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Abstract: Unmanned-aerial-vehicle (UAV)-aided data collection for Internet of Things applications
has attracted increasing attention. This paper investigates motion planning for UAV collecting low-
power ground sensor node (SN) data in a dynamic jamming environment. We targeted minimizing
the flight energy consumption via optimization of the UAV trajectory while considering the indispens-
able constraints which cover the collection data demodulation threshold, obstacle avoidance, data
collection volume, and motion principle. Firstly, we formulate the UAV-aided data collection problem
as an energy consumption minimization problem. To solve this nonconvex optimization problem,
we rewrite the original problem by introducing relaxation variables and constructing equivalence
constraints to obtain a new relaxation convex problem, which can be solved iteratively using the
successive convex approximation (SCA) method. However, SCA is susceptible to initial values,
especially in dynamic environments where fixed initial values may lead to a wide range of results,
making it difficult to obtain a truly optimal solution to the optimization problem. To solve the initial
value problem in dynamic environments, we further propose a communication-flight-corridor(CFC)-
based initial path generation method to improve the reliability and convergence speed of the SCA
method by constructing reliable communication regions and resilient secure paths in real time. Finally,
simulation results validate the performance of the proposed algorithm compared to the benchmark
algorithms under different parameter configurations.

Keywords: UAV; motion planning; data collection; dynamic jammings; SCA; CFC

1. Introduction
1.1. Background

Recently, communication supported by unmanned aerial vehicles (UAVs) has become
an attractive technology in the field of wireless sensor networks (WSNs) for highly efficient
data collection [1–3]. Most sensor nodes (SNs) are battery powered and deployed in a
specific geographical area to sense and transmit the sensed information. At times, it is
impractical to let these devices transmit or relay their sensed data to the base station
through a multi-hop relay because of the high consumption of transmission energy. In the
worst-case scenario, they may be out of range of each other’s transmissions, particularly
in the case of interference. As a result, it can be very challenging to gather sensing data
from such SNs and process them in time to help humans more efficiently. Sensor nodes
(SNs) are processed in a timely manner to assist humans better in making decisions and
responding to monitoring scenarios [4].

In this paper, we investigate the issue of the motion planning for UAV collecting
low-power ground sensor node (SN) data in a dynamic jamming environment based on
the following observation. In the past work, UAV-aided data collection scenarios were
usually limited to simple path planning, which did not fully consider the principle of
motion. Moreover, most of the past works are static environments or consider one-time
offline global planning, and there is little research on dynamic environments that require
real-time processing. Therefore, the research in this paper will build on past research to fully
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consider the motion constraints of UAVs and real-time planning in dynamic environments.
We use the mobility and flexibility of UAVs for SN data collection. When the UAV flies
into the effective communication range of the SN (satisfying the demodulation threshold),
it is activated to transmit data within the effective communication range. To achieve
full autonomy in UAV data collection, we have taken several aspects into account in
the design. Firstly, the motion planning plays an essential role in generating safe and
smooth motions which consider motion primitives, flight energy consumption, and flight
time during the data collection mission [5]. Secondly, to ensure that the data can be
collected to meet the demodulation threshold, it is also necessary to consider the effective
communication area [6].

1.2. Prior Work

We focus on past work from two fields: motion planning and data collection. To
generate smooth and safe trajectories for UAVs online, the authors in [7,8] presented the
extraction of free space in the configuration space and utilized a range of convex shapes to
represent the free space. The motion planning problem is formulated as restricting motion
trajectories to convex graphs through convex optimization, which can be solved directly
with a dedicated toolbox. However, the size of the area in which the convex shapes are
constructed directly affects the local optimality of the trajectory. The authors in [9] proposed
a zoning method that can be combined with a multi-stage optimal control formulation to
accommodate complex forms of unobstructed areas in unstructured environments due to
the presence of multiple obstacles within the predicted range. This method can effectively
increase the free space for UAV planning. Other authors have proposed methods that
are simpler and faster to calculate, such as the geometry-based method in [10], which
constructs convex polyhedra by means of ellipsoidal expansion.

