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Abstract: Low-light image enhancement is a crucial preprocessing task in complex vision tasks. It
directly impacts object detection, image segmentation, and image recognition outcomes. In recent
years, with the continuous development of deep learning techniques, an increasing number of image
enhancement methods based on deep learning have emerged. However, due to the high cost of
data collection and the limited content of supervised learning datasets, more and more scholars
have shifted their focus to the field of unsupervised image enhancement. Unsupervised image
enhancement methods do not require paired images of the same scene during the training process,
which greatly reduces the threshold for network training. Nevertheless, current unsupervised
methods still suffer from issues such as unstable enhancement effects and limited generalization
ability. To address these problems, we propose an improved low-light image enhancement method.
The proposed method employs the LSGAN as the training architecture and utilizes an attention map
network to dynamically generate attention maps that best fit the network enhancement task, which
can effectively improve the generalization ability and enhancement performance of the network.
Additionally, we adopt an attention mechanism to enhance the subtle details of the image features.
Regarding the network training, considering that the traditional convolutional neural network
discriminator may not provide effective guidance to the generator in the early stages of training,
we propose an improved discriminator structure. The experimental results demonstrate that our
method can achieve good enhancement performance on different datasets and has practical value.
Although our method has advantages in enhancing low-light images, it also has certain limitations,
such as the network size not meeting the requirements for lightweight models and the potential for
further improvement under extremely low-light conditions. We will strive to address these issues as
comprehensively as possible in our future research.

Keywords: image enhancement; neural network; attention mechanism; attention map network; LSGAN

1. Introduction

As one of the primary sources of information available to humans, images occupy a
critical position in the entire information society. With the rapid development of hardware
technology in recent years, the quality of images generated by imaging devices has become
increasingly high. These high-quality images not only provide people with better visual
experiences but also greatly promote the development of other vision tasks, such as object
detection, recognition, and image segmentation. However, images captured in low-light
environments still face many problems, including severe contrast and brightness deficien-
cies and significant loss of detail information. Therefore, it is crucial to use appropriate
algorithms to enhance the contrast, brightness, and details of low-light images.

Early researchers conducted research based on the characteristics of low-light images
and proposed many image enhancement algorithms, such as the histogram equalization
and Retinex-based enhancement algorithms, which are still widely used in the industry.
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In recent years, with the development of deep learning technology, more and more peo-
ple have begun to consider introducing deep learning technology into the field of image
enhancement. Unlike traditional methods, deep learning-based image enhancement is
a data-driven image enhancement technique and therefore has many advantages. Cur-
rently, deep learning-based image enhancement methods can be roughly divided into
three categories based on their principles: supervised learning, unsupervised learning,
and self-supervised learning. However, the majority of image enhancement algorithms
rely solely on supervised training using paired datasets, which inherently suffers from
limitations. This approach requires paired images in the same location with different
lighting conditions, which undoubtedly increases the cost of data acquisition. Moreover,
paired images of fixed scenes are unlikely to include moving objects or humans, resulting
in a lack of image content diversity. Consequently, training with such data may lead to
poor generalization of the network. Therefore, some scholars have proposed unsupervised
image enhancement methods to reduce the data acquisition threshold. However, some
unsupervised methods still have issues, such as generating attention maps using fixed
patterns or using unreasonable attention networks in the network architecture, which nega-
tively impact the quality of enhanced images. In this study, we address the aforementioned
issues and propose our own solution by improving the relevant methods. Figure 1 presents
a comparison of the enhancement effects achieved by the methodology proposed in this
article and those obtained by traditional methods.
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Figure 1. Enhancement result of traditional methods: (a) original, (b) MSR, (c) log transform,
(d) CLAHE, (e) gamma, and (f) ours.

2. Related Works
2.1. Traditional Image Enhancement Methods

Image enhancement is an important image processing technique in the field of com-
puter vision, with the primary objective of making the enhanced image more suitable for
human visual perception or computer processing. Prior to the widespread application of
deep learning techniques, most image enhancement tasks were solved using traditional
methods. Traditional methods have advantages such as strong algorithm robustness, good
real-time performance, and low computational resource requirements. Currently, the most
commonly used image enhancement methods are largely based on histogram equalization
and the Retinex theory.

Histogram equalization (HE) is an image processing technique that improves image
contrast by stretching the grayscale levels. The distribution of grayscale levels in an image
processed by HE is more uniform, which is an approximation of the maximum entropy
theory. However, this approach has certain limitations, as it may cause over-exposure
of the image and damage its fine details. To address this issue, scholars have proposed
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various improved methods. For instance, Pizer et al. introduced the concept of adaptive
histogram equalization (AHE) [1] using a moving window, but AHE may cause severe block
effects. Then, they proposed contrast-limited adaptive histogram equalization (CLAHE) [2]
based on AHE, which clips the histogram’s grayscale levels to achieve limited contrast
enhancement. Subsequently, Debdoot Sheet et al. [3] proposed a modified HE method
called BPDHE, which fills the missing values in the histogram using linear interpolation and
filters the histogram with a Gaussian filter. Kansal et al. [4] suggested controlling the shape
of the cumulative distribution function (CDF) in HE to balance brightness and contrast.
Chang et al. [5] incorporated the dual gamma correction method into CLAHE to achieve
more natural and effective enhancement. These methods limit the over-enhancement of
HE while improving the image’s fine details and visual effects.

