent News Articles, to further test the proposed tech-
nique for measuring performance.

• Using the LDA topic modeling technique to create a summary that includes all the
topics in the input document.

• Increasing the informativity and representativeness of all topics, while mitigating
redundancy in the resultant summary.

• Using lemmatization, MWE mapping, synonym mapping with novel cross-function,
anaphora and cataphora of the pronoun replacement in pre-processing, and reverse-
mwe function in post-processing, aiming to increase the grammatical quality of the
resultant summary. Figure 2 represents the experiment design of Grapharizer with the
description of dependent and independent variables, object, subject, treatments, and
the outcome.

Electronics 2023, 12, 1895 6 of 26

Electronics 2023, 12, x FOR PEER REVIEW 6 of 27

the description of dependent and independent variables, object, subject, treatments,

and the outcome.

Figure 2. The Experimental Design of Grapharizer.

In this experiment, there were two independent variables: Graph-based MDS tech-

niques and datasets. For each independent variable, there were two treatments. The

Graph-based techniques consisted of two types: Grapharizer and state-of-the-art MDS

(LexRank, TexRank, Kush). The datasets used in the experiment were DUC 2004 and Re-

cent News Articles. The dependent variables measured were diversity and representa-

tiveness, redundancy mitigation, and grammaticality, as shown in Figure 2. To ensure

consistency, the effect of the dataset was blocked, and the same datasets were used for

both treatments of the Graph-based MDS techniques in each trial of the experiment.

3. The Proposed Technique

This section contains an introduction to the graph-based technique that we have pro-

posed for extractive multi-document summarization named Grapharizer. After discuss-

ing the motivation behind our proposed technique, we detail the graph creation process

of our technique, how it is designed to handle the problem of redundancy, and how it is

designed not to miss any important topic in the given set of documents while preparing

the summary. The architecture of Grapharizer is represented in Figure 3.

Figure 2. The Experimental Design of Grapharizer.

In this experiment, there were two independent variables: Graph-based MDS tech-
niques and datasets. For each independent variable, there were two treatments. The
Graph-based techniques consisted of two types: Grapharizer and state-of-the-art MDS
(LexRank, TexRank, Kush). The datasets used in the experiment were DUC 2004 and Recent
News Articles. The dependent variables measured were diversity and representativeness,
redundancy mitigation, and grammaticality, as shown in Figure 2. To ensure consistency,
the effect of the dataset was blocked, and the same datasets were used for both treatments
of the Graph-based MDS techniques in each trial of the experiment.

3. The Proposed Technique

This section contains an introduction to the graph-based technique that we have pro-
posed for extractive multi-document summarization named Grapharizer. After discussing
the motivation behind our proposed technique, we detail the graph creation process of our
technique, how it is designed to handle the problem of redundancy, and how it is designed
not to miss any important topic in the given set of documents while preparing the summary.
The architecture of Grapharizer is represented in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 27

Figure 3. Architecture diagram of Grapharizer with ML

3.1. Motivation

Graph theory is an important framework for solving optimization problems in every

important field of science, technology, engineering, and mathematics, or STEM in short.

It has been extensively used to solve different problems, such as finding the shortest path,

determining the connectivity among different networks, such as computer networks, so-

cial networks, academic link networks, and connectivity networks, and detecting mali-

cious activities from inside networks to avoid cyber-crimes.

Graph theory has been extensively utilized in the field of ATS for the last 25 years.

However, it has a few limitations. For example, the edges between two busy vertices can

be considered similar [57], which might be quite different in reality. It can possibly miss

important content from documents, while stressing the same point redundantly in the

summary.

The use of graph theory for ATS will make it easy to produce a concise version of the

available text that will help every reader who is looking online for the gist of the available

body of text.

3.2. Grapharizer: The Graph-Based Method

As discussed in Section 3.1, graph theory is important in ATS to produce optimized

summaries. The critical problem in extractive multi-document summarization is to iden-

tify important sentences from the input text. It is also important to note that multiple doc-

uments might contain different topics, with some of the topics being frequently discussed

while other topics are discussed less frequently. It is nevertheless important to cover all

the aspects present in the documents to prepare a generic summary and to obtain the gist

of the documents appropriately. The graph-based methods used in MDS generate the

graph based on the input document (we discuss this in Section 3.2.2) and identify the

shortest path in the graph to generate the summary. This short path might cover only

some of the topics, and not all the important ones, resulting in a less representative sum-

mary. We have handled this problem by incorporating topic modeling before generating

the graph.

Figure 3. Architecture diagram of Grapharizer with ML.

Electronics 2023, 12, 1895 7 of 26

3.1. Motivation

Graph theory is an important framework for solving optimization problems in every
important field of science, technology, engineering, and mathematics, or STEM in short. It
has been extensively used to solve different problems, such as finding the shortest path,
determining the connectivity among different networks, such as computer networks, social
networks, academic link networks, and connectivity networks, and detecting malicious
activities from inside networks to avoid cyber-crimes.

Graph theory has been extensively utilized in the field of ATS for the last 25 years.
However, it has a few limitations. For example, the edges between two busy vertices
can be considered similar [57], which might be quite different in reality. It can possibly
miss important content from documents, while stressing the same point redundantly in
the summary.

The use of graph theory for ATS will make it easy to produce a concise version of the
available text that will help every reader who is looking online for the gist of the available
body of text.

3.2. Grapharizer: The Graph-Based Method

As discussed in Section 3.1, graph theory is important in ATS to produce optimized
summaries. The critical problem in extractive multi-document summarization is to identify
important sentences from the input text. It is also important to note that multiple documents
might contain different topics, with some of the topics being frequently discussed while
other topics are discussed less frequently. It is nevertheless important to cover all the
aspects present in the documents to prepare a generic summary and to obtain the gist of
the documents appropriately. The graph-based methods used in MDS generate the graph
based on the input document (we discuss this in Section 3.2.2) and identify the shortest
path in the graph to generate the summary. This short path might cover only some of the
topics, and not all the important ones, resulting in a less representative summary. We have
handled this problem by incorporating topic modeling before generating the graph.

Similarly, in extractive MDS, the grammaticality of the summary can suffer. The main
areas of concern are pronouns, or anaphora and cataphora. The sentences containing noun
mentions might not be selected in the summary, but pronoun mentions might get a place
there. This can cause serious confusion to the reader of the summary. Similarly, since the
input data is always unstructured text, it might contain phrases such as idioms to explain
a situation poetically. Such MWE can cause concerns about the length of the summary.
The summary length determines how much information from the original text is included
in the summary. If the summary length is too short, important details and nuances may
be left out, resulting in an incomplete or inaccurate summary. On the other hand, if the
summary length is too long, the summary may become too verbose and lose its conciseness
and clarity, defeating the purpose of summarizing. The ideal summary length will depend
on various factors, such as the length and complexity of the original text, the purpose of the
summary, and the intended audience. Therefore, it is important to consider the summary
length as a critical parameter in generating effective and informative summaries. We have
kept the summaries within a 200–250 word limit in this experiment.

Furthermore, in the word graph-based methods (explained in Section 3.2.2), there is
the possibility of picking a few vertices from the MWE and dropping the rest, which results
in a meaningless summary. Therefore, we have handled this problem by replacing MWE
with their single-word synonyms. We have also implemented machine learning techniques
for the classification of summary candidates using SVM, MLR, and ANN.

3.2.1. Pre-Processing

Since natural language processing (NLP) projects deal with unstructured data, it is
unavoidable to use a pre-processing step. It prepares data for the algorithm to facilitate
summary generation. The better the pre-processing is, the more accurate will be the results
generated by the algorithm.

Electronics 2023, 12, 1895 8 of 26

We have applied several steps in the pre-processing phase to convert the input data so
that they work well with the Grapharizer.

The steps performed in pre-processing to cleanse the input text for our summarizer
are stated below:

• Tokenization: In tokenization, each sentence from the input documents is broken down
into the smallest units, called tokens. This is helpful to recognize the words for the later
functionalities in the subsequent pre-processing steps and graph generation module.
A few tokens from the input text are <Cambodian>, <leader>, <of>, <opposition>, etc.

• Lemmatization: In this step, the given words/tokens are reduced to their root words,
called lemmas. While this appears similar to stemming, which simply chops off the
words from the tail, in lemmatization the words are reduced to the root word with
proper meaning using a dictionary. The reduced words in lemmatization are gram-
matically meaningful. Since grammatically correct summaries are one of our aims,
lemmatization is relevant to our goals for the summarizer. For instance, we achieved
the lemma “share” for “sharing”, instead of the stem word “shar”. Secondly, lemma-
tization is also better than stemming as it helps to avoid the extra post-processing
step of reverse-stemming that entails re-use of the route words that were chopped
during stemming.

• Synonym Mapping: Since the Grapharizer is based on the word graph technique, the
graph it constructs based on multiple documents is going to be too dense. It is impor-
tant to replace the synonyms to keep the graph simple. Therefore, synonym mapping
is the most important step in pre-processing in our system. It keeps the constructed
graph under control in terms of the number of vertices by avoiding the creation of
unnecessary vertices. We have used Thesaurus.com for synonym mapping through
API calls. Thesaurus.com offers several synonyms for a particular word. We have
devised a function named cross() to pick the best matching synonyms. For example,
we have the word “government” in the document, and then comes another word
“regime”. As shown in Figure 4, we must check whether “regime” or its synonyms
already exist in the document or not. We check the synonyms of “government”. If
“regime” exists in the synonyms of “government” given by Thesaurus.com, we check
conversely too by checking the synonyms of “regime”. Thesaurus.com will give a
list of synonyms of “regime” as well. Now, if “government” is also a synonym for
“regime”, then the condition of the cross() is satisfied, and “regime” can be replaced
with “government”. It is worth mentioning that through the cross(), we have managed
to obtain the semantic meanings of the synonyms as well. For example, “sentence”
is taken as “penalty” instead of “set of words”. The expert evaluation of synonym
quality is presented in Section 4.4.