Moreover, to constrain effectively the entire trajectory within the convex shape to-
gether with its derivatives in the feasible space under the hard constraint, the authors
in [11] employed a piecewise Bézier curve on the basis of Bernoulli’s polynomial to express
the flight trajectory of the UAV. However, the order of the Bézier curve increases with the
increase of control points, and a higher order can easily result in an “ill-conditioned” trajec-
tory. To solve the problem of pathological Bézier curves under higher-order polynomials,
the authors in [12] introduced B-spline curves, which have the advantages of Bézier curves
while still being applicable to higher-order polynomial curves.

Collecting data from ground-based distributed SNs is among the crucial technologies
for WSNs. The typical objectives of trajectory optimization are to minimize the mission
time of the UAV [13–15], minimize energy consumption during the flight [16–18], maximize
the amount of collected data [19,20], and maximize the amount of served sensors [21]. In
addition to the basic UAV motion constraint, the data volume constraint is essential in all
published research studies of UAV data collection. It is usually a non-convex constraint. In
some studies, the communication rate required to meet the demodulation requirements is
further considered, which is also non-convex. To deal with these non-convex optimization
problems, design equivalence problems or relaxation problems as well as the transformation
of constraints into penalty terms into optimization objectives have commonly been used in
research. The successive convex approximation (SCA) [21] and some heuristic algorithms
(e.g., PSO [22] and GE [23]) are commonly used to solve the trajectory. However, neither the
SCA nor the heuristic algorithm can obtain a globally optimal solution, and the resulting
local solution is strongly influenced by the initial value.

Inspired by the problems in past work, we focus on path planning and trajectory
optimization considering UAV motion constraints in a dynamic jamming environment,
which can be combined as motion planning. In our study, we first analyze the communica-
tion link [18,24] between the UAV and the ground sensors and formulate the optimization
problem of minimizing the energy consumption, which considers the collection data de-
modulation threshold, obstacle avoidance, data collection volume, and motion principle.
Then, we relaxed this non-convex optimization problem by introducing relaxation variables
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and constructing equivalence constraints. Further, to solve the initial value problem of SCA
during replanning in dynamic environments, we propose a communication-flight-corridor
(CFC)-based initialized path generation method, which enables the SCA algorithm to con-
verge to the optimal value quickly. Finally, the optimized path points were subjected to a
B-spline curve.

1.3. Contributions and Organization

The goal of this study is the examination of UAV-aided data collection from deployed
low-power ground SNs in dynamic jamming environments. The motion planning of the
UAV is designed by considering the communication capability, motion primitives, and the
low-power SNs when the sensors transmit data. The major contributions of this paper are
as follows:

• An optimization framework was developed to minimize the energy consumption
of UAV data collection tasks with communication link quality while maintaining
constraints such as the maximum UAV speed, obstacle avoidance, and minimum data
requirements per SNs.

• Based on the introduction of relaxation variables and the application of SCA, we
rewrite the nonconvex constraints of the original problem and fit the discrete points
through B-spline curves. To ensure that it is applicable to dynamic environments, we
further devise a motion planning approach, which is dependent on reprogramming
and updated in real time with a dynamic jamming environment.

• We present a CFC-based path initialization method, which enables the initial path
to meet the constraints on the communication rate and the amount of collected data.
In addition, we present a safe flight path correction method based on a geometric
method for fast obstacle avoidance, which ensures that the initial path is safe.

• Simulation results validate the performance of the proposed algorithm under different
parameter configurations and compare to the benchmark algorithms.

The remainder of this paper is structured as follows: In Section 2, we describe the
investigated scenario and formulate the optimization problem through path discretization.
Section 3 presents the designed non-convex solution for the problem. The simulation
results in Section 4 validate the effectiveness of the presented algorithm. Lastly, the paper
is summarized in Section 5.