The Retinex theory has been widely used in the field of image enhancement and is
currently one of the most commonly used techniques. The Retinex theory was first proposed
by Edwin H. Land [6,7] in 1963, and the key to such methods is to estimate the illumination
component of the original image and then calculate the reflective properties of objects.
Subsequently, Jobson et al. proposed the Single-Scale Retinex (SSR) [8] method based on
Gaussian center surround functions. While the SSR algorithm has good enhancement effects
for color images, it is difficult to balance dynamic range compression and color consistency.
To address this issue, the Multi-Scale Retinex (MSR) was proposed in Ref. [9]. MSR is
essentially a weighted average of multiple different scale SSR. Following MSR, Rahman
et al. further proposed the Multi-Scale Retinex with Color Restoration (MSRCR) [10] theory
based on color restoration factors. The advantage of the MSRCR algorithm is that it can
analyze and process the image according to its feature scale. Compared with MSR and
SSR, MSRCR can enhance the color vividness of the image and suppress the nonlinear
distortion to some extent. However, MSRCR is sensitive to the lighting conditions of the
input image and usually has poor processing effects on overexposed or underexposed
images. In recent years, other scholars have proposed new algorithms based on the Retinex
theory. Ng et al. [11] proposed a total variation (TV) model for Retinex theory, which utilizes
TV regularization to preserve image smoothness and details, and employs the Retinex
principle to enhance image contrast and brightness. Sun et al. [12] presented a Retinex
image enhancement algorithm based on the multigrid method, which first formulates the
Retinex enhancement problem as a Poisson Equation and then uses the multigrid method
to solve the equation efficiently. Zhang et al. [13] proposed a variational Retinex model
based on global sparse gradient (GSG) guidance, which incorporates GSG Regularization
to preserve the structural information and edge details of images, thereby improving the
enhancement effect based on the Retinex principle. Song et al. [14] introduced an image
enhancement method based on L0 regularization and re-weighted group sparsity (RGS),
where L0 Regularization can better preserve image details, while RGS can better retain
image colors.

In addition to image enhancement methods based on HE and Retinex theory, there
are also other types of enhancement methods, such as those based on gradient field trans-
formation [15–17]. The advantage of the gradient-based methods is that it can perform
denoising while enhancing the image. However, the disadvantage of such methods is also
evident, as the gradient domain method cannot achieve real-time image processing for
large-sized images. This is because after enhancing in the gradient domain, it is necessary
to convert back to the spatial domain, and currently there are two methods to achieve
this process: matrix solving and gradient descent flow (GDF) methods [18]. However,
both methods have relatively high computational resource requirements and are therefore
time-consuming.

2.2. Deep Learning-Based Image Enhancement Methods

After neural networks were widely adopted in the field of Computer Vision,
Lore et al. [19] first proposed a seven-layer sparse stacked autoencoder (SSAE) called LL-
Net for improving the brightness of low-light image patches. However, the generalization
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ability of this network was weak due to the use of artificially synthesized data as the
training dataset. Subsequently, Wang et al. [20] proposed a low-light image enhancement
network called GLADNet. This method firstly computes the global illumination estimation
of the low-light image and then employs GLADNet to transform the low-light image into a
high-illuminated image, guided by the global illumination estimation. Finally, the detail re-
construction of the enhanced image is achieved by fusing it with the original image. Lv et al.
proposed [21] a multi-branch structure luminance enhancement network named MBLLEN.
Cai et al. [22] proposed a single-frame image enhancement method, which includes two
subnetworks for improving the brightness and details. Zhang et al. [23] presented a condi-
tional re-enhancement network (CRENET), which can be combined with any type of image
enhancement method to further enhance the contrast and brightness of the image based
on the existing enhancement effect. All of the aforementioned methods are end-to-end
supervised learning approaches. In addition, there exists another technical approach in the
field of deep learning-based image enhancement, which combines the Retinex theory with
neural networks. Wei et al. [24] first proposed to use the neural network called RetinexNet
to decompose an image into an illumination map and a reflectance map. The method
adjusts the brightness of the illumination map from a multi-scale perspective and removes
the image noise from the reflectance map. Finally, the illumination and reflectance maps
are pixel-wise multiplied to obtain the ultimate enhanced image. Following RetinexNet,
Shen et al. proposed MSR-Net, which introduces the improved Retinex algorithm MSR as
prior knowledge for low-light image enhancement [25]. Zhang et al. [26] introduced KinD,
which builds upon RetinexNet by incorporating Adjustment-Net and Restoration-Net.
These networks effectively correct illumination and reflectance images, leading to more
accurate and plausible decomposition results.

For supervised learning methods, the cost of collecting paired datasets from the same
scene is expensive. Additionally, artificially synthesized low-light images differ greatly
from real images, and networks trained using such data often perform poorly on real
data. As a result, some researchers have begun to turn their attention to unsupervised
image enhancement methods. Unsupervised enhancement methods greatly reduce the
algorithm’s data requirements as they do not require paired images from the same scene
during training. Jiang et al. [27] believe that the image enhancement problem is essentially
an image style transfer problem and first proposed EnlightenGAN to achieve unsupervised
image enhancement. Although EnlightenGAN reduces the network’s demand for data,
its model’s enhancement performance is limited across different datasets. Yang et al. [28]
contend that the primary limitation of EnlightenGAN is its relatively weak enhancement
effect, leading them to propose a perceptual loss function that integrates Gamma correction.
However, this modification failed to address the persisting issue of poor generalization
across different datasets.In addition to the aforementioned methods, CycleGAN [29] and
MUNIT [30] can also be used for unsupervised image enhancement tasks.

Compared to unsupervised learning, self-supervised image enhancement only re-
quires low-light images as input without any reference images, further reducing the algo-
rithm’s data requirements. Zero-DCE proposed by Guo et al. [31] is a truly self-supervised
image enhancement method. The essence of Zero-DCE is to utilize neural networks to
fit the brightness enhancement curves, and then generate the brightness-enhanced image
based on the curve and the original image. Zhang et al. [32] proposed maximizing the
entropy of the channel with the maximum reflection component as a self-supervised en-
hancement constraint, and introduced the Contrast Enhancement Network (ICE-Net) and
the Enhancement Denoising Network (RED-Net) for contrast enhancement and denoising,
respectively. Ma et al. [33] proposed a self-supervised enhancement framework based on
the Retinex illumination estimation principle. The method utilizes multi-module learning
with shared weights and achieves favorable results on the basis of a lightweight network.
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2.3. Contribution of This Paper

The following three ideas constitute our primary contributions to this field:

• We propose a novel attention network, MBCMHSA-Net, which combines multi-branch
convolutional layers and a multi-head self-attention mechanism. This network use
multiple branches of convolutional kernels to extract image features at different scales,
and integrates contextual information using a multi-head self-attention mechanism.
The MBCMHAS-Net has a simple structure that can be flexibly embedded into vari-
ous branches of the backbone network. Our ablation and comparative experiments
demonstrate that this module effectively enhances the detail features of images.

• We propose an attention map network that can dynamically generate attention maps,
which overcomes the drawbacks of using fixed-pattern generated feature maps and
improves the network’s generalization ability. During the training process, the back-
bone network can pay more attention to important information in the image through
the attention map, thereby enhancing the overall performance.