• Multi-Word Expressions: As discussed in Section 3.2, the MWE are likely to appear
since the input documents are unstructured files; therefore, we have given special care
to map the MWE with their single-word substitutes. This will make the graph simpler,
clearer, and more manageable. We gathered the MWE from the dataset and placed their
single-worded synonyms in a spreadsheet so that the word graph processing becomes
easier. These MWE contain phrasal verbs (e.g., look out, look after), proper nouns
(e.g., New York, Christiano Ronaldo), compound nominals (e.g., credit card), and
idioms (e.g., once in a blue moon) [49]. Once the candidate sentences for the summary
are selected, we apply a function reverse-mwe() that we have devised to reverse the
single-worded synonyms replaced earlier back to their corresponding MWE. This will
generate closer results to the gold standard summaries of the benchmark datasets,
such as the DUC 2004 and Recent News Articles datasets in our case.

• Pronoun Replacement: In this step, the pronouns are replaced with their corresponding
nouns. As stated earlier, in a document, some sentences mention nouns about certain
events, and later, they can be referred to by pronouns. This situation is also known as
anaphoricity. Sometimes, it also happens that the pronouns are mentioned earlier, and
the nouns follow them later in the text. This situation is known as cataphoricity. It is

Electronics 2023, 12, 1895 9 of 26

possible that the sentences with a noun mention are not extracted, while the sentences
with pronouns are selected. This can cause serious confusion in the summary with
respect to what these pronouns are referring to. To solve this problem, we have used
pronoun replacement. This phase is mainly inspired by Durrett et al. 2016 [9]. It is
important to note that assigning the probabilities for pronoun replacements is adapted
from Durrett et al. [9]. The logic and implementation of anaphora and cataphora
detection and replacement with appropriate nouns are our own contributions. Algo-
rithm 1 explains this work in detail. The ablation study is reported in Section 4.5 to
showcase the effectiveness of the proposed pre/post-processing steps in addition to
the Grapharizer.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 27

example, we have the word “government” in the document, and then comes another

word “regime”. As shown in Figure 4, we must check whether “regime” or its syno-

nyms already exist in the document or not. We check the synonyms of “government”.

If “regime” exists in the synonyms of “government” given by Thesaurus.com, we

check conversely too by checking the synonyms of “regime”. Thesaurus.com will

give a list of synonyms of “regime” as well. Now, if “government” is also a synonym

for “regime”, then the condition of the cross() is satisfied, and “regime” can be re-

placed with “government”. It is worth mentioning that through the cross(), we have

managed to obtain the semantic meanings of the synonyms as well. For example,

“sentence” is taken as “penalty” instead of “set of words”. The expert evaluation of

synonym quality is presented in Section 4.4.

Figure 4. The cross() function for synonym mapping.

• Multi-Word Expressions: As discussed in Section 3.2, the MWE are likely to appear

since the input documents are unstructured files; therefore, we have given special

care to map the MWE with their single-word substitutes. This will make the graph

simpler, clearer, and more manageable. We gathered the MWE from the dataset and

placed their single-worded synonyms in a spreadsheet so that the word graph pro-

cessing becomes easier. These MWE contain phrasal verbs (e.g., look out, look after),

proper nouns (e.g., New York, Christiano Ronaldo), compound nominals (e.g., credit

card), and idioms (e.g., once in a blue moon) [49]. Once the candidate sentences for

the summary are selected, we apply a function reverse-mwe() that we have devised

to reverse the single-worded synonyms replaced earlier back to their corresponding

MWE. This will generate closer results to the gold standard summaries of the bench-

mark datasets, such as the DUC 2004 and Recent News Articles datasets in our case.

• Pronoun Replacement: In this step, the pronouns are replaced with their correspond-

ing nouns. As stated earlier, in a document, some sentences mention nouns about

certain events, and later, they can be referred to by pronouns. This situation is also

known as anaphoricity. Sometimes, it also happens that the pronouns are mentioned

Figure 4. The cross() function for synonym mapping.

Algorithm 1 Pronoun Replacement

1. Grapharizer_Pronoun_Replacement (string)
2. Begin:
3. While (DUC_2004/Recent_News_Articles=!End of File())
4. {Sentence = Load Sentences()
5. Fetch line by line sentences of Duc_2004/Recent_News_Articles;
6. If (Find-Pronoun (Sentence()) then
7. If (Posterior-Probability > α)
8. max(p1,p2, . . . ,pn) > α where α > 0.5)
9. (pronoun found before the noun = Anaphora) OR (pronoun found after the noun =

Cataphora) then
10. Replace-Pronoun (Noun) Else
11. Antecedent-Sentence();
12. Include Antecedent Sentence in Summary(); }
13. End While
14. End

Electronics 2023, 12, 1895 10 of 26

3.2.2. Overview of the Graph Generation Process

We implemented the word graph in Python to generate the short paths in multiple
documents [40,58]. The process to construct a graph begins after the pre-processing phase.
We added a token S at the beginning of every sentence, and a token E at the end of each
sentence in the dataset. During the graph construction, the first token to be placed in
the graph will be S since it begins the first sentence of every topic, such as the rest of the
sentences in the dataset. It then starts reading the sentences in sequence. Each word makes
a vertex in the graph. If a sentence contains a word that is already used in some previous
sentences, then that word will already be placed as a vertex in the graph. Therefore, there
is no need to duplicate that vertex. An edge will be directed towards that vertex in the
graph. In a directed graph, edges point in one direction from one vertex to the next, and the
vertices have two degrees: in-degree (number of incoming edges) and out-degree (number
of departing edges). In this case, the weight of that particular edge will be incremented.
The first vertex of the graph is vertex S or vs, the start vertex of the graph. The second word
of the first sentence of the first document will be placed as a graph vertex. There will be a
directed edge from the vs to the vertex of the second word of each sentence. Then, for the
third word, an edge will be directed from the second word towards the third word, and
so on. In this way, all the sentences are plotted in the graph, word-by-word. This process
continues until the last word in the last sentence of the last document is plotted as a graph
vertex. It is important to note that every sentence in the document ends at the E, so the end
vertex of the graph is ve. The in- and out-degree of each vertex are calculated. This work is
explained with an exemplary graph in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 27

Figure 5. Word graph construction from the sentences “Linda is a beautiful girl”, “Linda is a beau-

tiful young lady”, and “Linda is very professional”. The shortest path is the summary of these sen-

tences in the red highlighted path saying, “Linda is beautiful girl”.

Once the graph is constructed, now the aim is to find the shortest path in that graph.

It is important to mention that we employed the same feature set and cost function as that

of Tzouridis et al. [40]. To find the shortest path, we used Dijkstra’s algorithm. It finds the

shortest path between vertices S and E. If the path traverses a lesser number of vertices

between vs and ve, it will constitute a shorter path.

To find k-short paths in the graph, we employed Yen’s algorithm.

G = (V; E; cost) is a directed weighted graph, where V denotes the set of vertices and

E denotes the set of edges between (v and v′) є V. Every edge E is given a positive weight

according to the cost function. A path (p) connecting two vertices in G is made up of a

series of edges. The set of all possible paths beginning from the start vertex vs and ending

in the end vertex ve is denoted. The total weight of a path’s edges determines the cost of

the path. The shortest path from vs є V to ve є V is defined as the path in G with the lowest

cost. The cost is defined by Equation (1).

𝑐𝑜𝑠𝑡(𝑣, 𝑣′) =∑𝜆𝑖𝜙𝑖(𝑣, 𝑣
′) = 𝜆⊤𝜙(𝑣, 𝑣′)

𝑖

 (1)

We optimized the summaries by incorporating a few constraints alongside the cost

function calculated on the feature set. For example, if there are no vertices between the S

and E vertices, such short paths, also known as empty paths, will be discarded to qualify

as summaries. Similarly, if a sentence does not contain a noun, predicate, and verb, then

it is not a candidate sentence for a summary. We also set a certain arbitrary limit to the

size of the summary, i.e., it should not be less than 15% of the input text. Too much com-

pression can also result in a loss of meaning to the summary. Algorithm 2 explains the

working of Grapharizer for better understanding.

Figure 5. Word graph construction from the sentences “Linda is a beautiful girl”, “Linda is a beautiful
young lady”, and “Linda is very professional”. The shortest path is the summary of these sentences
in the red highlighted path saying, “Linda is beautiful girl”.

Once the graph is constructed, now the aim is to find the shortest path in that graph.
It is important to mention that we employed the same feature set and cost function as that
of Tzouridis et al. [40]. To find the shortest path, we used Dijkstra’s algorithm. It finds the
shortest path between vertices S and E. If the path traverses a lesser number of vertices
between vs and ve, it will constitute a shorter path.

To find k-short paths in the graph, we employed Yen’s algorithm.

Electronics 2023, 12, 1895 11 of 26

G = (V; E; cost) is a directed weighted graph, where V denotes the set of vertices and E
denotes the set of edges between (v and v′) є V. Every edge E is given a positive weight
according to the cost function. A path (p) connecting two vertices in G is made up of a
series of edges. The set of all possible paths beginning from the start vertex vs and ending
in the end vertex ve is denoted. The total weight of a path’s edges determines the cost of
the path. The shortest path from vs є V to ve є V is defined as the path in G with the lowest
cost. The cost is defined by Equation (1).

cost
(
v, v′

)
= ∑

i
λiφi

(
v, v′

)
= λ>φ

(
v, v′

)
(1)

We optimized the summaries by incorporating a few constraints alongside the cost
function calculated on the feature set. For example, if there are no vertices between the S
and E vertices, such short paths, also known as empty paths, will be discarded to qualify as
summaries. Similarly, if a sentence does not contain a noun, predicate, and verb, then it is
not a candidate sentence for a summary. We also set a certain arbitrary limit to the size of
the summary, i.e., it should not be less than 15% of the input text. Too much compression
can also result in a loss of meaning to the summary. Algorithm 2 explains the working of
Grapharizer for better understanding.

