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Abstract: This paper presents an approach for defining, solving, and implementing dynamic cooper-
ative maneuver problems in autonomous driving applications. The formulation of these problems
considers a set of cooperating cars as part of a multiagent system. A reinforcement learning technique
is applied to find a suboptimal policy. The key role in the presented approach is a multiagent maneu-
vering environment that allows for the simulation of car-like agents within an obstacle-constrained
space. Each of the agents is tasked with reaching an individual goal, defined as a specific location in
space. The policy is determined during the reinforcement learning process to reach a predetermined
goal position for each of the simulated cars. In the experiments, three road scenarios—zipper, bottle-
neck, and crossroads—were used. The trained policy has been successful in solving the cooperation
problem in all scenarios and the positive effects of applying shared rewards between agents have
been presented and studied. The results obtained in this work provide a window of opportunity for
various automotive applications.

Keywords: autonomous vehicles; reinforcement learning multiagent reinforcement learning

1. Introduction

Autonomous driving (AD) is one of the most significant moves toward introducing
truly intelligent systems to our daily lives. With years of development, cars have begun to
become more and more autonomous, increasing both the safety and comfort of traveling.
Inherently, driving a car means cooperating with other road users. In most cases, priority in
such interaction is codified by law and traffic signs or might be realized as a pure response
to others’ actions (such as in the Adaptive Cruise Control (ACC) case, when the following
car controls its speed based on the speed of the lead car). However, there are situations
where the cooperation of the agents (cars) is vital to effectively navigate through a given
scenario. Those scenarios may lack clearly defined right-of-way, or blindly following
imposed prioritization without responding to other agents’ needs will yield suboptimal
solutions. In those cases, each of the agents has to come up with a strategy that is consistent
with the strategies of others. If such an alignment is not found, either some group of agents
will not be able to achieve its goals (busy road with nobody letting merging cars in) or
all agents will be in a deadlock (two cars in a bottleneck section driving from opposite
directions, when neither or both of them decide to pass first).

At the same time, reinforcement learning has proven to be an attractive way of solving
complex problems, both in classic single-agent environments [1–3], as well as in multiagent
cases [4–7].

This work focuses on multi-agent reinforcement learning for challenging scenarios that
require high cooperation from agents. In order to train and later evaluate the reinforcement
learning policy, a multi-agent maneuvering environment is being introduced in which each
of the simulated cars aims at reaching a predefined goal position. With this baseline, we
codify a set of scenarios that resemble real-world problems in which cooperation between
multiple road users is a necessity.
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Since part of the simulated scenarios is quite novel and specific to this problem
formulation, comparison to other methods would not be informative (like in the case of
global planning methods) or require intensive implementation efforts (e.g., the system for
simultaneous prediction and planning). Existing methods should be considered rather
different from the one presented in the paper and cannot be directly compared. Because of
that, we focus on comparing different customizations within our research and refer those
to the baseline acquired by the simplest version of the system.

By combining a relatively straightforward training approach, policy design, environ-
ment dynamics, and carefully crafted scenarios, we achieved satisfactory performance. The
resulting policy does not rely on any communication with other road users or infrastructure
but operates solely on a scene and other agents’ perceptions. Therefore, we state that indi-
vidual agents’ locally derived actions lead to the globally efficient strategy of solving one of
the hardest scenarios from a decision-making perspective in the AD domain. In the second
part of the research, we also prove that introducing a shared-reward mechanism, adopted
from but not connected to autonomous driving research, improves training efficiency and
results in better performance in congested traffic scenarios. It also enables a simple way
of addressing other agents’ objectives in policy shaping, without the need to know them
during execution time explicitly. We suggest that the proposed approach is well-suited to
the planning system that could be used in multiple autonomous driving applications that
involve planning and cooperating with other road users.

2. Related Work

The primary focus of the current study is the complexity and interactive character of
dynamic maneuvering in traffic, which has already been studied previously. The authors
of [8] summarized the most common approaches and provided a taxonomy for strategy-
determining methods for intersection scenarios. However, this division might be extended
to non-intersection cases as well. The first class of methods involves cooperative driving
strategies, in which planning is made in the central coordination unit (by V2I—vehicle-
to-infrastructure communication) or is distributed among the cars that do communicate
with each other (V2V—vehicle-to-vehicle communication). In the prior, planning and
strategizing can be carried out on the level of individual agents’ interactions [9,10] or by
grouping them into platoons [11–13]. The biggest benefit of such an approach is the ability
to define a globally optimal strategy by accessing all information and controlling all agents.
In the case of distributed strategy, agents do communicate with each other to establish a
suboptimal solution but do not have to use a centralized coordination unit. Cooperative
game theory has been successfully used in that setting, aiming to tackle strategic interaction
between agents [14–16]. Applications of model-predictive control to multi-vehicle traffic
optimization methods have been explored as well [17,18].