• We propose a novel discriminator network architecture that combines convolutional
and Transformer encoders, and incorporates the MBCMHAS-Net proposed in this pa-
per between convolutional layers. Compared with the convolutional neural network-
based discriminator architecture, the proposed discriminator in this paper has better
learning ability and can ensure a more stable training process.

3. Method
3.1. Generator
3.1.1. Generator Backbone Network

In the field of deep learning, the backbone network serves as the core component
of deep learning models and is crucial for achieving machine vision tasks. Typically, a
mature and stable network architecture or a pretrained model is used for the backbone
network. Currently, commonly used backbone networks include VGG, ResNet, and others.
For different vision tasks, it is necessary to select different backbone network structures.
For example, in object detection tasks, some detection algorithms use ResNet-50 and
Darknet-53 as backbone networks to extract image features, while in image generation
tasks, convolutional autoencoders [19] and fully convolutional neural networks [34] are
more commonly used. In this study, we adopt U-Net as the backbone network due to our
experimental findings that, compared to convolutional autoencoders, using U-Net as the
backbone network can allow our method to converge more easily. The underlying reason
for this phenomenon could be attributed to the cross-layer skip connections implemented
in the U-Net architecture, which enable feature fusion across different depths and avoid
information loss.

The structure of the backbone network can be observed from Figure 2. After feeding
the low-light image into the generator, the encoder of the backbone network extracts image
features layer by layer, while the decoder restores the spatial resolution of the feature
maps using upsampling layers. Both the encoder and decoder of the generator have three
sublayers, each of which contains batch normalization layers and uses the ReLU function
as the activation function. The encoder layer consists of two convolutional layers and
one max pooling layer. In the corresponding decoder layer, bilinear interpolation-based
upsampling layers are used instead of transposed convolutional layers, which can cause
“blocky” granularity and hinder detail generation. After upsampling, convolutional layers
are employed to combine spatial and channel information of the image to generate the final
enhanced image. Since the pixel value range of the input image to the generator is [0,1]
after preprocessing, the Tanh activation function is applied to the last layer of the backbone
network to transform the pixel values of the enhanced image to the same range, which can
accelerate network convergence.
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3.1.2. Attention Map Network

To avoid excessive brightness enhancement and improve the enhancement effect of
image detail features, EnlightenGAN multiplies the attention map with the output of
the U-Net decoder layer. The attention map used in EnlightenGAN is generated using
a fixed pattern. The experimental results demonstrate that using the attention map can
indeed accelerate the convergence speed of unsupervised networks, while removing it
increases training time and results in inferior image enhancement. Based on this analysis,
we conclude that the attention map plays an important role in improving image quality
and network training. Compared with the EnlightenGAN, the attention map in our work is
learned autonomously under the constraint of a single-channel attention map, and is multi-
channel. Inspired by the channel attention mechanism and spatial attention mechanism of
CBAM [35], we believe that a single-channel attention map only functions similarly to a
spatial attention mechanism, while a multi-channel attention map can simultaneously con-
sider both channel attention and spatial attention. Figure 3 depicts the network architecture
of the attention map network.
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The proposed attention map network in this study consists of four densely con-
nected convolutional modules. Following each convolutional module, a corresponding
MBCMHSA-Net is attached to focus on features. All feature maps processed by the
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MBCMHSA-Net are then channel-stacked and merged with feature and channel informa-
tion via a combined convolutional module, which consists of a convolutional layer, a batch
normalization layer, and a ReLU activation layer. Lastly, the attention maps are adjusted
for channel and size by a max-pooling module, which consists of three parallel sub-layers,
each comprising a convolutional layer, ReLU activation layer, and max-pooling layer. It can
be observed from Figure 4 that the structure of this module is relatively straightforward.
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3.1.3. Multi-Branch Convolutional Multi-Head Self-Attention Network

In deep learning networks, attention-based network or modules can improve image
quality by assigning higher weights to important regions of the image. Additionally, in
convolutional neural networks, the size of the convolutional kernel can affect the scale of the
extracted features. Smaller kernels can capture more detailed features, while larger kernels can
capture coarser features. For example, 1 × 1 kernels can be used for interchannel information
interaction, 3 × 3 kernels can capture local features, and 5 × 5 or larger kernels can capture
larger or global features. Based on these ideas, we propose a network that integrates multi-
branch convolution and multi-head self-attention mechanisms, which we refer to as the
Multi-Branch Convolution Multi-Head Self-Attention (MHSA) [36,37] Network (MBCMHSA-
Net). This network is highly flexible and can be embedded into various branches of the main
network. The structure of MBCMHSA-Net is shown in Figure 5.
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In MBCMHAS-Net, we first set up five convolutional branches with filter sizes of
3 × 3, 5 × 5, 7 × 7, 11 × 11, and 13 × 13, to extract feature information at different scales.
After feature extraction, the feature maps are fed into the MHSA module, and the weight
maps generated by the MHSA module need to be pixel-wise added to the input feature
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maps. Finally, all the feature maps processed by the weight maps are pixel-wise added
and fed into a network layer for feature fusion, which consists of two convolutional layers
and a LeakyReLU activation function. It should be noted that due to the excessive number
of network parameters caused by large convolutional kernels, different channel numbers
are set for different convolutional layers in this study, and the larger the kernel size, the
fewer the number of feature map channels for that convolutional layer. In addition, it is not
feasible to directly input multi-channel feature maps into MHSA, as this would also result
in an excessively large dimension of the fully connected layer in the MHSA. Therefore,
before processing the multi-branch feature maps in MHSA, a 1 × 1 convolutional layer
is used to reduce the dimensions of the feature maps. Equations (1) and (2) describe the
MHSA procedure:

Q, K, V = Chunk[C1×1(C3×3∼13×13(x))] (1)

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2)

Here, 1× 1, 3× 3, and so on represent the sizes of the convolution kernel; C represents
the convolution operation; and Q, K, and V represent the word embedding vector matrix
formed by the Query, Key, and Value in the self-attention mechanism, respectively. Finally,
the feature map processed by MHSA should be processed by a network sublayer that
contains two convolutional layers and a LeakyReLU activation layer.