Algorithm 2 Grapharizer

1. Grapharizer_Summarizer (input: pre-processed_dataset,Return:short_paths)
2. Begin:
3. While (DUC_2004=!End of File ())
4. {Sentence = Load (DUC_2004);
5. Begin pre-processing
6. Tokenize (Sentence)
7. Tokenize words from sentence
8. Repeat until EOF
9. Lemmatize (Tokens)
10. Simplify the tokens to meaningful lemmas
11. Replace Synonyms (lemma) using thesaurus.com
12. Cross-function (lemma)
13. Replace-Pronouns(nouns)
14. Replace MWEs (CSV lookup file for replacement)
15. End pre-processing
16. Extract Topics LDA (with n = 10 for parametric topic modelling with less repetition)
17. Cluster of similar sentences
18. For each topic
19. Construct WordGraph
20. Find ShortPath(calculate path p from vs to ve, return p)
21. Combine all short paths
22. Reverse-mwe()
23. Evaluate summary with ROUGE 2.0 }
24. End While
25. End

3.2.3. Representativeness

It has been observed that the datasets contain plenty of unstructured information
about different topics. The frequency of some topics appears to be higher than others. As
mentioned earlier, a fully representative summary should have complete coverage of all
the topics in documents, as this is the basic idea of generic summarization. It is equally
important not to miss any topic from appearing in the summary. Therefore, we handled this
issue by employing topic modeling. We applied LDA [59], hierarchical Dirichlet process
(HDP) [60], and latent semantic indexing (LSI) [61] to see the effect of the topic modeling

Electronics 2023, 12, 1895 12 of 26

on the results of the summarization process. LDA improved the results the most, so we
have used it in our model. The generative probabilistic model LDA identified the latent
topics that are present in the dataset, with effectiveness, simplicity, and overall strong
performance, as reported in [62,63]. LDA provides significantly better topic classification
than LSI for a large corpus, including news data, such as DUC 2004, which contains a
variety of writing styles, synonyms, polysemic words, and orthogonal topics [64].

The tokens in the dataset are classified into a list of abstract topics by the LDA model.
Sentence tokens are classified by the trained LDA model according to their most distinctive
topic. Each document in the dataset is organized into topic-level clusters based on the topic-
based distribution of sentences. Initially, a probability distribution of topics in documents,
θd, is randomly sampled from a Dirichlet with parameter α. Later, for each word wdi,
a topic zdi is chosen from this topic distribution. Finally, the word wdi is generated by
randomly sampling from a probability distribution of words in topics Φzdi from a Dirichlet
with parameter β. Therefore, the generating probability of a word w from documents D is
given as

p(w|d, θ, Φ) =
T

∑
z=1

p(w|z, Φz)p(z|d, θd) (2)

Topic modeling with graphs works in this way: Different topics in the input document
are identified with the help of the LDA algorithm. Then the sentences of the same topic are
combined across the multiple files in the dataset. Then, for each topic, the graph is plotted,
and the shortest paths are identified based on the mechanism discussed in Section 3.2.2.
Once the short paths are identified in all the graphs or topics in other words, then they are
combined based on the criteria discussed earlier. The resultant summary does not miss
any topic from the selected optimal topic by LDA from the given dataset; hence, a highly
representative generic summary is obtained.

3.2.4. Removing the Redundancy

The repeated appearance of the same topic again and again in the summary results
in poor quality of the summary. A user receives less information from the summary due
to this redundancy problem. This is one of the major concerns of extractive MDS [6]. We
have addressed this problem in our Grapharizer. We employ topic modeling to identify
different topics and construct their graphs separately. The selected shortest paths from each
topic will appear in the summary at the end. Therefore, the resultant summary will not
be overloaded by the same set of sentences; rather, it will have a representation from each
topic corresponding to its volume in the dataset. In this way, the redundancy problem is
handled in Grapharizer.

3.2.5. Grammaticality

Abstractive summaries have an edge over extractive summaries in terms of grammar
quality. Abstractive summaries do not suffer grammatically like extractive summaries.
They are drafted by reading the input document(s) and then writing the summary. Short
new sentences are produced keeping in mind the grammar rules in language generation.
Extractive summarization, however, does not function in this manner. Since it picks
the extract from the input document cluster, there can be a huge compromise to the
grammar quality once the summary is generated. As discussed in Section 3.2.1, in the
pronoun replacement subsection, if the sentences containing noun phrases are skipped to
be candidates in the summary, and sentences containing pronouns are somehow selected
in the summary, it will possibly be a confusing summary for the reader. Instead of helping
the user, such summarization systems lead to confusion. Therefore, we have taken special
care of the grammar quality of the summary. The grammar of candidate sentences will be
corrected before drafting the summary. Synonyms and MWE are mapped, and anaphora
and cataphora constraints are resolved before the application of Grapharizer, resulting in
grammatically correct summaries. To retain the poetic touch in the summary, all the MWE
that were replaced previously will be re-applied before presenting the summary to the user.

Electronics 2023, 12, 1895 13 of 26

Similarly, we have preferred lemmatization over stemming to trim the words with proper
meaning, not just chopping them off from the end.

3.3. Machine Learning

Sentence extraction is important in extractive MDS. By controlling the sentence fea-
tures, we can determine the salience scores. However, when we have more input sentences,
then it becomes hard to focus on dealing with sentence features individually. This is when
we need machine learning in ATS. With a vast feature set, most of the machine learning
methods over-train the training data [65]. SVM is a supervised learning approach for
dividing data into dimensional hyperplanes based on binary class [66]. The important vs.
non-important sentences correspond to the positive and negative examples. The margin
is the distance between positive and negative examples. SVM attempts to achieve the
maximum margin between classes to discriminate between negative and positive exam-
ples [67]. Therefore, it aims to determine the optimal hyperplane [65]. As we know, linearly
separating the data is not always easy; therefore, misclassification can occur. Slack variables
are used to correct the errors.

minλ,ε≥0‖ λ ‖2 + C
m

∑
i=0

εi s.t. ∀i∀ῤєP\pi : f (ῤ)− f (pi) > ∆(pi, ῤ)− εi (3)

where C is the hyper-parameter for the tradeoff between maximizing the margin and
minimizing the error. We perform model selection for adjusting the trade-off parameter of
the support vector machine on the interval C for [2−10, 212]. We have adapted the work of
Tzouridis et al. [40] for the implementation of SVM.

Likewise, ANNs are self-learning systems made up of interconnected neurons and
nodes with inputs and outputs. They are utilized to find or detect solutions or features that
would be difficult to find using traditional programming [66]. The feed-forward neural
network is designed following the mechanism of Sinha et al. [68], where the sentences
are fed to the input layer, given to the hidden layer for processing, and output is given to
the output layer. For errors in classification, the output is sent back to the input layer for
correction.

For documents D with sentences, the scoring of sentences in D is performed with
the predicting label wL є {0,1} for inclusion or not in the summary. With the objective
to maximize the probability of paths in the graph, the labels {wL1, wL2, . . . wLn} for n
become the last candidate sentence for summary, given the input document and model
parameter θ

log p(wL |D; θ)= ∑ log p(wLi
∣∣D; θ

)
(4)

The top sentences are chosen and included in the summary according to the summary
length limits.

This study also compared the effectiveness of ANN with SVM for text summarization.
Both SVM and ANN are efficient methods when working with huge datasets and have the
capacity to uncover non-linear data [67].

Another popular machine learning algorithm is multivariate linear regression. When
there is more than one independent variable, and standard linear regression does not work,
multivariate regression is used. Multiple variables or features are present in real-world
data; therefore, multivariate regression is required for better analysis. Multivariate regres-
sion is a supervised machine learning approach that analyses numerous data variables
with one dependent variable and several independent variables. We try to anticipate
the outcome based on the number of independent variables. The most useful aspect of
multivariate regression is that it aids in the understanding of relationships among variables
in a dataset [66]. This makes it easier to comprehend the relationship between dependent
and independent variables.

As mentioned in Tzouridis et al. [40], we have also adapted the features of normalized
joint frequency, maximal word frequency, lexical relevance, normalized pointwise mutual

Electronics 2023, 12, 1895 14 of 26

information, and average phrase location in the input dataset. The features are based on the
assignment as v, v′, which are two vertices having an edge associating features with itself.
Then w = #(v) frequency of word v; w′= #(v′) frequency of word v′; e= #(v,v′) frequency of
edge between v and v’; and n#= number of vertices in graph. The features are:

Joint frequency : φ1
(
w, w′

)
=

e
n

(5)

representing the frequency of edge divided by no. of vertices in graph.

Maximal word frequency : φ2
(
w, w′

)
= max

{
w
n

,
w′

n

}
(6)

estimating the maximum of the frequencies among the given words with respect to the
total number of words

Lexical relevance : φ3
(
w, w′

)
=

2
n

w.w′

w + w′
(7)

Normalized PMI : φ4
(
w, w′

)
=
(

log
e

w.w′
)

/
(
−log

e
n

)
(8)

Average location of the group of words in the input text is calculated as:

φ5
(
w, w′

)
=

1.0 : 0–10%

0.4 : 10–30%
0.8 : 30–60%
0.6 : 60–80%
1.0 : 80–100%

(9)

The values of φi falls between 0 and 1 for the value of i varies between 1–5.

4. Experiment and Evaluation
4.1. Dataset

The National Institute of Standards and Technology (NIST) runs a series of confer-
ences every year to evaluate summarization systems’ performance. These conferences are
conducted under the title of Document Understanding Conferences (DUCs). A DUC is the
platform that encourages and supports researchers in their scientific investigations and
progress. DUCs have occasionally released standardized datasets for document summa-
rization, so that researchers can be provided with similar input document(s) to compare
the progress of their summarization system with that of others. These datasets contain
reference summaries that are written by human evaluators. Reference summaries are also
termed gold-standard summaries by some researchers. Four reference summaries from task
1 are presented in Figure 6. ROUGE evaluation is applied to evaluate the system-generated
summary against the reference summary. DUC 2001, DUC 2002, DUC 2004, DUC 2005,
and DUC 2007 are the different versions of the datasets released in the years referred to.
Some datasets contain reference summaries that are made generically, while some are
query focused.