While cooperative methods do offer obvious benefits, including the ability to define a
globally optimal strategy with the centralized unit or directly signalizing intentions and
aligning on interactions with the use of communication channels, those methods have
serious limitations as well. Centralized cooperative methods require additional hardware
to be mounted in the place of interest; therefore, they are limited to specific locations,
while traffic negotiation might be needed in other places as well (imagine bottleneck
scenario as an example). Additionally, all the above-mentioned methods heavily rely on
communication and assume that all traffic participants are capable of such communication,
which are impossible assumptions to prove with human-driven cars. Therefore, the second
family of methods, concerning individual driving strategies, is the main point of interest of
early adopters in the industry and research.

Much more like human drivers, individual driving strategies only rely on world
perception and are able to make appropriate decisions in a standalone fashion, aiming
to be consistent with other road users’ strategies. Although those methods lose access
to perfect information and, by definition, struggle to provide a globally optimal strategy,
they support the coordination of non-automated traffic participants and put no hard
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requirements on wireless communication. Those methods need to involve extended scene
perception, including complex road structure representation and object-to-lane assignment,
as well as intention and trajectory prediction, which are often executed simultaneously with
the planning algorithm. The most classical methods for planning involve the utilization
of Finite State Machines (FSMs) that divide the state of the vehicle into a discrete set of
categories, which refers to the specific control strategy and arbitrates transitions between
those states. Successful use of Hierarchical State Machines, extending the FSM concept
by introducing more layers of classes, has been successfully used in the first push toward
automated vehicles coordination, the DARPA Urban challenge [19,20]. However, state
machine methods are only suitable for simple cases, as artificially created rules and states
struggle to cover the vastness of all possible scenarios [21].

While addressing the issue of how to cover multiple scenarios, the most obvious
choice is data-driven methods. In [22], agent control in urban scenarios has been realized
by imitation learning with the augmentation of expert data samples. The neural-network-
based models become state-of-the-art methods for behavior and trajectory prediction tasks,
which are an essential part of planning motion in dynamic environments [23–25]. As
trajectory planning can be characterized as a closed-loop control problem, reinforcement
learning has been successfully used in the autonomous driving domain as well [26–29].

The extension of reinforcement learning to the multi-agent setting is a very active
research field, which, at the same time, has been proven to be a very challenging one.
Optimizing agents’ policies with the use of machine learning by utilizing communication
channels between agents was investigated in [30,31]. The application of Monte Carlo
Tree Search methods paired with reinforcement learning was used in [4,32], where agents
competed in games of Go, chess, and Shogi with a self-play mechanism, resulting in a
state-of-the-art performance in each of those games. In [6], an extensively scaled-up ver-
sion of the Proximal Policy Optimization algorithm [2] was used to play a multi-character
strategy game, Dota 2. OpenAI Five introduced a hyperparameter called team spirit, which
is responsible for weighting individual characters’ rewards versus the average rewards of
the team members. At the same time, training followed a self-play approach, where agents
competed with a pool of old versions of themselves. In [7], two teams played hide-and-seek.
The main discovery of the training was the emergence of a series of strategies and counter-
strategies by both teams as the training progressed, creating complex tasks from relatively
simple game dynamics. A method utilizing the actor–critic approach, in which the critic
had access to all agents’ observations during training, was proposed in [33]. As the actor
network only consisted of local observation, the method did not require any communication
between agents during the inference. An interesting observation was made in [34], where
the issue of cooperation with the suboptimal human agent was highlighted. The authors
showed that in cooperative environments, agents trained through self-play paired with
human agents presented significantly worse performance and proposed countermeasures,
resulting in better coordination and more robust policies.