3.2. Discriminator

The role of the discriminator in generative adversarial networks is to provide gradient
descent direction for the training of the generator. In our experiments, we found that the
CNN-based discriminator was inadequate in guiding the training of the generator, leading
to unstable training and low-quality image generation. To address this issue, we propose an
improved discriminator network, which consists of a convolutional encoder, a Transformer
encoder, and a fully connected neural network. Specifically, the convolutional encoder is
employed to extract local features of the images, the Transformer encoder further processes
the features extracted by the CNN, thereby providing superior contextual information to
the entire discriminator network, and the fully connected neural network is utilized to
transform the output vector dimension of the Transformer.

Figure 6 delineates the specific architecture of the discriminator network, from which it
can be discerned that image features are initially extracted via a convolutional encoder. Each
convolutional module of the encoder consists of a convolutional layer, a batch normalization
layer, a max pooling layer, and a ReLU activation layer. In addition, the MBCMHSA-Net,
proposed in this study, is embedded between the blocks of the convolutional encoder to
focus on features. As the image passes through the convolutional encoder, the size of its
feature maps gradually reduces, and after the last convolutional module, we obtain the
final feature map from the feature extraction stage.

The feature maps obtained from the convolutional encoder cannot be directly fed
into the Transformer encoder and require preprocessing. This preprocessing involves
patch embedding and position embedding. Prior to embedding, the feature maps are first
partitioned into blocks, then each block image is stretched into a one-dimensional vector and
subjected to linear transformation to reduce the dimension of the vector. Finally, position
encoding is applied to the vectors to obtain word embedding vectors. After obtaining
the embedding vectors, they are fed into the Transformer encoder, which consists of three
Transformer encoder layers. To improve network performance, residual connections are
established between the input and output of the encoder in this study.

Figure 7 illustrates the loss trend of the generator and discriminator during the train-
ing process in this study. It can be observed from the figure that the loss value of the
generator shows a fluctuating trend of initial increase followed by a decrease, while that of
the discriminator steadily decreases and then fluctuates within a small range. This indicates
the adversarial relationship between the generator and the discriminator. Additionally, the
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figure shows that the discriminator has a relatively strong learning ability, which is consis-
tent with the current training strategy for generative adversarial networks. Specifically, a
robust discriminator is required to provide effective guidance for the generator during the
training process of the generative adversarial network.
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Figure 6. The Network Structure of the Discriminator.

The feature maps obtained from the convolutional encoder cannot be directly fed
into the Transformer encoder and require preprocessing. This preprocessing involves
patch embedding and position embedding. Prior to embedding, the feature maps are first
partitioned into blocks, then each block image is stretched into a one-dimensional vector and
subjected to linear transformation to reduce the dimension of the vector. Finally, position
encoding is applied to the vectors to obtain word embedding vectors. After obtaining
the embedding vectors, they are fed into the Transformer encoder, which consists of three
Transformer encoder layers. To improve network performance, residual connections are
established between the input and output of the encoder in this study.

Figure 7 illustrates the loss trend of the generator and discriminator during the train-
ing process in this study. It can be observed from the figure that the loss value of the
generator shows a fluctuating trend of initial increase followed by a decrease, while that of
the discriminator steadily decreases and then fluctuates within a small range. This indicates
the adversarial relationship between the generator and the discriminator. Additionally, the
figure shows that the discriminator has a relatively strong learning ability, which is consis-
tent with the current training strategy for generative adversarial networks. Specifically, a
robust discriminator is required to provide effective guidance for the generator during the
training process of the generative adversarial network.
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3.3. Loss Function

The loss function mainly constitutes three terms:

• Perceptual Loss: This function is utilized to evaluate the content loss between the
generated image and the input image, as well as the generated attention map and the
original attention map. In the experiment, we first obtain the convolutional feature
maps named “Conv1-1”, “Conv2-1”, “Conv3-1”, and “Conv4-1” for both the low-light
image and the enhanced image from the pre-trained VGG19 network. Then, we utilize
the L2 loss function to measure the difference between these two feature maps. When
evaluating the attention map, we convert the single-channel attention map into a three-
channel image and then compute the perceptual loss between it and the generated
attention map. The specific calculation process of this loss is as follows:

Lperceptual =
1

Cj HjWJ

∥∥φj(y)− φj(
.
y)
∥∥2 (3)

where Cj × Hj ×Wj represents the size of the feature map, φj(y) represents the low-
light image, and φj(

.
y) represents the enhanced image.

• Adversarial Loss: The logarithmic form of adversarial loss is used by the traditional
GAN. However, this adversarial loss has the issue of unstable training, particularly
when using the sigmoid activation function in the discriminator’s final layer, which
may result in the issue of gradient disappearance. Therefore, we use the least squares
adversarial loss (LSGAN) [30] function to train our model. The form of LSGAN loss is
expressed in Equations (4) and (5):

LD = EXr∼Preal [(DRa(Xr, X f )− 1)2] + EXr∼Pf ake [(DRa(Xr, X f ))
2] (4)

LG = EXr∼Preal [(DRa(Xr, X f )− 1)2] (5)

• TV-Loss: We use the total variation loss function to limit the image noise. The total
variation loss function is widely used for removing image noise while maintaining the
image edge information.

LTV = ‖∇Y‖1 (6)

where ∇Y represents the gradient of the image.

The overall loss function of the network is:

Loss = Lperception + Ladversial + LTV (7)

4. Experiment

The experiment in this study involves four parts: experiments on image enhancement
under low-light and extremely low-light conditions, image application experiments, and
network ablation experiments. The experiment on low-light image enhancement is a rela-
tively conventional one, which mainly evaluates the image quality of different algorithms
for enhancing dim images, as most enhancement algorithms may be effective in this envi-
ronment. The experiment on extremely low-light image enhancement mainly examines
the algorithmic robustness under such conditions, since images captured in extremely low-
light conditions contain a large amount of image noise, and some methods may not work
properly, such as the BPDHE algorithm. The application experiment mainly evaluates the
effect of the proposed method on low-light image matching technology, which can indicate
whether the method can provide assistance for other visual tasks in addition to improving
visual effects. The network ablation experiment primarily assesses the effectiveness of the
proposed network.
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4.1. Experiment Details
4.1.1. Dataset

The datasets DarkFace [38] and LSRW [39] are used for training of Generative Ad-
versial Networks. Both the DarkFace and LSRW datasets are nighttime image datasets
collected in the natural environment, where the DarkFace training set contains 6000 images
with a 1080 × 720 resolution, and these data have no corresponding normal light label
image, while the LSRW (Nikon) contains 3150 pairs of “low-normal” paired images with
a 960 × 640 resolution. The Dark Face dataset was captured by researchers using Sony
cameras. The dataset primarily consists of dark streets captured during the shooting pro-
cess, with the camera’s exposure time constantly changing. The longest exposure time is
1 s, making the images in this dataset fall within the category of low-light images. The
LSRW dataset consists entirely of images captured by Huawei smartphones and Nikon
cameras. The Nikon cameras were set to exposure times of 0.00 s and 0.5 s, with ISO values
of 50 and 100, and a total of 3170 pairs of images were captured. The Huawei smartphones
were set to an exposure time of 0.0025 s and an ISO value of 50, and a total of 2480 pairs of
images were captured. Tripods were used to fix the cameras throughout the entire shooting
process, and all images containing moving objects were removed during data processing.