DUC 2004 contains fifty folders; each folder contains ten documents about different
aspects of the same related news item. Each file related to the same news article is compiled
from the different news sources reporting the same incident; therefore, each file contains a
mixture of different topics related to the same news. Each folder of the fifty is equipped
with four reference summaries so that, when a summarization system produces a summary,
it can be evaluated against it to gauge the accuracy and precision of the system. As we have
mentioned in our study, Jalil et al. [6], DUC is used for a majority of the experiments in
extractive MDS; therefore, we have chosen it for testing the performance of our technique.

Electronics 2023, 12, 1895 15 of 26

Electronics 2023, 12, x FOR PEER REVIEW 15 of 27

Average location of the group of words in the input text is calculated as:

𝜙5 (𝑤,𝑤′) =

{

1.0: 0 − 10%
0.4 ∶ 10 − 30%
0.8 ∶ 30 − 60%
0.6 ∶ 60 − 80%
 1.0 ∶ 80 − 100%

 (9)

The values of ϕi falls between 0 and 1 for the value of i varies between 1–5.

4. Experiment and Evaluation

4.1. Dataset

The National Institute of Standards and Technology (NIST) runs a series of confer-

ences every year to evaluate summarization systems’ performance. These conferences are

conducted under the title of Document Understanding Conferences (DUCs). A DUC is the

platform that encourages and supports researchers in their scientific investigations and

progress. DUCs have occasionally released standardized datasets for document summa-

rization, so that researchers can be provided with similar input document(s) to compare

the progress of their summarization system with that of others. These datasets contain

reference summaries that are written by human evaluators. Reference summaries are also

termed gold-standard summaries by some researchers. Four reference summaries from

task 1 are presented in Figure 6. ROUGE evaluation is applied to evaluate the system-

generated summary against the reference summary. DUC 2001, DUC 2002, DUC 2004,

DUC 2005, and DUC 2007 are the different versions of the datasets released in the years

referred to. Some datasets contain reference summaries that are made generically, while

some are query focused.

Figure 6. Four reference summaries from DUC 2004 and summaries generated by Grapharizer and

ML variant.

DUC 2004 contains fifty folders; each folder contains ten documents about different

aspects of the same related news item. Each file related to the same news article is com-

piled from the different news sources reporting the same incident; therefore, each file con-

tains a mixture of different topics related to the same news. Each folder of the fifty is

equipped with four reference summaries so that, when a summarization system produces

a summary, it can be evaluated against it to gauge the accuracy and precision of the

Figure 6. Four reference summaries from DUC 2004 and summaries generated by Grapharizer and
ML variant.

Similarly, we have created another dataset with similar features to DUC 2004 and
named it the Recent News Articles dataset. This dataset contains ten files regarding the
same news event (flood in Pakistan 2022, divorce news of Johny Depp and Amber Heard,
death of Queen Elizabeth II, etc.). Like DUC 2004, we have provided four reference
summaries to compare the system summaries for performance evaluation. In this regard,
we have used ChatGPT to prepare the reference summaries. The summary length was kept
under the word limit of 200 words in order to maintain consistency between the system
and reference summaries.

It is worth mentioning that, except for DUC 2005 and DUC 2007, the other variants
are generic in nature concerning the provided reference summaries.

We tested our Grapharizer on the DUC 2004 and Recent News Articles datasets, and
for evaluation, we used the ROUGE 2.0 scores. The major characteristics of the datasets are
shown in Table 1.

Table 1. Characteristics of datasets at a glance.

Characteristics DUC 2004 Recent News
Articles

Total topics 50 25
Number of documents (per topic) 10 10

Total number of documents 500 250
News/data source TRD, TREC collection newswire News articles

Apart from DUC, there are other benchmarked datasets as well. The New York Times
annotated dataset, TAC, SemEval, and MiltiLing are a few examples.

4.2. Evaluation Metric

DUC has included ROUGE as its most valued evaluation metric to gauge the quality
of the system-generated summary against the reference summaries as well as the machine
translations. It counts the number of similar units between the system summary and the
reference summary. It employs recall, precision, and the F-measure in the context of ROUGE.
Considering N as the length of N-Gram, Countmatch (N-Gram) refers to overlapping

Electronics 2023, 12, 1895 16 of 26

words between the system summary and the reference summary, and Count(N-Gram)
represents the words in the reference summary. The ROUGE-N can be computed by the
following formula:

ROUGE−N =
∑S∈Re f erence−Summary ∑N−gram∈S Countmatch(N − Gram)

∑S∈Re f erence−Summary ∑N−gram∈S Count(N − Gram)
(10)

In our experiments, we have used all the metrics provided in ROUGE 2.0 by Kavita
Ganesan, but, to ensure simplicity of the results, we refer only to ROUGE 1, ROUGE 2,
ROUGE L, ROUGE W, and ROUGE SU*. The average of the reference summaries is selected
to evaluate the summary by Grapharizer and its ML-based variants.

The formula for recall, precision and the F-score of ROUGE L is calculated for the
longest common subsequence by the following formulas:

Recalllcs =
LCS(x, y)

m
(11)

Precisionlcs =
LCS(x, y)

n
(12)

F-scorelcs =
(1 + β 2

)
RecalllcsPresisionlcs

Recalllcs + β2Precisionlcs
(13)

where x is the reference summary of length m, and y is the candidate summary generated
by the summarizer system of length n.

Manual evaluation of summary: We have evaluated the summary generated by
Grapharizer and hired twenty-five evaluators to assess the summary after reading the
relevant news article provided in the dataset. A questionnaire was provided regarding
the summary quality. The evaluators marked their answers on the provided Likert scale.
The responses were then compiled with an 84% score given by the evaluators for the
informativity and representativeness of the summary. Pronoun replacement was approved
with a score of 76% by the human evaluators. A score of 88% was given for minimizing
redundancy in the summary. However, when the evaluators were asked to compare the
summary with some human-generated summaries, they rated the Grapharizer summary at
55% in that case.

4.3. Baselines

We evaluated Grapharizer, ANNGrapharizer, and SVMGrapharizer with SOTA graph-
based methods for comparison. The methods chosen were TextRank [69], LexRank [34],
and Kush [7]. These are the methods evaluated using the MDS dataset DUC 2004. As
mentioned earlier, big data applications use extremely large and complex datasets that
require advanced tools and techniques to process and analyze and have the potential to
reveal valuable insights and patterns for businesses and organizations [70]. The baseline
methods are discussed in the following section.

TextRank: Mihalcea and Tarau [69] created TextRank, an iterative, extractive, and
unsupervised tool that scores units based on the relevance of text units by translating
the connected structure of a text to graphs. The TextRank method, which is an iterative
research method based on Google’s PageRank, has no predefined and manually configured
structure, which is a key characteristic.

LexRank: To calculate the importance of textual units in NLP, Erkan and Radev [34]
introduced a stochastic and graph-based technique called LexRank. They used the eigen-
vector centrality (node centrality-based) measure to calculate the importance of sentences
on the representative graph. In their experiments, the authors found that LexRank outper-
formed both degree-based and centroid-based algorithms in many cases.

Electronics 2023, 12, 1895 17 of 26

Kush: According to the assumption by Uçkan and Karcı [7], the summary should ex-
clude the set of sentences matching the nodes in the independent set. The nodes composing
the independent set on the graphs were identified and eliminated based on this prediction.
As a result, a restriction was placed on the documents to be summarized before quantifying
the effect of the nodes on the global graph. This limitation made it impossible to include
word groups in the summary that were repeated.

4.4. Synonym Mapping: Expert Evaluation

We compiled a file of some random twenty words, and their synonyms assigned
from Thesaurus.com, using our implemented function named cross(). We evaluated the
accuracy through expert evaluation. Three experts were requested to validate the accuracy
of synonyms assigned by cross(). Thesaurus.com color codes the synonyms in three levels.
The most relevant synonyms of words are represented in red color on the website, those
slightly farther in meaning are coded in orange color, and remotely synonymous words
are shown in yellow color. Keeping this in focus, the words and synonyms were provided
to the experts to rate on a Likert scale, from 1 indicating no synonymy to 10 indicating
high synonymy between the two words. The score given by expert 1 for the accuracy of
synonyms was 92%, and that by expert 2 was 89%. Expert 3 scored the provided words
and their synonyms as being 84% accurate. On average, 88% accuracy was obtained for the
synonyms by our cross() function. With this score, we applied the function on DUC 2004
and Recent News Articles for our Grapharizer.

4.5. Ablation Study

We performed an ablation study to verify the effect of the different parts of pre-
processing on the overall performance. Five stages of ablation were compared with our
results. First, we removed the pre-processing completely. The results significantly declined,
as indicated in Table 2. Then we added a pronoun replacement module to our Grapharizer,
which enhanced the results by a margin of 15%, as shown in Table 2. After that, in the
third stage, we included only the synonym mapping module. An improvement of 20%
was reported in Rouge 1. In the fourth stage, we applied MWE (without reverse-mwe()
of post-processing) and nearly a 15% gain was reported in the results of Rouge 1. Finally,
we tested MWE with reverse-mwe() in the post-processing phase. The improvement
was 40% in Rouge score. When entire pre-processing was applied and the results were
compared for stage 1 of ablation, i.e., no pre-processing, then the results indicated a 70%
improvement in Rouge scores. Therefore, it can be safely concluded that the pre-processing
and post-processing contributed positively to our technique, the Grapharizer.

4.6. Time and Space Complexity Analysis of Algorithms

The time and space complexity of the TextRank algorithm depends on several factors,
including the size of the input document, the size of the graph constructed, and the
complexity of the data structures used to represent the graph and other intermediate data.
The time and space complexity of the TextRank algorithm is also O(n2), where n is the
number of units of text (such as words or sentences) in the input document. This is because
the algorithm constructs a complete graph with n nodes, which has n(n − 1)/2 edges.
The co-occurrence frequency between each pair of units of text needs to be calculated to
construct and store the graph, which takes O(n2) time and space complexity. The TextRank
performs an iterative ranking process to assign a score to each unit of text based on its
centrality in the graph. The number of iterations performed by the algorithm can affect the
time complexity. Additionally, the algorithm requires space to store other intermediate data
structures, such as the co-occurrence matrix used to construct the graph and the vector used
to represent the ranking scores of each unit of text. The size of these data structures depends
on the size of the input document and the complexity of the co-occurrence measure used to
construct the graph.