In recent years, there have been many applications of multiagent reinforcement learn-
ing (MARL) to different autonomous driving problems. In [35], the author introduced a
platform that allowed highly customizable learning of multiagent autonomous driving sys-
tems and, with it, trained agents to navigate in a partially observable, stop-sign-controlled,
three-way urban intersection environment with raw (camera) sensor observations. The
merging onto the highway scenario was studied in [36], introducing high-level safety
supervisors that relied on communication between vehicles and infrastructure (V2I). The
problem of cooperation with human drivers was studied in [37,38], where the introduction
of a notion of altruism in the reward function improved traffic flow and safety. Using
the semantic action space, the automotive supplier MobilEye used reinforcement learning
to plan autonomous car behavior on both highways and in urban scenarios [39,40]. The
introduction of MARL-based adversarial agents, which aims to find the potential failure
modes of a given autonomous driving system, took place in [41]. The application of MARL
methods to adaptive traffic signal control (ATSC) was presented in [42], where the issue
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of a massive action space for a large-scale centralized ATSC system was overcome by
distributing control to individual local agents.

For further reference, the authors of [43] presented a survey of the application of
multiagent reinforcement learning to autonomous driving problems.

3. Multiagent Maneuvering

The multiagent maneuvering environment allows simulating car-like agents within
an obstacle-constrained space. Each of the agents is tasked with reaching an individual
goal, which is defined as a specific location in space. Knowledge about the location of a
goal is only provided to the agent, who is supposed to reach it, and explicit information is
not provided to other agents. Additionally, the space is populated with obstacles in the
form of polygons. Agent-to-agent and agent-to-obstacle collisions are detected and result
in the termination of the episode for the involved agents and their removal from the scene.
Figure 1 presents the environment–agent interaction process.

Figure 1. Scheme of agent–environment interaction used in our problem statement.

3.1. Environment Observation

To encode the state of the environment, we took inspiration from [7], where a similar
multiagent setup was used for a game of hide-and-seek. First, the freespace around each of
the agents was encoded with the use of distance measurements at different azimuths. We
used 50 rays starting in the middle of the rear axis and pointing in uniformly distributed
directions around the car (see Figure 2). To provide context information about the state
of the ego itself, we provided information about the current speed, yaw rate, and relative
position of the goal on the x and y axes. To inform each of the agents about the other
agents, a list of encodings relating to each agent was added. Each such encoding included
information about the relative position and the relative speed of the given agent, as well as
a doubled ego observation for context. Additionally, we included a mask, allowing us to
identify which of the other agents’ embeddings were valid.

Figure 2. The multiagent maneuvering environment with an example scenario of a bottleneck and
two cars trying to negotiate safe passage through it. The color-coded goals of the respective agents are
shown in the form of circles, while the green rays are the visualization of the freespace observation.
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3.2. Motion Modeling and Action Space

The agents were simulated as rectangular objects similar to cars. Their action space was
a discrete set, created as a combination of acceleration and wheel angle values discretized,
respectively.

As we aimed to simulate the interaction between maneuvering cars in low-speed
scenarios, we had to simulate and track their dynamic state, assuming that it would be
one of the deciding factors in maneuver selection and negotiation with others. For this
purpose, we implemented a standard bicycle model, allowing us to control each car with
acceleration and steering commands.

The state of the motion model consisted of the position of the center of the rear axle
in the global coordinate system, x, y, with orientation angle ψ. To track the dynamic state
of the car, the state also consisted of v, a variable that represented the magnitude of the
velocity and the yaw rate ω. The angle of slipping was not modeled. The control was
defined as a, representing the acceleration command, and the angle of the wheel δ. The
model was parameterized with the wheelbase (distance between axles) of the car, L. The
∆t symbol represented the amount of time to be simulated. A graphical representation of
the bicycle model is shown in Figure 3, while the state dynamics were represented by the
following equations:

xk+1 = xk + r(sin(ψk + ωk+1∆t)− sin ψk) , (1)

yk+1 = yk + r(cos ψk − cos(ψk + ωk+1∆t)) , (2)

ψk+1 = ψk + ωk+1∆t , (3)

vk+1 = vk + ak∆t , (4)

ωk+1 =
vk +

ak∆t
2

r
, (5)

where the turning radius, r, is derived as:

r =
L

tan δk
. (6)

In the case of straight motion (δ = 0) and without a proper definition of the turn radius
r (as r → ∞), the equations are simplified straightforwardly. Additionally, the velocity
of the car was constrained to a predefined range, which had direct implications on the
distance traveled in each simulation step and therefore on most of the model.

Figure 3. The graphical representation of the kinematic motion model used for the simulation.
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3.3. Scenarios

The above elements defined the dynamics of the environment itself, along with the
interface through which the agents interacted with it. Treating those parts as a frame, a
concrete scenario was then defined as a specific combination of the agents’ initial positions,
their goals, and the configuration of obstacles.