We selected 600 low-light images and 850 images from the Dark Face dataset and
LSRW dataset as the unsupervised dataset. These images do not have a corresponding
relationship, so we can realize unsupervised training. Additionally, we also selected
700 pairs of paired images from the LSRW dataset as the supervised learning dataset. In
order to test the performance of the network in extremely low-light environments, we
selected the SID [40] dataset as the validation dataset. The SID dataset contains long-
exposure and multi-frame short-exposure images of the same scene. The exposure time
during the collection of this dataset was 0.04 s and 0.1 s. In the application experiment, we
use the synthetic image dataset of LoL [24]. We resized all images to 540 × 360 for training.

It should be noted that the method proposed in this study employs two modes of
training throughout the entire testing process. One mode is supervised learning training
based on the LSRW dataset, while the other is unsupervised learning using both the Dark
Face and LSRW datasets. Specifically, the supervised learning image enhancement methods
involved in the experiments are trained using the same LSRW dataset as ours, while the
unsupervised and self-supervised methods are trained using the combined unsupervised
dataset and the Dark Face dataset, respectively. The neural networks of all the deep learning
enhancement methods are trained for 50 epochs for comparison.

4.1.2. Training Details

The experimental code in this study was implemented using Pytroch 1.8.0. The entire
algorithm can be easily duplicated because the initialization weights and biases of each
network layer are completed by default in accordance with the Pytorch framework, and
the random seed value is not set. During the training phase, we used the Adam optimizer,
set the batch size to 8, and set the learning rates to 0.0001 for both the generator and
discriminator. The values for Adam are 0.9 and 0.999, respectively. The overall network
training process was fairly stable owing to the adversarial loss function of the LSGAN.
Additionally, we used an NVIDIA Tesla m40 GPU with 24 GB of memory.

4.2. Objective Assessment
4.2.1. Low-Light Image Enhancement Experiment

In comparison experiments, this study introduced six enhancement methods based
on the learning process (GLADNet, KinD, MBLLEN, RetinexNet, SCI, and Zero-DCE) and
three traditional image enhancement methods (LIME [41], MF [42], and SIRE [43]).

Subjective Evaluation of Image Quality

Figure 8 demonstrates the enhancement effects of the generator. It can be observed
from Test Image 1 that the MBLLEN and SIRE methods exhibited the issue of over-
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enhancement in certain image regions. The enhancement in these areas was too strong,
which resulted in the obscuring of original contours and details. The image quality of
the RetinexNet images showed an unnatural color tone, which significantly differed from
that of natural images. This difference in color tone can be easily perceived by human
eyes. Among the tested methods, LIME, MF, and most deep learning-based methods
exhibited good performance. In Test Image 2, SIRE significantly increased the brightness
of the image. GLADNet, KinD, and EnlightenGAN produced images with high contrast,
while the proposed method appeared to have slightly lower contrast and higher brightness.
In comparison, the proposed method significantly enhanced image brightness without
producing adverse results such as over-enhancement, shadows, or color distortion.
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Objective Evaluation of Image Quality

Subjectively evaluating image quality based solely on human visual perception is
not rigorous enough. Therefore, we adopted currently prevalent image quality metrics
for objective evaluation. These metrics include NIQE, CEIQ, LOE, entropy, and standard
deviation (SD). The following provides a brief explanation of each metric.

NIQE: This is a commonly used unsupervised image quality evaluation metric. It can
assess the quality of digital images with statistical models. A lower NIQE score indicates
better image quality.

CEIQ: This metric evaluates the enhancement effect by calculating the differences in
factors such as structural similarity, color fidelity, and contrast between the enhanced image
and the original image. A higher CEIQ value indicates better image quality.

LOE: This metric is specifically designed for the field of low-light image enhance-
ment. It is mainly used to measure the algorithm’s ability to maintain brightness order,
which is essentially evaluating the difference in brightness distribution before and after
image enhancement.

Entropy: This metric is mainly used to measure the diversity of pixel value distribution
in an image. The magnitude of the entropy metric reflects the richness of the image
information. A larger entropy value indicates greater information content in the image,
while a smaller entropy value indicates less information. In an 8-bit unsigned image, the
maximum value of entropy is 8.

SD: SD (standard deviation) is a statistics-based image quality evaluation metric. The
larger the SD value, the clearer the image, while a smaller SD value indicates that the image
details are more blurry.

After training the network for 30 epochs, we selected the first test image in Figure 8 to
calculate the metric values and compared them in Table 1.

Table 1. Different Image Metrics in Low-Light Conditions.

Method NIQE CEIQ LOE EN SD

Input 4.450 1.89 — 4.36 25.65
EnlightenGAN 2.613 3.14 527.54 7.18 40.34

GLADNet 2.364 5.38 188.31 7.35 45.15
KinD 2.549 5.23 256.05 7.28 43.49
LIME 2.774 6.54 339.88 7.69 59.79

MBLLEN 2.994 5.13 162.27 7.32 52.02
SCI 2.721 4.18 189.59 7.19 55.92
MF 2.578 4.49 436.01 6.97 36.93

SIRE 3.418 4.18 420.98 6.23 87.42
RetinexNet 4.036 5.38 490.51 7.21 41.60
Zero-DCE 2.732 4.84 215.18 7.14 41.48

Ours (Supervised) 2.513 5.26 204.76 7.76 76.30
Ours (Unsupervised) 2.494 5.21 126.34 7.34 51.06