Electronics 2023, 12, 1895 18 of 26

Table 2. Ablation study representing the effects of different pre-processing phases on Grapharizer.

Without Pre-Processing

ROUGE-Type Recall Precision F-Score Improvement

Rouge-1 0.12567 0.16509 0.14271 -

Rouge-2 0.00368 0.005 0.00424 -

Rouge-L 0.13274 0.16111 0.14555 -

Rouge-SU4 0.03745 0.04251 0.03982 -

With pronoun replacement

Rouge-1 0.18188 0.19841 0.18979 0.04708

Rouge-2 0.00831 0.00806 0.00818 0.00394

Rouge-L 0.15956 0.17857 0.16853 0.02298

Rouge-SU4 0.05296 0.04836 0.05056 0.01074

With synonym mapping

Rouge-1 0.15872 0.1822 0.16965 0.02694

Rouge-2 0.02082 0.02155 0.02118 0.01694

Rouge-L 0.15627 0.15741 0.15684 0.01129

Rouge-SU4 0.04616 0.04474 0.04544 0.00562

With MWE mapping

Rouge-1 0.17216 0.19915 0.18467 0.04196

Rouge-2 0.01703 0.01724 0.01714 0.0129

Rouge-L 0.1612 0.16827 0.16466 0.01911

Rouge-SU4 0.05045 0.04912 0.04978 0.00996

With reverse-mwe()

Rouge-1 0.32949 0.24722 0.28249 0.13978

Rouge-2 0.09168 0.0618 0.07383 0.06959

Rouge-L 0.23338 0.17958 0.20297 0.05742

Rouge-SU4 0.11458 0.07159 0.08812 0.0483

With all pre-processing

Rouge-1 0.53864 0.27392 0.36316 0.22045

Rouge-2 0.14068 0.06731 0.09105 0.08681

Rouge-L 0.25621 0.21212 0.23209 0.08654

Rouge-SU4 0.0978 0.07267 0.08338 0.04356

The time and space complexity of the LexRank algorithm also depends on several
factors, including the size of the input text document, the number of iterations performed by
the algorithm, the complexity of the similarity measure used to construct the graph, the size
of the graph constructed, and the complexity of the data structures used to represent the
graph and other intermediate data, respectively. Additionally, the algorithm requires space
to store other intermediate data structures, such as the similarity matrix used to construct
the graph and the vector used to represent the ranking scores of each sentence. The size of
these data structures depends on the size of the input document and the complexity of the
similarity measure used to construct the graph. In general, the time and space complexity
of the algorithm can be approximated as O(n2), where n is the number of sentences in the
input document. This is because the algorithm constructs a complete graph with n nodes,
which has n(n − 1)/2 edges. The similarity between each pair of sentences needs to be
calculated to construct the graph, which takes O(n2) time. Similarly, storing the graph

Electronics 2023, 12, 1895 19 of 26

requires O(n2) space complexity, as each edge must be represented in memory. Additionally,
the algorithm performs an iterative ranking process to assign a score to each sentence,
which also takes O(n2) time in the worst case. Overall, the space complexity of the LexRank
algorithm can be a significant factor for very large input documents, as it may require
substantial memory to store the graph and other intermediate data structures.

For Grapharizer, the overall time and space complexity of the algorithm depends
on the input text and the size of the CSV file for MWE mapping. However, the most
time-consuming functions are likely to be MWEReplacement(), calculating Special_Words_
Frequency(), and Synonyms_Replacement(), which all have a time complexity of at least
O(n2) or O(n) in the best case. Overall, the space complexity of the Grapharizer is considered
to be linear with respect to the size of the input text, with some constant overhead due to
the use of external libraries and data structures.

5. Results and Discussion

The experimentation on Grapharizer, ANN, MLR, and SVM was implemented using
the intel core i7 system, and the implementation was performed using Python. We tested
Grapharizer and all its ML-based variants on all fifty folders, with ten text files each in
the dataset. Out of the 50 folders, we used even-numbered folders for training the models
and odd numbers of folders for testing. The performance remained almost identical for all
the folders, which confirmed the scalable performance of our technique. We also repeated
the same experiment of DUC 2004 (mentioned in Table 3) with another dataset, Recent
News Articles, in order to verify the performance; Table 4 shows the results were quite
comparable with the results mentioned in Table 3. Google Colab assisted in the quick and
efficient execution of the algorithms that needed more time previously. For instance, the
Grapharizer, ANNGrapharizer, SVMGrapharizer, and MLRGrapharizer algorithms were
executed in less than 5 min each for a huge multi-document dataset of DUC 2004.

Table 3. Comparison of Grapharizer with State-Of-The-Art Graph-Based Methods.

Methods
ROUGE Evaluation

METRICES
TextRank

[69]
LexRank

[34]
KUSH

[7] Grapharizer ANN
Grapharizer

MLR
Grapharizer

SVM
Grapharizer

Rouge 1 Recall 0.39893 0.32206 0.38072 0.41875 0.54775 0.55257 0.53864
Precision 0.33462 0.30458 0.34019 0.21292 0.28415 0.28659 0.27392
F-Score 0.36292 0.31255 0.35879 0.28230 0.37418 0.37742 0.36316

Rouge 2 Recall 0.07977 0.05439 0.08277 0.09816 0.14276 0.14812 0.14068
Precision 0.06831 0.05170 0.07373 0.04710 0.06985 0.07230 0.06731
F-Score 0.07338 0.05292 0.07786 0.06366 0.09381 0.09717 0.09105

Rouge L Recall 0.30685 0.25785 0.29037 0.24236 0.23239 0.24563 0.25621
Precision 0.25868 0.24444 0.25945 0.19924 0.20700 0.20503 0.21212
F-Score 0.27991 0.25053 0.27364 0.20195 0.20164 0.20200 0.23209

Rouge W Recall 0.10436 0.08957 0.09908 0.10615 0.09890 0.10853 0.10059
Precision 0.16113 0.15517 0.16197 0.05581 0.09220 0.10118 0.09197
F-Score 0.12622 0.11334 0.12278 0.07502 0.09543 0.10473 0.09609

Rouge SU Recall 0.13998 0.09532 0.13062 0.17619 0.20000 0.20000 0.19524
Precision 0.09683 0.08421 0.10372 0.08371 0.11197 0.10345 0.09904
F-Score 0.11328 0.08884 0.11493 0.11350 0.13636 0.13630 0.13141

Many functions were created to enable the pre-processing and subsequent processing.
The cross-function was devised specifically to return the most optimal synonyms for terms.
Similarly, the library for MWE was designed for the DUC 2004 and Recent News Articles
datasets to generate a convenient word graph. The use of MWE simplified the graph by
up to 20%. Similarly, simplification was also noted using pronoun replacement, which
was initially developed to attain clarity of summary sentences. Simplification of 4% was
attained with pronoun replacement in graph generation. The combined simplification
achieved by MWE and pronoun replacement was around 24%. The statistics are presented
in the Appendix A. The MWE replaced in the graph generation process with their single-

Electronics 2023, 12, 1895 20 of 26

word equivalents may result in a poor ROUGE score when evaluated against the reference
summaries; therefore, we developed another function named reverse-mwe() to replace
the single-worded equivalents of MWE with the original MWE. It was also observed in
the experiment that the pre-processing stage sometimes replaced words inadequately.
For example, in some of the documents in DUC 2004, the article was discussing political
instability in Cambodia, where one of the nouns was Sihanouk, the King of Cambodia at
that time. The pre-processing module was trained to replace words such as king, monarch,
his majesty, prince’s father, etc. with Sihanouk for the simplicity of subsequent graph
construction. We observed erroneous replacement within the tokens, such as “making” and
“working” by maSihanouk and worSihanouk, after the pre-processing step. We manually
corrected such wrong replacement in the summary.

Table 4. Performance of Grapharizer and its ML variants on Recent News Articles dataset.

ROUGE Evaluation Metrices
Recent News Articles

Grapharizer ANNGrapharizer MLRGrapharizer SVMGrapharizer
Rouge 1 Recall 0.42018 0.49439 0.49429 0.50159

Precision 0.13863 0.22926 0.21694 0.22280
F-Score 0.20848 0.31325 0.30154 0.30855

Rouge 2 Recall 0.04846 0.12351 0.11074 0.12604
Precision 0.01484 0.05373 0.04603 0.05252
F-Score 0.02273 0.07488 0.06503 0.07415

Rouge L Recall 0.14574 0.18948 0.18948 0.20292
Precision 0.06627 0.10179 0.09828 0.10517
F-Score 0.09111 0.13243 0.12943 0.13854

Rouge W Recall 0.10299 0.08647 0.07991 0.07991
Precision 0.08422 0.07543 0.06754 0.06385
F-Score 0.09238 0.08058 0.07321 0.07098

Rouge SU Recall 0.19608 0.15686 0.16177 0.15686
Precision 0.06309 0.07049 0.06933 0.06751
F-Score 0.09547 0.09727 0.09706 0.09439

After the pre-processing stage, we applied the LDA algorithm of topic modeling to
separate the sentences related to a different topic and combined them under the respective
topics. We tested the results of topic modeling with five, ten, and fifteen topics separately,
keeping the value of parameter N fixed to five, ten, and fifteen, respectively. The results
with ten topics were more optimal, as there was less overlapping among the sentences
of different topics. The similarity of words between different topics was tolerated up to
40%; above that threshold, we merged the two topics together as similar. Topic modeling
resulted in the generation of graphs that were more focused on a specific topic. We have
provided the link to topic-specific graphs in the Appendix A for interested readers.

After pre-processing and topic modeling, we applied the Grapharizer to the individual
topics. Related sentences were plotted as a graph using the word graph technique adapted
from Filippova [58] and Tzouridis et al. [40]. Once the graphs of each topic were generated,
the shortest paths in the graphs were calculated using the Dijkstra algorithm. Care was
taken in selecting the shortest paths as these paths were the sentences of the prospective
summary. It was decided to keep the paths from every graph as summary sentences that
included nouns, predicates, and verbs.