2. Problem Statement and Formulation

In this study, a UAV is dispatched to collect data from a low-power SN on the ground.
The data collection is performed with a time-division multiple-access protocol. Figure 1
shows the scenario: The UAV is flying at low altitude in a smart city. The wireless commu-
nication system comprises K SNs represented by the set K = {1, . . . , K}, and the location
of the SN k is represented by pk = (xk, yk, 0), k ∈ K. The transmitted power for each of
the low-power SNs is fixed at Pk. We consider the position of the SNs fixed and known
for the trajectory design of the UAV. In practice, the position of the SNs can be obtained
from the system database or identified with standard positioning techniques, such as with
BeiDou systems or GPS [25]. In our scenario, the UAV arrives in the effective range of
communication of the SN and activates the sensors for data transmission. It should be
noted that the flight altitude of the UAV depends on the environment. Hence, it is simulta-
neously subject to air control by the local authorities. The complete flight altitude range is
H ∈ [Hmin, Hmax]. The completion time of the data collection task is T, while the 3D trajec-
tory of the UAV is denoted by p(t) = (x(t), y(t), H(t)), with 0 ≤ t ≤ T. The completion
time T is discretized into N sufficiently small and equal time slots with time discretization
in which δ represents the length of the slot and T = Nδ. We introduce N = {1, 2, · · ·, N},
in which δ is a variable. Consequently, the trajectory of the UAV in the 3D space in the n-th
slot is expressed as follows: p[n] = [x(n), y(n), H(n)], n = 1, 2, . . . N + 1. In addition,
unlike in prior studies, there areM = {1, . . . , M} no-fly zones that are blocked by obstacles
or interference sources. These are represented by the set, and the location of the projected
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center of the no-fly zone m is pm = (xm, ym, 0), m ∈ M. For descriptive purposes, we refer
to the no-fly zones as “obstacles” in what follows. Furthermore, there are J jammers in
the environment, which are represented by the set J = {1, 2, · · · , J}, and the position of
the j-th jammer is pj[n] = (xj(n), yj(n), Hj(n)), j ∈ J . We assume that the position of the
jammers is dynamic at a fixed height, which can obtain the location technology according
to the radiation source [26,27].

Figure 1. UAV-aided Data Collection with Dynamic Jamming.

2.1. Channel Model

The communication channel of the UAV has a crucial influence on data collection.
Thus, we present the channel model first. The distance between the UAV and jammer j in
the n-th slot is as follows:

dj[n] =
∥∥p[n]− pj[n]

∥∥, ∀n ∈ N , (1)

The distance between the UAV and SN k in the n-th slot is as follows:

dk[n] = ‖p[n]− pk‖, ∀n ∈ N , k ∈ K, (2)

We assume that the G2A channel comprises large- and small-scale fading. Small-scale
fading is regarded as an identically distributed and independent Rician channel, and the
Rice factor is A; the channel coefficient hi[n] can be expressed as follows:

hi[n] = ĥi · gi[n], (3)

where ĥi and gi[n] are the path-loss coefficients and small-scale fading, respectively. We
can express the path-loss coefficient as follows:

gi[n] =
√

µ0 · (di[n])
−α, (4)

where µ0 is the mean channel power gain over the reference distance d0 = 1 m, and α is
the path-loss exponent, which typically exceeds 2 for a Rician fading channel. Small-scale
fading ĥi consists of the LoS component h̄i, where

∣∣h̄i
∣∣ = 1, and a random NLoS component

h̃i, where h̃i ∼ CN (0, 1). Small-scale fading ĥi is determined as follows:

ĥi =

√
A
A + 1

· h̄i +

√
1
A + 1

· h̃i, (5)
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Assuming that each jammer is transmitting at a constant power Pj, the instantaneous signal
to interference plus noise ratio (SINR) of the SN k is as follows:

ξk[n] =
Pkxkµ0dk[n]

−α

J−1
∑

j=0
xjµ0dj[n]

−α + σ2

, (6)

where xi =
∣∣∣ĥi

∣∣∣2, which is a random variable that obeys a non-central χ2 distribution. To
simplify the optimization problem presented below, we further perform the homogeneous
approximation of the SINR function, which considers the expected value of the SINR and
yields the following result:

E[ξk[n]] =
Pk · βk · dk[n]

−α

J−1
∑

j=0
Pj · β j · dj[n]

−α + σ2

, (7)

where

βk =
∫ ∞

0
xk · f (xk)·µ0 · dxk, (8)