From the data in the Table 1, it could be seen that the LIME method performed
excellently in terms of contrast and color fidelity, while also exhibiting high values of
standard deviation. This suggested that images enhanced by LIME had clearer details. The
algorithm RetinexNet performed the worst in the NIQE metric. As shown in Figure 8, the
images enhanced by RetinexNet suffered from color distortion and exhibited significant
differences from real images in terms of image style. The best method for the NIQE metric
was GLADNet. Although not as bright as the LIME and MF methods, GLADNet produced
images with complete details and without over-enhancement. In this study, the images
trained via an unsupervised method performed better in terms of LOE and NIQE metrics,
indicating that the brightness distribution of the enhanced images was more similar to
the original images. The images trained via a supervised method performed best in terms
of the information entropy metric, and were second only to the LIME method in terms
of the standard deviation metric, indicating that the image details were clearer than the
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other methods. The worst methods for the LOE metric were RetinexNet, MF, and SIRE,
indicating that the light distribution of the images produced by these three methods differed
greatly from the original image. Among these, SIRE had the most severe over-enhancement
problem, resulting in overexposed areas in the image. Overall, our proposed method
exhibited outstanding performance in all metrics, while EnlightenGAN had a relatively
average performance in terms of metrics.

4.2.2. Extreme Low-Light Image Enhancement Experiment

The test images selected in this section were sourced from the SID dataset, which
contains images with illumination levels ranging from 0.2 lux to 5 lux, and hence satisfies
the definition of extremely low-light images. In this study, an extreme low-light image was
randomly selected from the SID dataset for testing. As the image data provided in the SID
dataset are large-scale RAW format images, we converted the selected image using bilinear
interpolation to a 540 × 360 JPG format image for testing purposes.

Subjective Evaluation of Image Quality

Among the tested image enhancement methods, including Zero-DCE, KinD, Enlight-
enGAN, and SCI, the improvements in brightness and contrast were relatively limited. The
RetinexNet method still produced significant changes to the style and tone of the image.
Among these ten contrast methods, MBLLEN, LIME, MF, and our method showed more
prominent visual effects. The MBLLEN and LIME methods significantly improved the
brightness and contrast of the image, resulting in more vivid colors. However, MBLLEN-
enhanced images did not contain noise or mosaic artifacts compared to LIME, indicating its
superior denoising effect. The advantages of LIME and MF lie in generating more vibrant
colors. When employing both unsupervised and supervised training, the method proposed
in this study demonstrated a significant difference in enhancing extremely low-light images.
This difference can be observed in Test Image 2. Specifically, if the proposed method is
trained using supervised learning, it can significantly improve the brightness and contrast
of the images. On the other hand, if the method is trained using unsupervised learning, the
resulting images have lower brightness. However, it still has a significant improvement
effect compared to the other methods. The method proposed in this study can improved
the visual quality of images. However, compared to the MBLLEN method, our approach
still has limitations in suppressing image noise.

Subjective Evaluation of Image Quality

This section selects the second test image in Figure 9 for performance evaluation. The
image quality evaluation metrics discussed in this section are the same as those in the
previous section. Table 2 displays the metric values of the enhanced images obtained using
the different methods.

As shown in Table 2, the MBLLEN performed better on metrics such as NIQE, while
our method performed the best on CEIQ and LOE metrics. Among all metrics, RetinexNet
performed the worst on NIQE and CEIQ, which mainly reflected the naturalness of the
image. The results in Figure 9 confirmed this observation. Regarding the LOE metric,
EnlightenGAN and SCI performed poorly, indicating their limited ability to enhance image
brightness, and the significant difference between the brightness distribution of the en-
hanced images and the original images suggested a problem with the generalization ability
of these two networks. Furthermore, this also illustrates the drawbacks of employing a pre-
determined pattern to generate attention maps. Our method (unsupervised) and MBLLEN
achieved the best performance on the entropy metric, while Zero-DCE and SCI performed
poorly. Regarding the poor performance of Zero-DCE in extremely low-light testing, we
believed this may have been due to the loss function of Zero-DCE, which imposed excessive
constraints on the brightness distribution of the image during network training to avoid
excessive brightness enhancement. However, the threshold used for brightness enhance-
ment in Zero-DCE was limited in its effectiveness. Overall, based on the comprehensive
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evaluation, we concluded that our proposed method and MBLLEN achieved the most
significant improvement in image quality in extremely low-light situations.
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Table 2. Different Image Metrics in Extremely Low-Light Conditions.

Method NIQE CEIQ LOE EN SD

Input 7.145 1.41 — 1.42 3.56
EnlightenGAN 6.203 1.86 1227.99 4.72 19.00

GLADNet 4.929 2.19 891.95 4.58 39.71
KinD 6.612 1.53 799.48 3.06 11.48
LIME 8.053 1.99 511.69 3.65 67.23

MBLLEN 4.296 2.24 876.95 5.63 58.74
SCI 8.431 1.85 1264.53 1.94 13.71
MF 7.653 1.96 522.89 3.61 61.11

SIRE 7.328 1.93 475.48 3.17 30.72
RetinexNet 10.951 1.35 528.25 4.16 17.14
Zero-DCE 6.842 1.85 368.61 2.72 16.08

Ours (Supervised) 5.803 1.88 587.64 4.29 65.19
Ours (Unsupervised) 4.579 2.03 353.69 5.41 52.85

4.3. Ablation Experiment

It can be observed from Figure 10 that using only the backbone network without
incorporating any additional modules, the images generated by the generator exhibited
preliminary enhancement effects, but with low contrast, which gives a pronounced sense
of granularity and certain features appeared blurred. However, if the Attention Map
Network is removed and only the backbone network and MBCMHSA-Net are retained,
the image will exhibit a good enhancement effect, but there may be slight block of artifacts
in some cases. According to our analysis, the preprocessing of the image is the cause of
the block phenomenon. Every image must be evenly divided into multiple patches during
the specific implementation process when using the multi-head self-attention mechanism.
Patch boundaries may be generated because every patch must pass through the embedding
layer and the linear layer. These boundaries gradually vanish as the training period is
extended, even though this method creates relatively distinct boundaries between different
portions of the image. According to our tests and experiments, the minimum number of
training epochs required to eliminate the block boundary was 400. The result of removing
the attention module is the effect shown in Column 4 of the ablation experiment. An
overall improvement was only achieved using the attention map network in the early
stages of training. The image gradually became clearer as the number of training epochs
increases, although the details were initially hazy. The final effect of our algorithm is shown
in the last column of Figure 10. We can see that the final result we obtained both avoids
the blocky effect of the image and had a good enhancement effect because our generator
network combines the advantages of the attention modules and attention map networks.
The attention map network was responsible for improving the overall brightness of the
image, and the attention module enhanced the detailed features of the image. The attention
map network maintained the relationship between the features of each patch of the image
during the learning process.