The comparative evaluation results are reported in Table 3, where the different SOTA
summarizer values are taken from Uçkan et al. [7]; it is evident that there was an improve-
ment in the ROUGE scores.

The Grapharizer was then implemented with SVM, MLR, and ANN to check for
improvements in the ROUGE scores. Since the supervised learning algorithms employed
reference summaries for the training, the results, specifically the recall values, indicated
improvements. The significant scores are shown in bold font in Table 3.

Electronics 2023, 12, 1895 21 of 26

ROUGE 2.0 is a family of metrics used for evaluating the quality of text summaries
produced by automatic summarization systems. Below are brief explanations of some of
the most used ROUGE metrics that we have adapted in this study.

ROUGE-1 measures the overlap of unigrams (single-words) between the generated
summary and the reference summary. It computes the precision and recall of unigrams in
the generated summary compared to those in the reference summary. ROUGE-2 measures
the overlap of bigrams (pairs of adjacent words) between the generated summary and
the reference summary. It computes the precision and recall of bigrams in the generated
summary compared to those in the reference summary. ROUGE-W measures the weighted
overlap of n-grams between the generated summary and the reference summary, where
n can be any positive integer. The weighting function assigns higher weights to n-grams
that are closer together in the summary. ROUGE-L measures the longest common subse-
quence (LCS) between the generated summary and the reference summary. It computes
the precision and recall of the LCS in the generated summary compared to that in the refer-
ence summary. ROUGE-SU measures the skip-bigram (pairs of non-consecutive words)
overlap between the generated summary and the reference summary. It computes the
precision and recall of skip-bigrams in the generated summary compared to those in the
reference summary.

All these ROUGE metrics are widely used in the field of natural language processing
and machine learning to evaluate the quality of text summarization systems. They are often
used in combination with other metrics to provide a more comprehensive evaluation of the
summarization performance.

The Grapharizer with MLR, ANN, and SVM performed comparatively better than the
rest of the techniques in the different variants of Rouge scores in terms of the recall and
F-score, respectively. Table 3 represents a comparison between TextRank [69], LexRank [34],
KUSH [7], Grapharizer, ANNGrapharizer, MLRGrapharizer, and SVMGrapharizer. These
techniques are compared for recall, precision, and the F-score of ROUGE 1, ROUGE 2,
ROUGE L, ROUGE W, and ROUGE SU.

Compared with TextRank [69], Grapharizer gained 1.98% accuracy in ROUGE 1
recall, whereas that of SVMGrapharizer was reported to be 13.97%. The SVMGrapharizer
improved the F-score by a margin of 0.02%. ANNGrapharizer improved the performance
by a margin of 14.88% for recall, while the F-score improvement was recorded to be 1.13%.
MLRGrapharizer showed the best improvement of all, with recall improved by 15.36%,
and the F-score improved by 1.45%.

Compared with LexRank [34], Grapharizer improved the recall assessment of ROUGE
1 by 9.67% and SVMGrapharizer did so by 21.66%, while the F-score improvement by
SVMGrapharizer was 5.06%. ANNGrapharizer showed better performance, with 22.57%
improved recall, and 6.16% improved F-score, than LexRank [34]. The best results were
again reported by MLRGrapharizer, with 23.05% improvements in recall and 6.49% im-
provement in F-score.

Compared with KUSH [7], Grapharizer improved the recall of ROUGE 1 by 3.80%,
and SVMGrapharizer by 15.79%, whereas the F-score of SVMGrapharizer was slightly
improved by 0.44%. ANNGrapharizer showed further improved results with 16.70% recall
value gain and 1.54% improvement in the F-score. The best results for ROUGE 1 were again
obtained by MLRGrapharizer, with 17.19% increase in recall value and 1.86% improvement
in the F-score when compared with KUSH [7].

SVMGrapharizer showed a margin of improvement over Grapharizer by 11.99% in the
recall score, 6.10% in precision, and 8.09% in the F-score. ANNGrapharizer improved the
Grapharizer by 12.90% for recall, 7.12% for precision, and 9.19% for the F-score. The best
improvement was reported in the results for MLRGrapharizer with 13.38% improvement
in the recall, 7.37% in precision, and 9.51% in the F-score. We conclude that the gain in
results, specifically by MLRGrapharizer, can be attributed to the supervised learning in
MLR that resulted in much improved results.

Electronics 2023, 12, 1895 22 of 26

We discovered that the performance of MLR remained the best for most of the ROUGE
scores, and that ANN classification performed well against SVM classification for small
feature sets. Different layer counts were used in training and testing the neural networks.
However, for ANN, adding more layers does not always result in better performance [67].
Therefore, we added just two hidden layers in our ANN. Finally, we concluded that, while
SVM and ANN generated the same degree of accuracy, SVM was quicker than ANN.

Therefore, the use of LDA before graph construction and use of learning techniques at
the end contributed positively to the results of Grapharizer.

It is evident from the results that MLRGrapharizer performed well in ROUGE 1 and
ROUGE 2 among the rest of the baseline methods, while ANNGrapharizer performed
well in ROUGE SU. Similarly, the performance was collectively better by MLRGrapharizer,
ANNGrapharizer, and SVMGrapharizer, respectively. Since the graph approach that we
have used is based on the word-graph technique, the number of matching unigrams and
bigrams met expectations.

We tested Grapharizer and its ML variants on another dataset. We created a similar
dataset to DUC 2004 containing news articles in a similar way. We crawled news related
to floods in Pakistan in 2022, the divorce news of Johny Depp and Amber Heard, and
the death of Queen Elizabeth II with the help of a web crawler. The news articles were
managed in the same way as in DUC 2004. In order to provide reference summaries for
performance comparison with Grapharizer summaries, we used ChatGPT. The summaries
by ChatGPT were restricted to a word limit of less than 200. For each news cluster, a total
of four reference summaries were produced using ChatGPT. The resultant summaries of
Grapharizer, ANNGrapharizer, MLRGrapharizer, and SVMGrapharizer were then evalu-
ated using the Rouge 2.0 toolkit and are shown in Table 4. The results were quite similar to
the performance of the Grapharizer and its ML variants on DUC 2004.

Similarly, when the reference summaries were closely examined against DUC 2004, it
was found that the representativeness of the reference summaries provided by DUC 2004
suffered, while meeting the summary length constraints. They did not include all the topics
as concisely as expected by the generic summarizer system. Grapharizer makes sure that
the inclusion of all topics presents the user with the most representative and informative
summary; therefore, when evaluated against the reference summaries, the ROUGE values
resulted in declined scores.

We conducted a non-parametric test, ANOVA, to compare Grapharizer with state-of-
the-art techniques in terms of ROUGE scores. The result, with a p-value of 0.91 supporting
the alternative hypothesis H1, indicated that there were no significant differences between
the samples. In other words, we can conclude that Grapharizer gives comparable results to
SOTA MDS techniques.

6. Conclusions and Future Directions

In the era of information overload, it is necessary to have access to accurate information
in less time. The information should be concise, non-redundant, and cover all important
aspects.

This research created the word-graph based extractive generic MDS technique known
as Grapharizer, concentrating on fixing problems, such as poor grammar, missing essential
information, and the repetition of data. We were able to fix the summary’s grammatical
issues using lemmatization during pre-processing. Moreover, resolution of anaphora and
cataphora, as well as the mapping of synonyms and MWE, have all improved the grammar
of the output summary. Topic modelling addressed issues such as redundancy and the
complete coverage of all topics. To further enhance the results, Grapharizer was backed by
a variety of machine learning models.

The system was examined using the DUC 2004 dataset in comparison to different SOTA
methods. When compared to the other baseline techniques, the results from Grapharizer
(without ML) were encouraging. The system was further tested on another dataset created
especially for testing the performance of Grapharizer.

Electronics 2023, 12, 1895 23 of 26

Apart from the improvements observed in the results, other unique contributions of
the study are as follows:

• The major contribution of this research work is facilitation of the process of multi-
document text summarization. The output of this research work will be useful in
developing news aggregator services, such as Google News, that can summarize news
from thousands of news publishers for readers.

• One of the major contributions is the implementation of a framework for pre-processing
and post-processing. The novel feature of the double checking of synonyms of the
words increased the accuracy and the results were validated through qualitative
expert evaluation.

• In addition to anaphora replacement, our system also uses cataphora replacement for
resolving the pronoun problems of text.

• Design of a dataset similar to DUC 2004 for testing the performance of Grapharizer.
The reference summaries are generated using ChatGPT.

• The efficiency of the system is further enhanced by managing MWE; hence, providing
a robust mechanism for adopting modern language expressions.

• Further, the additional validation of results by domain experts added more confidence
in the effectiveness and accuracy of our system.

Future research could expand on this study in the following research directions:

• One of the directions for future work is to validate the results of our system on multiple
datasets from various domains. This will help us increase the usability of our system.

• Deep learning-based algorithms, such as CNN and RNN, can be implemented to
increase efficiency.

• Similarly, the results of the proposed system can be evaluated with different techniques,
such as BERTScores.

• To increase accuracy, manual verification from broader domain experts is envisioned.
• A survey will be conducted with a large number of users to evaluate the usability of

the proposed system.
• This study was conducted on the datasets containing news articles in plain text files.

A future direction will be to apply the same technique to newspapers and websites to
summarize news articles since the layout and structuring of the input are of additional
complexity for the summarizer techniques. In these cases, headings / headlines, top
sentences, important sentences, and concluding statements will be of additional value
in extending Grapharizer.

• It would be interesting to apply Grapharizer to summarize research articles, since they
follow a different structure, with the importance of a sentence being directly related to
its position in the research article.

• Grapharizer can be utilized in multiple areas. Its usability will be further enhanced by
testing it in a multilingual environment. For instance, we are interested in evaluating
Grapharizer using Urdu language scripted datasets.