β j =
∫ ∞

0
· · ·

x0,···xJ−1

∫ ∞

0
xjµ0

J−1

∏
j

f (xj)dx0 · · · dxJ−1, (9)

f (x) =
A+ 1
P exp(−A− (A+ 1)x

P )I0(2

√
A(A+ 1)x
P ), (10)

where P is the signal model parameter, which, in general, can be set to 1. Moreover, I0(·) is
a Bessel function of order zero. βk and β j are constants in each independent simulation that
can be generated according to the Rician channel model. When the time slot is sufficiently
small or when the flight speed is low, we consider the position of the UAV a fixed point in
each time slot. The expected information rate (bits/s) between the UAV and SN k in the
n-th slot is represented as follows:

rk[n] =
B
K
· log2(1 +

Pk · βk · dk[n]
−α

J−1
∑

j=0
Pj · β j · dj[n]

−α + σ2

). (11)

where B is the total channel bandwidth in Hz, and σ2 represents the noise power
spectral density.

2.2. Motion Primitives

The set s[n] ∈ S is a dynamical system composed of the 3-D position, acceleration,
and velocity: s[n] = [p[n], v[n], a[n]]T. According to [28], the differential flatness of the UAV
allows us to build control inputs from a 1-D time-parameterized polynomial trajectory that
is independently specified on each axis. The discrete state over the entire task period can be
P = [p[1], p[2], · · · , p[N]]T, V = [v[1], v[2], · · · , v[N]]T, and A = [a[1], a[2], · · · , a[N]]T. The
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control variable input for the system is the jerk: J = [j[0], j[1], · · · , j[N − 1]]T. According to
the equation of motion, the following correlations can be acquired:

p[n + 1] = p[n] + v[n] · δ + 1
2
· a[n] · δ2

+
1
6
· j[n] · δ3, n = 0, · · · , N − 1

(12)

v[n + 1] = v[n] + a[n] · δ

+
1
2
· j[n] · δ2, n = 0, · · · , N − 1

(13)

a[n + 1] = a[n] + j[n] · δ, n = 0, · · · , N − 1 (14)

The matrix forms are as follows:

P = Tp · J + Bp, (15)

V = Tv · J + Bv, (16)

A = Ta · J + Ba, (17)

where

Tp =


1
6 δ3 0 0 · · · 0
7
6 δ3 1

6 δ3 0 · · · 0
...

...
... · · · 0

3N+1
6 δ3 · · · 3(N−n+1)·(N−n)+1

6 δ3 · · · 1
6 δ3


N×N

, (18)

Bp =



p[0] + v[0]δ +
1
2

a[0]δ2

p[0] + 2v[0]δ +
22

2
a[0]δ2

...

p[0] + Nv[0]δ +
N2

2
a[0]δ2


N×1

, (19)

Tv =


1
2 δ2 0 0 · · · 0
3
2 δ2 1

2 δ2 0 · · · 0
...

...
... · · · 0

(N − 1
2 )δ

2 · · · (N − n + 1
2 )δ

2 · · · 1
2 δ2


N×N

, (20)

Bv =


v[0] + a[0]δ

v[0] + 2a[0]δ
...

v[0] + Na[0]δ


N×1

, (21)
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Ta =


δ 0 0 · · · 0
δ δ 0 · · · 0
...

...
... · · · 0

δ δ δ · · · δ


N×N

, (22)

Ba =


a[0]

a[0]
...

a[0]


N×1

. (23)

in which p[0] is the initial position, v[0] is the initial velocity, and a[0] is the initial acceleration.

2.3. Problem Formulation

The optimization goal is to minimize the energy consumption and flight time of
the UAVs when performed data collection missions. The optimization goal is to keep
the flight time and energy consumption of the UAV minimal while collecting data. The
energy consumption of a UAV typically comprises two major components: the propulsion
energy and communication-related energy [18]. The latter consists of the energy utilized for
communication circuits, signal radiation/reception, signal processing, and so on. For the
purpose of this study, we consider the communication-related energy constant. To maintain
the UAV at high altitude and to support its motion, propulsion energy is consumed.
Typically, the propulsion energy depends on the flight speed, acceleration, jerk of the
UAV, and so on. We take interest in the effort or smoothness of the trajectory, i.e., the
square L2-norm of the control input j[n], a[n] and v[n], which represent the energy cost in a
dynamic system. Hence, we express the energy optimization function as below:

f1(J) = ω1VTV + ω2ATA + ω3JTJ

= JT
(

ω1TT
v Tv + ω2TT

a Ta + ω3I
)

J+

2
(

ω1BT
v Tv + ω2BT

a Ta

)
J + constant.