Our method can achieve a preliminary enhancement effect in the first epoch. Although
the tone may vary, the details are already relatively complete. Note that each convolutional
layer of the generator and discriminator in this study adopts a 5× 5 convolution kernel, and
the use of a 3× 3 convolution kernel significantly reduces the speed of network convergence.
However, this phenomenon is not unrestricted, as attempting larger convolution kernels
did not lead to improved results in the network. Although the attention map network
can speed up convergence and eliminate the image-blocking effect, it also leads to an
improvement in the overall brightness of the image. This enhancement effect is sometimes
unnatural. As shown in the first row of Figure 10, the brightness enhancement effect in
the image surpassed the contrast enhancement effect. We suspect that this is because the
enhancement effect of the attention map network was too strong, causing the attention
module effect to be masked.
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4.4. Application Experiment: Low-Light and Normal-Light Image Matching

This study introduced an application-oriented experiment aimed at comparing the
application value of various methods. As there is widespread application of low-light
image enhancement in various fields, this experiment utilized low-light image matching as
the test task. Image matching is a common technology in industrial image processing. It
plays an important role in target tracking, image target localization, and multiple image
target detection. The corresponding image-matching algorithms are unable to achieve good
matching results in low light, despite being widely employed in several machine vision
fields. The most effective way to handle this issue is to enhance the low-light image before
matching the image. We use the Sift operator based on feature point detection for specific
image matching. Sift is an operator for the local description of image features based on
a scale space that is invariant to scaling, rotation, and even affine transformation of the
image. The specific steps of the algorithm are to extract key points from the paired images,
then attach detailed information (local features) to the key points, and finally find multiple
matching feature points by comparing the two feature points.

The application experiment consisted of three parts: low-light image matching, ex-
tremely low-light image matching, and medium-light image matching. The medium-light
image refers to images with non-uniform lighting, where the illuminance in some areas
of the image are limited, while others are overexposed. The test images for the low-light,
extremely low-light, and medium-light testing come from the LoL dataset, the SID dataset,
and the SCIE dataset, respectively. The SCIE dataset contains 4413 pairs of multi-exposure
images. The author collected image sequences with over 10,000 different exposure times
using seven types of cameras. Additionally, the reference images in this dataset were gener-
ated using the MEF HDR algorithm. The procedure of each experiment was as follows:

(1) Randomly select a pair of ‘low-normal’ images captured in the same scene from the
LoL dataset.

(2) Computed the matching results between the low-light image and the normal-light
image, then recorded the results.

(3) Enhanced the low-light images using the different image enhancement methods.
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(4) Computed the matching results between the enhanced images and the normal-light
image.

(5) Compared the matching results and determined which method yielded the greatest
improvement in low-light image matching.

4.4.1. Image Matching Experiment in Low-Light Conditions

In image matching algorithms, both the matching rate and the number of detected
points are crucial factors. The matching rate refers to the ratio of the number of matched
feature points to the total number of feature points in two images. A higher matching
rate indicates greater accuracy in matching, but if the number of feature points in the two
images differs significantly, the matching rate may lose its meaning.

Figure 11 shows visualization of image matching results enhanced by different algo-
rithms. Table 3 shows the matching results of images enhanced by various algorithms.
In this table, different algorithms correspond to different numbers of feature points and
matching points, and it can be observed that there was a significant difference in the num-
ber of these points. The first row of Table 3 presents the results of matching the original
image without any enhancement processing and a reference image with high brightness.
The fact that there were 0 feature points indicates that the SIFT algorithm cannot perform
image matching in low-light conditions. The second row in Table 3 presents the results of
matching two identical high-brightness reference images, and it can be observed that the
quality of these feature points was high, and the matching rate reached 100%. The results in
the first and second rows represent the worst and best cases of image matching in low-light
conditions, respectively. We used the second result as a standard for algorithm comparison.
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Table 3. Comparison of image matching results enhanced by different algorithms.

Match Mode Feature Points Match Points Match Rate

Input/Label 0 0 0
Label/Label 739 739 100.0%
KinD/Label 769 278 36.2%

Zero-DCE/Label 181 88 48.6%
MBLLEN/Label 548 269 49.1%

EnlightenGAN/Label 364 143 39.3%
SIRE/Label 440 157 35.6%
MF/Label 789 247 31.3%
SCI/Label 80 29 36.3%

GLADNet/Label 852 258 30.3%
RetinexNet/Label 506 91 17.9%

LIME/Label 859 258 30.0%
Our (Supervised)/Label 549 283 51.5%

Our (Unsupervised)/Label 515 257 49.9%

Among all the algorithms, the LIME algorithm corresponded to the largest number
of feature points, but the number of matching points was relatively small. This suggests
that the quality of the feature points extracted using the SIFT algorithm was poor, leading
to a lower matching rate. Except for the LIME algorithm, the MF, LIME, and GLADNet
also suffered from this issue. After analysis, we believe that this may be due to image
blurring or excessive noise enhancement caused by image enhancement algorithms. To
verify this hypothesis, we estimated the overall noise level of the enhanced image using
the local variance noise estimation method. The results in Table 4 indicated that the
noise levels of the LIME and MF methods were significantly higher than those of the
other algorithms, which confirmed our hypothesis. In addition, EnlightenGAN, SCI, and
SIRE had a relatively average effect on improving image matching. Overall, our method
(supervised) had the best effect on low-light image matching, followed by our proposed
unsupervised learning-based method and the MBLLEN method.

Table 4. Comparison of Image Noise Level of Different Algorithms.