Author Contributions: Conceptualization, Z.J., J.N. and M.N.; methodology, Z.J., J.N. and M.N.;
software, Z.J. and M.N.; validation, Z.J., M.N. and T.A.; formal analysis, Z.J. and J.N.; investigation,
Z.J.; resources, Z.J., J.N.; M.A. and A.A.; writing—original draft preparation, Z.J.; writing—review
and editing, Z.J., M.N., T.A., M.A. and A.A.; visualization, M.A. and A.A.; supervision, T.A. and J.N.;
project administration, T.A. and J.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2023, 12, 1895 24 of 26

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from NIST and are available https://duc.nist.gov/duc2004/ (accessed on 1 December 2022) with the
permission of NIST.

Conflicts of Interest: The authors declare no conflict of interest. However, we suggest not to send
this manuscript to reviewers from International Islamic University, Islamabad, Pakistan, as it is the
workplace of the three authors of this manuscript.

Appendix A

- A graph generated on a topic in DUC 2004. Available online: https://drive.google.
com/file/d/1CPkB0RvAABgWBAT-hAxbrFuatAIHYn45/view?usp=sharing (accessed
on 9 April 2023).

- MWE simplification statistics. Available online: https://docs.google.com/spreadsheets/
d/1YlC_HUj2YC2azBsx-bxUVAEQBRjTaNqQ/edit?usp=sharing&ouid=112764386028
535750980&rtpof=true&sd=true (accessed on 9 April 2023).

- Topic-specific graphs created after pre-processing and topic modeling. Available on-
line: https://drive.google.com/drive/folders/1WIVfyHIevSrdbfxSVPHeAVCIekY7
aIWF?usp=sharing (accessed on 9 April 2023)

- Expert evaluation of synonym mapping. Available online: https://docs.google.com/
document/d/1Tv5OAh-f3-UF6B5cH4deTuvIh5owMTez/edit?usp=sharing&ouid=11
2764386028535750980&rtpof=true&sd=true (accessed on 9 April 2023).

References
1. Bidoki, M.; Moosavi, M.R.; Fakhrahmad, M. A semantic approach to extractive multi-document summarization: Applying

sentence expansion for tuning of conceptual densities. Inf. Process. Manag. 2020, 57, 102341. [CrossRef]
2. Sanchez-Gomez, J.M.; Vega-Rodríguez, M.A.; Perez, C.J. A decomposition-based multi-objective optimization approach for

extractive multi-document text summarization. Appl. Soft Comput. 2020, 91, 106231. [CrossRef]
3. El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. Automatic text summarization: A comprehensive survey. Expert Syst.

Appl. 2021, 165, 113679. [CrossRef]
4. Mojrian, M.; Mirroshandel, S.A. A novel extractive multi-document text summarization system using quantum-inspired genetic

algorithm: MTSQIGA. Expert Syst. Appl. 2021, 171, 114555. [CrossRef]
5. Siautama, R.; IA, A.C.; Suhartono, D. Extractive hotel review summarization based on TF/IDF and adjective-noun pairing by

considering annual sentiment trends. Procedia Comput. Sci. 2021, 179, 558–565.
6. Jalil, Z.; Nasir, J.A.; Nasir, M. Extractive Multi-Document Summarization: A Review of Progress in the Last Decade. IEEE Access

2021, 9, 130928–130946. [CrossRef]
7. Uçkan, T.; Karcı, A. Extractive multi-document text summarization based on graph independent sets. Egypt. Inform. J. 2020, 21,

145–157. [CrossRef]
8. ShafieiBavani, E.; Ebrahimi, M.; Wong, R.; Chen, F. On improving informativity and grammaticality for multi-sentence compres-

sion. arXiv 2016, arXiv:1605.02150.
9. Durrett, G.; Berg-Kirkpatrick, T.; Klein, D. Learning-based single-document summarization with compression and anaphoricity

constraints. arXiv 2016, arXiv:1603.08887.
10. Wu, K.; Li, L.; Li, J.; Li, T. Ontology-enriched multi-document summarization in disaster management using submodular function.

Inf. Sci. 2013, 224, 118–129. [CrossRef]
11. Baralis, E.; Cagliero, L.; Jabeen, S.; Fiori, A.; Shah, S. Multi-document summarization based on the Yago ontology. Expert Syst.

Appl. 2013, 40, 6976–6984. [CrossRef]
12. Hennig, L.; Umbrath, W.; Wetzker, R. An ontology-based approach to text summarization. In Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, 9–12
December 2008; IEEE: Washington, DC, USA.

13. Oliveira, H.; Ferreira, R.; Lima, R.; Lins, R.D.; Freitas, F.; Riss, M.; Simske, S.J. Assessing shallow sentence scoring techniques and
combinations for single and multi-document summarization. Expert Syst. Appl. 2016, 65, 68–86. [CrossRef]

14. Alguliev, R.M.; Aliguliyev, R.M.; Hajirahimova, M.S. GenDocSum+ MCLR: Generic document summarization based on maximum
coverage and less redundancy. Expert Syst. Appl. 2012, 39, 12460–12473. [CrossRef]

15. Qiang, J.-P.; Chen, P.; Ding, W.; Xie, F.; Wu, X. Multi-document summarization using closed patterns. Knowl.-Based Syst. 2016, 99,
28–38. [CrossRef]

16. Canhasi, E.; Kononenko, I. Weighted archetypal analysis of the multi-element graph for query-focused multi-document summa-
rization. Expert Syst. Appl. 2014, 41, 535–543. [CrossRef]

17. Bollegala, D.; Okazaki, N.; Ishizuka, M. A preference learning approach to sentence ordering for multi-document summarization.
Inf. Sci. 2012, 217, 78–95. [CrossRef]

https://duc.nist.gov/duc2004/
https://drive.google.com/file/d/1CPkB0RvAABgWBAT-hAxbrFuatAIHYn45/view?usp=sharing
https://drive.google.com/file/d/1CPkB0RvAABgWBAT-hAxbrFuatAIHYn45/view?usp=sharing
https://docs.google.com/spreadsheets/d/1YlC_HUj2YC2azBsx-bxUVAEQBRjTaNqQ/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1YlC_HUj2YC2azBsx-bxUVAEQBRjTaNqQ/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1YlC_HUj2YC2azBsx-bxUVAEQBRjTaNqQ/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://drive.google.com/drive/folders/1WIVfyHIevSrdbfxSVPHeAVCIekY7aIWF?usp=sharing
https://drive.google.com/drive/folders/1WIVfyHIevSrdbfxSVPHeAVCIekY7aIWF?usp=sharing
https://docs.google.com/document/d/1Tv5OAh-f3-UF6B5cH4deTuvIh5owMTez/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://docs.google.com/document/d/1Tv5OAh-f3-UF6B5cH4deTuvIh5owMTez/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://docs.google.com/document/d/1Tv5OAh-f3-UF6B5cH4deTuvIh5owMTez/edit?usp=sharing&ouid=112764386028535750980&rtpof=true&sd=true
https://doi.org/10.1016/j.ipm.2020.102341
https://doi.org/10.1016/j.asoc.2020.106231
https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.1016/j.eswa.2020.114555
https://doi.org/10.1109/ACCESS.2021.3112496
https://doi.org/10.1016/j.eij.2019.12.002
https://doi.org/10.1016/j.ins.2012.10.019
https://doi.org/10.1016/j.eswa.2013.06.047
https://doi.org/10.1016/j.eswa.2016.08.030
https://doi.org/10.1016/j.eswa.2012.04.067
https://doi.org/10.1016/j.knosys.2016.01.030
https://doi.org/10.1016/j.eswa.2013.07.079
https://doi.org/10.1016/j.ins.2012.06.015

Electronics 2023, 12, 1895 25 of 26

18. Nasir, J.A.; Karim, A.; Tsatsaronis, G.; Varlamis, I. A knowledge-based semantic kernel for text classification. In International
Symposium on String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2011.

19. Radev, D.R.; Jing, H.; Styś, M.; Tam, D. Centroid-based summarization of multiple documents. Inf. Process. Manag. 2004, 40,
919–938. [CrossRef]

20. Zhang, Y.; Xia, Y.; Liu, Y.; Wang, W. Clustering sentences with density peaks for multi-document summarization. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Denver, CO, USA, 31 May–5 June 2015.

21. Wang, B.; Zhang, J.; Liu, Y.; Zou, Y. Density peaks clustering based integrate framework for multi-document summarization.
CAAI Trans. Intell. Technol. 2017, 2, 26–30. [CrossRef]

22. Nagwani, N.K. Summarizing large text collection using topic modeling and clustering based on MapReduce framework. J. Big
Data 2015, 2, 6. [CrossRef]

23. Christensen, J.; Soderland, S.; Bansal, G. Hierarchical summarization: Scaling up multi-document summarization. In Proceedings
of the 52nd annual meeting of the association for computational linguistics, Baltimore, MD, USA, 23–25 June 2014; Volume 1.
Long papers.

24. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
25. Contractor, D.; Guo, Y.; Korhonen, A. Using argumentative zones for extractive summarization of scientific articles. In Proceedings

of the COLING 2012, Mumbai, India, 8–15 December 2012.
26. Gong, Y.; Liu, X. Generic text summarization using relevance measure and latent semantic analysis. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, LA, USA,
9–13 September 2001.

27. Ferreira, R.; Lins, R.D.; Simske, S.J.; Freitas, F.; Riss, M. Assessing sentence similarity through lexical, syntactic and semantic
analysis. Comput. Speech Lang. 2016, 39, 1–28. [CrossRef]

28. Marujo, L.; Ling, W.; Ribeiro, R.; Gershman, A.; Carbonell, J.; de Matos, D.M.; Neto, J.P. Exploring events and distributed
representations of text in multi-document summarization. Knowl.-Based Syst. 2016, 94, 33–42. [CrossRef]

29. Carbonell, J.; Goldstein, J. The use of MMR, diversity-based reranking for reordering documents and producing summaries.
In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Melbourne, Australia, 24–28 August 1998.

30. Lin, J.; Madnani, N.; Dorr, B. Putting the user in the loop: Interactive maximal marginal relevance for query-focused summariza-
tion. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, Los Angeles, CA, USA, 2–4 June 2010.