Within our experiments, we aimed at simulating situations that would require agent
cooperation and would introduce an element of competition.

Bottleneck

In the bottleneck scenario (Figure 4), a narrow part of the road prevented the agents
from freely passing each other and required one agent to wait until the other passed. Two
agents on opposite sides with goals on the other end of the road were simulated. The road
was 40 m in length and 7 m in width, and the narrowing was 3.5 m wide. The simulated
bottleneck section of the road was randomized both in terms of its location and dimensions,
as well as its specific structure. Cases such as no bottleneck at all, a singular bottleneck on
one side, a double bottleneck with freespace between obstacles, and a symmetric case with
the free middle of the road were simulated.

Figure 4. The bottleneck scenario with a centrally placed bottleneck.

Zipper

In the zipper scenario (Figure 5), agents must cooperate to merge from two lanes into
one. Six agents were being simulated, in two lanes, respectively, with the singular location
of the goal located within the narrowing, which was placed at one end of the road. The
single-lane section was simulated on the left, center, and right sides of the road with the
option of not narrowing.

Figure 5. The zipper scenario with the narrowing located on the left side of the road. All the agents
share the same goal marked as a dark blue dot on the right side of the image.

Crossroad

In the crossroad scenario (Figure 6), up to ten agents were spawned on four different
connecting roads of the cruciform intersection. The goal of each agent was randomly
selected at the end of the connecting road. No arbitration regarding priority on the road
was introduced.
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Figure 6. The crossroad scenario, with multiple agents each aiming at a different end goal, which is
color-coded.

4. Policy Optimization

In all experiments, agents were trained with the use of a self-play, which improves the
data efficiency and allows for strategy synchronization by the agents.

We follow the principle of decentralized execution for experience collection and
centralized training. At execution time, every agent acts only on the basis of its local
observation by querying the policy for action. The experiences of all agents are gathered
throughout the episodes and placed in a centralized buffer, which are used to improve the
policy by the trainer.

The policy is optimized with Proximal Policy Optimization [2] and General Advantage
Estimation for value estimation [44], using the implementation of the RLlib library [45].
In the implementation of the experiments, we followed some of the tips proposed in [46],
such as reward normalization, increasing the size of the batch, and reducing the number
of policy optimization steps per batch. Training was executed on the local cluster with
the SLRUM scheduling mechanism and in most cases utilized 50 rollout workers, each
assigned with a single CPU thread, responsible for experience collection and a single GPU
for optimization. Except for those settings, no special adaptation has been made to the
PPO algorithm to address the multi-agent aspect of the studied problem. The specific
parameters used by the training algorithms have been provided in Table 1.

All agents share the same policy, including the neural network architecture as well as
the weights; nevertheless, they observe and act based only on local information. This allows
the potential deployment of the policy without the need to implement any communication
channels between agents.
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Table 1. Parameters of the PPO algorithm used in all experiments.

train batch size 2,000,000

number of sgd iterations 6

gamma 0.995

lambda 0.95

kl coefficient 0.0

clipping parameter 0.1

gradient clipping 2.0

learning rate 5× 10−5

The neural network architecture was based on the one proposed in [7] and is pre-
sented in Figure 7. Freespace observation, represented as 50 rays encoding the distance to
obstacles, is processed with the use of 1D Circular Convolution and later concatenated with
the observation of the ego itself. The other agents’ data are similarly embedded together
with ego to corresponding embeddings. Defined in such a way that the entity embeddings
are processed with the use of three masked multi-head attention layers, assuring that the
eventual nonvalid objects are not a part of the processing. Later, embedding corresponding
to the ego is selected and processed with fully connected layers to acquire discrete distribu-
tion over the actions (acceleration and steering angle combinations) and the value function
estimation itself.

Figure 7. The architecture of the neural network. Inputs to the network are color-coded as yellow.
Learnable parameters are presented as purple blocks, while math operations are green. Outputs
are red.
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5. Results
5.1. Egoistic Rewards Training Evaluation

The road scenarios did not have a well-defined beginning and end from an all-agent
perspective, as the lifespan of each car in a given scenario might be different. At the same
time, one may easily encode the specific task for each car, clearly detecting when the car
fulfills a given personal objective (arrives at the destination). Because of that, we proposed
a straightforward, purely egoistic, and sparse reward mechanism in which agents were
rewarded individually based only on their internal objectives. Each agent received a +1
reward for reaching the goal and was not rewarded otherwise. With this definition, agents
were also not directly encouraged to complete episodes as quickly as possible, except for
the natural effect of the gamma parameter (discount factor), which did not equal 1.