Image Local Variance Noise Estimation

Input 0.0000097
Label 0.00248
KinD 0.00191

Zero-DCE 0.00103
MBLLEN 0.00061

EnlightenGAN 0.00055
SIRE 0.00103
MF 0.00904
SCI 0.00021

GLADNet 0.00669
RetinexNet 0.00715

LIME 0.01432
Our (Supervised) 0.00189

Our (Unsupervised) 0.00204

4.4.2. Image Matching Experiment in Extremely Low-Light Conditions

From Figure 12 and Table 5, it can be observed that under extremely low-light con-
ditions, the performance gain of various enhancement algorithms on image matching
results had decreased. Specifically, LIME, MF, and GLADNet had significantly increased
the number of feature points, but the matching rate dropped significantly, indicating that
the images enhanced by these three algorithms had excessively high levels of noise, which
can be seen from Table 6. Although other methods such as EnlightenGAN, Zero-DCE, and
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KinD had only average enhancement effects on the images, their advantage is that the
noise level of the images was not significantly increased, which may explain why these
methods with only average enhancement effects had relatively higher matching rates. To
compare the image matching results and noise levels under low-light and extremely low-
light conditions, we considered noise as only one of the factors that affects the matching
accuracy. When the noise level is too high, it may mislead image matching algorithms such
as SIFT and produce a large number of feature points, but whether these feature points
meet the conditions of image matching still depends on the quality of the image features
themselves. Under extremely low-light conditions, the information in the image is limited,
and a large amount of noise is generated in the image. Therefore, we believe that removing
noise and effectively enhancing features such as edges and contours in the image are the
key to improving the image matching results. The proposed method in this study had
higher matching rates and more matched feature points compared to the other algorithms
under both supervised and unsupervised learning, indicating that it performs better in
improving image matching rates under extremely low-light conditions compared to SIRE
and the other methods.

4.4.3. Image Matching Experiment in Medium-Light Condition

In the third section of the application experiment in this study, image matching is mainly
performed on images with uneven illumination. These types of images are characterized by
an overall medium level of brightness, with some areas having high brightness and other
areas possibly being underexposed. Conventional image enhancement methods, such as
histogram equalization, can easily cause the originally bright areas of the image to become
even brighter. This is the image over-enhancement problem that our method focused on
solving. Over-enhancement of image brightness, similar to over-enhancement of noise, can
have a negative impact on image matching and result in overexposure.
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Table 5. Comparison of image matching results enhanced by different algorithms.

Match Mode Feature Points Match Points Match Rate

Input/Label 0 0 0
Label/Label 870 870 100%
KinD/Label 661 73 11.0%

Zero-DCE/Label 11 6 54.5%
MBLLEN/Label 1050 87 8.3%

EnlightenGAN/Label 97 36 37.1%
SIRE/Label 65 31 47.7%
MF/Label 3076 105 3.4%
SCI/Label 0 0 0

GLADNet/Label 2956 112 3.7%
RetinexNet/Label 71 14 19.7%

LIME/Label 3251 131 4.0%
Our (Supervised)/Label 481 123 25.6%

Our (Unsupervised)/Label 454 110 24.2%

Table 6. Comparison of Image Noise Level of Different Algorithms.

Image Local Variance Noise Estimation

Input 0.000063
Label 0.00027
KinD 0.00150

Zero-DCE 0.00007
MBLLEN 0.00174

EnlightenGAN 0.00115
SIRE 0.00116
MF 0.01001
SCI 0.00003

GLADNet 0.00926
RetinexNet 0.01024

LIME 0.01711
Our (Supervised) 0.00389

Our (Unsupervised) 0.00422

From the first row of Table 7, it can be seen that the medium-light images and reference
images themselves had a relatively high matching rate, which we used as the standard for
evaluating matching rates. In comparison, it can be found that the matching rates of KinD,
Zero-DCE, EnlightenGAN, SIRE, MF, SCI, RetinexNet, and LIME were all lower than that
of the images before enhancement. We believe that this may be because these methods have
destroyed the original features of the images or caused overexposure problems during the
enhancement process, such as SIRE’s matching rate being only 10.1%, which is significantly
lower than the evaluation standard. As shown in Figure 13, the image enhanced by SIRE
did indeed have a significant overexposure problem. Among all the methods, the MBLLEN
method had the best effect on improving the matching rate, and our method (supervised)
was second only to MBLLEN, achieving good improvement results. Therefore, it can be seen
that our proposed method effectively alleviates the problem of image over-enhancement.

Table 7. Comparison of image matching results enhanced by different algorithms.

Match Mode Feature Points Match Points Match Rate

Input/Label 468 229 48.9%
Label/Label 649 649 100%
KinD/Label 1174 379 32.2%

Zero-DCE/Label 1012 386 38.1%
MBLLEN/Label 750 483 64.5%
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Table 7. Cont.

Match Mode Feature Points Match Points Match Rate

EnlightenGAN/Label 949 362 38.1%
SIRE/Label 1036 105 10.1%
MF/Label 1288 381 29.6%
SCI/Label 885 397 44.9%

GLADNet/Label 779 419 53.7%
RetinexNet/Label 802 134 16.7%

LIME/Label 1320 372 28.2%
Our (Supervised)/Label 905 482 53.3%

Our (Unsupervised)/Label 797 409 51.3%
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5. Conclusions

In this study, we proposed a novel image enhancement network model, which is
based on the LSGAN framework and can be trained in both unsupervised and supervised
manners. The network model consists of a generator and a discriminator, where the
generator employs a U-Net as the backbone network and introduces our proposed Attention
Map Network and MBCMHSA-Net. The Attention Map Network serves as a guiding
module for the backbone network and is a key network in enhancing image brightness and
contrast. The MBCMHSA-Net is used to enhance image details and allocate weights for
important features. Additionally, to address the problem of unstable training of traditional
neural network discriminators, we proposed an improved discriminator network, which
includes a convolutional encoder, a Transformer encoder, and a fully connected neural
network. The experimental results show that this discriminator can better guide the training
of the generator.
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In the experiment section, we performed image quality evaluation experiments to test
the image enhancement effects on low and extremely low illumination images. Compared
to other methods, the images generated by our method had better visual effects and quality
evaluation indicators. In the application experiment, our method also improved the image
matching results under various lighting conditions. However, we found some limitations
in our method, including:

(1) The enhancement effect of our method still needs to be improved in extremely low
illumination images with very little information. These images not only have ex-
tremely low brightness and contrast but also have a lot of noise and information loss.
We will continue to improve our method to make it more suitable for extremely low
illumination environments.

(2) The network parameters proposed in our method are relatively large. It is necessary
to optimize them further in the current trend of network lightweight.

Our future research will not only improve the limitations mentioned above but also
focus on practicality to enhance the role of image enhancement methods in low-light image
matching, object detection, and object tracking tasks.
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