(24)

where f1(J) represents the smoothness and energy consumption of the UAV trajectory.
I is the identity matrix; ω1, ω2, ω3 are the weighting factors. The constant = ω1BT

v Bv +
ω2BT

a Ba does not need to be considered in the optimization. Therefore, we formulate the
optimization problem as follows:

P0 : min
J,N

JT
(

ω1TT
v Tv + ω2TT

a Ta + ω3I
)

J+

2 ·
(

ω1BT
v Tv + ω2BT

a Ba

)
J

(25)
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st : P = TpJ + Bp (26a)

V = TvJ + Bv (26b)

A = TaJ + Ba (26c)

−Vmax − Bv 6 TvJ 6 Vmax − Bv (26d)

−Amax − Ba 6 TaJ 6 Amax − Ba (26e)

Hmin − Bpz 6 TpJz 6 Hmax − Bpz (26f)

p[0] = p0, v[0] = v0, a[0] = a0 (26g)

p[N] = pN , v[N] = vN , a[N] = aN (26h)
N

∑
n=1

ζk
nrk[n]δ > Qk

th, ∀k ∈ K (26i)

ζk
n = I{max(rk[n]− rth, 0)}, ∀n ∈ N (26j)

P /∈ obstacles (26k)

and

I(x) =

{
1, x > 0

0, x 6 0
(27)

where (26a), (26b) and (26c) are the UAV motion primitives based on model prediction. (26d)
and (26e) are the motion constraints of the UAV, which limit the range of the maximum
velocity and maximum acceleration: and Vmax = vmax · IN×1 and Amax = amax · IN×1. (26f)
is the height constraint of the UAV, and (26g) and (26h) are the start and end state con-
straints. (26i) represents the collected data amount of the k-th sensor, where ζk

n is the
effective collection indication, and Qk

th is the minimum collection requirement. (26j) is the
minimum communication rate of the sensor given according to the actual communication
system. Moreover, (26k) is the obstacle avoidance constraint, which is usually a non-convex
constraint that limits the UAV motions to a safe area. The formulated problem P0 is difficult
to solve directly for the following reasons: (i) The mission completion time of UAVs is
closely related to the dimensions of other state variables, which make it difficult to deter-
mine the constraints; (ii) the constraints (26i) and (26k) are non-convex. To this end, we
solve this problem through the introduction of slack variables and the use of SCA.

3. Global Replanning Based on CFC
3.1. General Framework

The major challenge in optimally solving (P0) is to optimize the variable N and
non-convex constraints (26i) and (26k), which involve uncertainty of other optimization
variables and indicator functions (26j) with respect to the UAV trajectory. Without affecting
the optimality of (P0), the trajectory of the UAV can be considered to constitute only the
connecting line segment [6]. This conclusion means that finding the optimal solution to (P0)
is comparable to finding an ordered set of waypoints containing positions that represent the
start and end points of each segment and to optimizing the instantaneous speed of the UAV
on the trajectory linking these waypoints. To this end, as shown in Figure 2, the task time
N and trajectory energy consumption are decoupled in the optimization objective. First,
minimum time discrete path initialization based on a CFC is proposed under the condition
that the minimum discrete-time slot is δ. Second, we use the SCA algorithm to optimize the
global path according to the initialization path. Third, a B-spline method is used to smooth
the trajectory in a minimum discrete-time slot, δ. After executing the trajectory of the time
slot δ, the communication channel state and state information of the UAV itself (including
the position, velocity, and acceleration) are re-estimated and updated. Finally, the operation
starting from path initialization is repeated until the destination point is reached. We will
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present the path initialization, path optimization, and B-spline trajectory optimization in
more detail.

Figure 2. Block diagram of presented autonomous system.