31. Ozsoy, M.; Cicekli, I.; Alpaslan, F. Text summarization of turkish texts using latent semantic analysis. In Proceedings of the 23rd
International Conference on Computational Linguistics (Coling 2010), Beijing, China, 23–27 August 2010.

32. Chatterjee, N.; Yadav, N. Fuzzy rough set-based sentence similarity measure and its application to text summarization. IETE Tech.
Rev. 2019, 36, 517–525. [CrossRef]

33. Xu, J.; Durrett, G. Neural extractive text summarization with syntactic compression. arXiv 2019, arXiv:1902.00863.
34. Erkan, G.; Radev, D.R. Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 2004, 22,

457–479. [CrossRef]
35. Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117.

[CrossRef]
36. Canhasi, E. Query Focused Multi-document Summarization Based on Five-Layered Graph and Universal Paraphrastic Embed-

dings. In Proceedings of the Computer Science On-Line Conference; Springer: Berlin/Heidelberg, Germany, 2017.
37. Baralis, E.; Cagliero, L.; Mahoto, N.; Fiori, A. GRAPHSUM: Discovering correlations among multiple terms for graph-based

summarization. Inf. Sci. 2013, 249, 96–109. [CrossRef]
38. Chali, Y.; Hasan, S.A.; Joty, S.R. Improving graph-based random walks for complex question answering using syntactic, shallow

semantic and extended string subsequence kernels. Inf. Process. Manag. 2011, 47, 843–855. [CrossRef]
39. John, A.; Wilscy, M. Vertex cover algorithm based multi-document summarization using information content of sentences.

Procedia Comput. Sci. 2015, 46, 285–291. [CrossRef]
40. Tzouridis, E.; Nasir, J.A.; Brefeld, U. Learning to summarise related sentences. In Proceedings of the COLING 2014, the 25th

International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 23–29 August 2014.
41. Sukumar, P.; Gayathri, K. Semantic based Sentence Ordering Approach for Multi-Document Summarization. Int. J. Recent Technol.

Eng. 2014, 3, 71–76.
42. Christensen, J.; Soderland, S.; Etzioni, O. Towards coherent multi-document summarization. In Proceedings of the 2013

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Seattle, WA, USA, 9–14 June 2013.

43. Chen, J.; Zhuge, H. Extractive summarization of documents with images based on multi-modal RNN. Future Gener. Comput. Syst.
2019, 99, 186–196. [CrossRef]

44. Celikkale, B.; Erdogan, G.; Erdem, A.; Erdem, E. Generating visual story graphs with application to photo album summarization.
Signal Process. Image Commun. 2021, 90, 116033. [CrossRef]

https://doi.org/10.1016/j.ipm.2003.10.006
https://doi.org/10.1016/j.trit.2016.12.005
https://doi.org/10.1186/s40537-015-0020-5
https://doi.org/10.1126/science.1242072
https://doi.org/10.1016/j.csl.2016.01.003
https://doi.org/10.1016/j.knosys.2015.11.005
https://doi.org/10.1080/02564602.2018.1516521
https://doi.org/10.1613/jair.1523
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/j.ins.2013.06.046
https://doi.org/10.1016/j.ipm.2010.10.002
https://doi.org/10.1016/j.procs.2015.02.022
https://doi.org/10.1016/j.future.2019.04.045
https://doi.org/10.1016/j.image.2020.116033

Electronics 2023, 12, 1895 26 of 26

45. Shingrakhia, H.; Patel, H. SGRNN-AM and HRF-DBN: A hybrid machine learning model for cricket video summarization. Vis.
Comput. 2022, 38, 2285–2301. [CrossRef]

46. Radarapu, R.; Gopal, A.S.S.; Madhusudhan, N. Video summarization and captioning using dynamic mode decomposition for
surveillance. Int. J. Inf. Technol. 2021, 13, 1927–1936. [CrossRef]

47. Marzijarani, S.B.; Sajedi, H. Opinion mining with reviews summarization based on clustering. Int. J. Inf. Technol. 2020, 12,
1299–1310. [CrossRef]

48. Abdi, A.; Hasan, S.; Shamsuddin, S.M.; Idris, N.; Piran, J. A hybrid deep learning architecture for opinion-oriented multi-document
summarization based on multi-feature fusion. Knowl.-Based Syst. 2021, 213, 106658. [CrossRef]

49. Pontes, E.L.; Huet, S.; Torres-Moreno, J.-M.; Linhares, A.C. Compressive approaches for cross-language multi-document
summarization. Data Knowl. Eng. 2020, 125, 101763. [CrossRef]

50. El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. EdgeSumm: Graph-based framework for automatic text summariza-
tion. Inf. Process. Manag. 2020, 57, 102264. [CrossRef]

51. Wang, D.; Liu, P.; Zheng, Y.; Qiu, X.; Huang, X.-J. Heterogeneous graph neural networks for extractive document summarization.
arXiv 2020, arXiv:2004.12393.

52. Tomer, M.; Kumar, M. Multi-document extractive text summarization based on firefly algorithm. J. King Saud Univ.-Comput. Inf.
Sci. 2021, 34, 6057–6065. [CrossRef]

53. Davoodijam, E.; Ghadiri, N.; Shahreza, M.L.; Rinaldi, F. MultiGBS: A multi-layer graph approach to biomedical summarization.
J. Biomed. Inform. 2021, 116, 103706. [CrossRef] [PubMed]

54. Jin, H.; Wang, T.; Wan, X. Multi-granularity interaction network for extractive and abstractive multi-document summarization. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020.

55. Van Lierde, H.; Chow, T.W. Query-oriented text summarization based on hypergraph transversals. Inf. Process. Manag. 2019, 56,
1317–1338. [CrossRef]

56. Li, X.; Wu, P.; Zou, C.; Xie, H.; Wang, F.L. Sentiment Lossless Summarization. Knowl.-Based Syst. 2021, 227, 107170. [CrossRef]
57. Mallick, C.; Das, A.K.; Dutta, M.; Das, A.K.; Sarkar, A. Graph-based text summarization using modified TextRank. In Soft

Computing in Data Analytics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 137–146.
58. Filippova, K. Multi-sentence compression: Finding shortest paths in word graphs. In Proceedings of the 23rd International

Conference on Computational Linguistics (Coling 2010), Beijing, China, 23–27 August 2010.
59. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
60. Teh, Y.; Jordan, M.; Beal, M.; Blei, D. Hierarchical dirichlet processes. J. Am. Stat. Assoc. 2006, 101, 1566–1581. [CrossRef]
61. Swapna, B.; Anuradha, T. Achieving Higher Ranking to Webpages Through Search Engine Optimization. In Proceedings

of the International Conference on Computational Intelligence and Data Engineering, online, 12–13 August 2022; Springer:
Berlin/Heidelberg, Germany, 2022.

62. Rani, R.; Lobiyal, D.K. An extractive text summarization approach using tagged-LDA based topic modeling. Multimed. Tools Appl.
2021, 80, 3275–3305. [CrossRef]

63. Issam KA, R.; Patel, S. Topic modeling based extractive text summarization. arXiv 2021, arXiv:2106.15313. [CrossRef]
64. Noor, U. A Data-Driven Approach to Automated Analysis of Cyber Threat Intelligence [Doctoral dissertation, NUST]. Pakistan

Research Repository. 2020. Available online: http://prr.hec.gov.pk/jspui/handle/123456789/18922 (accessed on 1 November
2022).

65. Hirao, T.; Isozaki, H.; Maeda, E.; Matsumoto, Y. Extracting important sentences with support vector machines. In Proceedings of
the COLING 2002: The 19th International Conference on Computational Linguistics, Taipei, Taiwan, 26–30 August 2002.

66. Saura, J.R. Using data sciences in digital marketing: Framework, methods, and performance metrics. J. Innov. Knowl. 2021, 6,
92–102. [CrossRef]

67. Kianmehr, K.; Gao, S.; Attari, J.; Rahman, M.M.; Akomeah, K.; Alhajj, R.; Rokne, J.; Barker, K. Text summarization techniques:
SVM versus neural networks. In Proceedings of the 21th International Conference on Information Integration and Web-Based
Applications & Services, Munich, Germany, 2–4 December 2019; pp. 487–491.

68. Sinha, A.; Yadav, A.; Gahlot, A. Extractive text summarization using neural networks. arXiv 2018, arXiv:1802.10137.
69. Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing, Barcelona, Spain, 25–26 July 2004.
70. Ferrigno, G.; Del Sarto, N.; Piccaluga, A.; Baroncelli, A. Industry 4.0 Base Technologies and Business Models: A Bibliometric

Analysis. In Academy of Management Proceedings; Academy of Management: Briarcliff Manor, NY, USA, 2020; p. 10510.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00371-021-02111-8
https://doi.org/10.1007/s41870-021-00668-0
https://doi.org/10.1007/s41870-020-00511-y
https://doi.org/10.1016/j.knosys.2020.106658
https://doi.org/10.1016/j.datak.2019.101763
https://doi.org/10.1016/j.ipm.2020.102264
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jbi.2021.103706
https://www.ncbi.nlm.nih.gov/pubmed/33610879
https://doi.org/10.1016/j.ipm.2019.03.003
https://doi.org/10.1016/j.knosys.2021.107170
https://doi.org/10.1198/016214506000000302
https://doi.org/10.1007/s11042-020-09549-3
https://doi.org/10.35940/ijitee.F4611.049620
http://prr.hec.gov.pk/jspui/handle/123456789/18922
https://doi.org/10.1016/j.jik.2020.08.001

	Introduction
	State-of-the-Art Multi-Document Summarization Techniques
	The Proposed Technique
	Motivation
	Grapharizer: The Graph-Based Method
	Pre-Processing
	Overview of the Graph Generation Process
	Representativeness
	Removing the Redundancy
	Grammaticality

	Machine Learning

	Experiment and Evaluation
	Dataset
	Evaluation Metric
	Baselines
	Synonym Mapping: Expert Evaluation
	Ablation Study
	Time and Space Complexity Analysis of Algorithms

	Results and Discussion
	Conclusions and Future Directions
	Appendix A
	References