We separately trained agents in all the mentioned scenarios (zipper, bottleneck, and
crossroads) using a trained policy for all agents on the scene. The evolution of the example
episodes can be seen in Figure 8.

Figure 8. Evolution of the episodes for the bottleneck and zipper scenarios.

Interestingly, all the training resulted in the cooperative behavior of the agents and a
good overall performance (see the Baseline data in Table 2 for the results of the Crossroads
scenarios), despite the fact that agents were only rewarded for their own performance.
After examining the potential causes of this situation, we arrived at the conclusion that the
simulated scenarios were inherently cooperative and did not involve competitive traits.
Looking at the training times, the Bottleneck scenario was the hardest problem to solve,
probably because it’s an easy deadlock situation, which is not easy to negotiate and requires
a long planning and prediction horizon.

With the proposed scenarios and problem formulation, it was difficult to yield situa-
tions in which one of the agents made a move in their own favor or did not jeopardize its
own performance by exploiting other agents’ performance. There are multiple factors that
contribute to this and might differentiate this setup from on-road scenarios. Firstly, both
accidents and potential blockages are equally destructive to the performance of all agents
involved. Second, the simulation lacks traffic rules that would impose drive-through prior-
itization; therefore, agents cannot be penalized for breaking them. Last but not least, the
reward does not include the direct faster-the-better notion. That being said, the conclusion is
that the goal for each individual agent is aligned with the good of all other agents.
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Table 2. Performance evaluation of the three setups of crossroad environments. In the Baseline,
the agents were rewarded purely for reaching their goals. In the environment Timed, the reward
depended on the mean speed in the episode, while the last environment, Timed with shared reward
recreated the reward mechanism but added the reward-sharing mechanism. The characteristics
related to the duration, speed, and acceleration of the episode were calculated only for the agents
who achieved the goal successfully.

Baseline Timed Timed with Reward Sharing

Goal reached (%) 99.5 96.9 97.65
Obstacle collision (%) 0.12 0.43 0.24
Agent collision (%) 0.32 2.73 2.16
Avg episode length 31.08 23.33 22.86
Avg speed (m/s) 1.9 2.566 2.584
Max speed (m/s) 3.41 5.21 5.761
Min speed (m/s) 0.52 1.01 1.032
Static in episode (%) 13.23 6.14 6.34
Avg sum acc (m/s2) 20.64 18.58 18.27
Std sum acc (m/s2) 0.76 0.856 0.855

Understanding the limitations of the setup, including the lack of traffic rules, the single
black-box policy controlling all agents, as well as the simplicity and narrow scope of the
scenarios, it is vital to underline the good performance acquired by the agents in those
challenging scenarios with a straightforwardly defined objective. The behavior acquired by
the agents seemed to be quite realistic as well and resembled human behavior.

5.2. Introduction of Time Incentive and Reward Sharing

Realizing that the initially defined setup manifested highly cooperative traits, we
wanted to increase competitiveness. To do so, we have introduced a reward based on
time, which would promote arriving at the destination faster (see Equation (7)). Similar
to the previous experiments, the reward was sparse and calculated only at the end of the
episode and was nonzero only when the agent successfully arrived at the destination. In
the case of success, the driving time (td) and length of reference route, dre f , have been used
to calculate the effective average velocity over the episode, Ve. The reference route in the
crossroads scenarios has been straightforwardly defined as driving from the initial position
toward the middle of the intersection, followed by driving from that center toward the goal
position. To normalize the reward, we divided the average agent speed by a high bound
for the average speed expected in such a scenario, Vre f , which we assumed to be 5 m/s.
The definition of such a form allows keeping the rewards normalized and should promote
high average velocities but only in cases when the agent drives effectively towards the
destination.

r =
Ve

Vre f
, Ve = dre f /td (7)

To provide an incentive for cooperation among agents, we introduced the reward-
sharing mechanism, similar to that of [6]:

r f
i = (1− τ)ri + τr̄ , (8)

where team spirit τ was used to weigh the reward of the individual agents ri with the
average reward of the team r̄ and to calculate the final reward of the agent r f

i . As the agents
were not necessarily ending the episode at the same time, to be able to calculate the shared
reward, we delayed the publication of their termination until all the agents terminated. In
addition, we treated all agents as belonging to a single team.

Experiments with time-based rewards were performed in crossroad scenarios. The
main difference in the conducted experiments is summarized in Table 3. We compared the
agent’s performance with and without the reward-sharing mechanism, also referring to
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baseline training (Section 5.1). For the reward-sharing training, we used team spirit τ = 0.5.
The reward progress is presented in Figure 9, suggesting that reward sharing improved the
end performance.

Table 3. Main configuration parameters of experiments conducted in crossroad scenarios. In Baseline
and Timed experiments, team spirit is effectively set to 0.

Reward Concept Team Spirit Value

Baseline 1.0 for reaching reward, 0 otherwise 0.0
Timed according to Equation (7) 0.0
Timed with reward sharing according to Equations (7) and (8) 0.5

Figure 9. Graph presenting the training progress regarding the mean reward achieved in each training
iteration. The reward-sharing mechanism slowed down the training progress in the beginning but
resulted in a better performance in the end.

In detail, we performed an evaluation for each of the policies. We evaluated the poli-
cies on 10,000 episodes, which resulted in around 56,000 agent trajectories. The evaluation
results are shown in Table 2. As expected, Baseline training showed a much better perfor-
mance in achieving the goal and resulted in fewer collisions. At the same time, the Timed
and Timed with reward sharing policies presented much higher average velocities and smooth
behavior, with an advantage over the reward-sharing policy (see Figure 10 for histogram
velocity). We also evaluated the average velocities and the probability of achieving the
target aggregated by the number of agents in the episode (Figure 11). This evaluation
showed that the reward-sharing mechanism introduced the most benefits with respect to
the mean speed in high-density scenarios, while in less crowded scenarios, it introduced no
benefit or even hindered the performance. With respect to the goal-reaching performance,
reward sharing helped in all the cases, most probably because of the multiplied effect of
collisions.
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Figure 10. Histogram of the average velocities acquired by the agents (the horizontal axis is loga-
rithmic). The reward-sharing mechanism (green) allowed acquiring many more samples with the
highest velocities.

Figure 11. The average speed of the agents (left) and the goal reaching performance (right) as a
function of the number of agents simulated in a given scenario. The obvious conclusion is that the
average velocity drops as more cars are present in the scenario. Interestingly, the reward-sharing
mechanism (green plot) improves the average velocities in dense scenarios (agent count in the scenario
above 5) and slightly reduces it in cases where the number of agents is smaller (with respect to the
reward mechanism being turned off). Goal reaching is improved by reward sharing independent of
the number of agents; however, the baseline policy (blue) was superior in all cases. Those results
suggest that reward sharing plays an important role in environments with denser traffic.

6. Discussion and Further Work

In this work, we demonstrated that with a straightforward problem formulation, it
was possible to successfully solve simulated road scenarios involving large amounts of
cooperation. Furthermore, simulated road scenarios with implemented reward mechanisms
showed that this type of problem formulation yielded highly cooperative scenarios. As
collisions have a detrimental effect on all traffic participants, both those at fault and the
victims, all agents prioritized avoiding collisions. The acquired behaviors also seemed quite
human-like, even though no direct mechanism was used to control them in such a way.

In the timed experiments, we were able to show that the reward-sharing mechanism
improved cooperation between agents, yielding better individual results. This effect was
especially visible in crowded scenarios, where the coordination of multiple agents played
an important role. At the same time, the balance between speed and safety (analyzed in this
research as not causing collisions, which is only part of safety considerations) was clearly
visible and needs to be carefully addressed.
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The possible extensions of this research are numerous. First, the grid search for
parameters such as team spirit, gamma, and reward details could be performed with the
aim of finding the one that meets the needs of the target. Extending training to a wider and
more diverse set of on-road scenarios could result in more robust policies, especially when
trying to fit a single policy for all the scenarios. Since agents have been trained with a self-
play mechanism in a highly cooperative setting of on-road driving, the strategy of each actor
assumes predefined behavior patterns from other agents in the scene and does not assume
any out-of-distribution situations. With that in mind, analyzing the policy’s robustness
and providing countermeasures in the presence of actors not controlled by the same policy
would be especially important extensions, taking into consideration the highly cooperative
characteristics of on-road driving. Finally, the integration of rule-based constraints or
handwritten heuristics into planning, which could encapsulate generally understood traffic
rules, would be the most important and simultaneously the most challenging extension of
this research, moving current policy closer to production applicability. At the same time,
multiagent reinforcement-learning-based methods might be considered a solid element in
the development of driving policies for highly automated vehicles.
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