3.2. Global Path Planning Based on SCA

For the nonconvex problem P0, we perform the following for the nonconvex con-
straints (26i), constraints (26j) and constraints (26k). We first introduce the auxiliary vari-
ables κ[n] for constraints (26i) and constraints (26j) in the following equivalent form: For the
non-convex problem P0, we perform the following steps for the non-convex constraints (26j)
and constraints (26j) and constraints (26k). First, we introduce the auxiliary variables κ[n]
for the constraints (26i) and (26j) with the following equivalent form:

N

∑
n=1

κk[n] · rk[n] · δ > Qth, ∀k ∈ K, (28)

κk[n] · rk[n] > κk[n] · rth, ∀k ∈ K, (29)

κk[n] ∈ {0, 1}, ∀k ∈ K. (30)

Proof. Constraint (28) shows that κk[n] can only be 1 when rk[n] > rth. Otherwise, it is
zero. The minimum amount of data collected constantly must be higher than Qth, and
the constraint (28) is only valid when some κk[n] equal to 1. Hence, the constraints (28)
and (29) can make the UAV “pass through” the “surrounding” of each SN during its flight
while remaining at a low velocity for a period of time based on the minimum amount of
collected data.

However, constraints (28) and (29) are still non-convex. For rk[n], the auxiliary vari-
ables Sk[n] and Ik[n] are introduced to obtain the following relation:

N

∑
n=1

κk[n] · r̃k[n] · δ > Qth, (31)

where rk[n] > r̃k[n] = B · log2(1 + Sk [n]
−1

Ik [n]
). The auxiliary variables Sk[n] and Ik[n] must

meet the following conditions:

Sk[n]−1 6 β0 p0dk[n]−α, Sk[n] > 0, (32)
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Ik[n] > ∑
j

β j pjdj[n]
−α + σ2. (33)

For constraint (32), we can rewrite the convex constraint as follows:

dk[n]α - β0 p0Sk[n] 6 0, Sk[n] > 0. (34)

However, constraint (33) is still non-convex. We perform a first-order Taylor expansion:

d−α
j [n] =

[
(px − pjx)

2 + (py − pjy)
2 + (pz − pjz)

2
]−α/2

> Lr
j [n]
−α/2 − αLr

j [n]
−α/2−1

[
(pr − pj)

T · (p− pr)
]
,

(35)

where Lj[n] = (px − pjx)
2 + (py − pjy)

2 + (pz − pjz)
2, and Lr

j [n], pr are the initial values
of the r-th iteration. This results in a new convex constraint (36), which is a relaxation of
constraint (33):

Ik[n] > ∑
j

β j pj

(
Lr

j [n]
−α/2 − Ar

j [n]
)
+ σ2, (36)

where Ar
j [n] = αLr

j [n]
−α/2−1

[
(pr − pj)

T · (p− pr)
]
. For constraint (31), we further intro-

duce an auxiliary variable ε[n], that is less than the first-order Taylor expansion of r̃k[n].

εk[n] 6 Ur
k[n] + Vr

k [n](Sk[n]− Sr
k[n])

+Wr
k [n](Ik[n]− Ir

k [n]),
(37)

where Ur
k[n] = B · log2(1 + 1

Sr
k [n]I

r
k [n]

), Vr
k [n] =

−B·log2e
Sr

k [n]+Sr
k [n]

2 Ir
k [n]

, and Wr
k [n] =

−B·log2e
Ir
k [n]+Ir

k [n]
2Sr

k [n]
.

Therefore, a further relaxed form of the constraint (31) can be obtained

N

∑
n=1

κk[n] · εk[n] · δ > Qth, (38)

Constraint (38) is still a non-convex constraint owing to the product of the indicator function
variable κk[n] and variable εk[n]. Thus, we continue to relax the indicator function:

0 6 κk[n] 6 1, (39)

κk[n] · (κk[n]− 1) > 0. (40)

The convex constraints can be obtained via a Taylor expansion and

κk[n] · εk[n] = (κk [n]+εk [n])
2−(κk [n]−εk [n])

2

4 for constraints (29), (38) and (40)

Hr
k[n]

2 − 2Hr
k[n](κk[n] + εk[n])

+(κk[n]− εk[n])2 > 4κk[n] · rth,
(41)

N

∑
n=1

[Hr
k[n]

2 − 2Hr
k[n] · (κk[n] + εk[n])

+(κk[n]− εk[n])2] · δ > 4Qth,

(42)

2κr
k[n] · κk[n]− κk[n]− κr

k[n]
2 > 0. (43)



Electronics 2023, 12, 1841 11 of 25

where Hr
k[n] = (κr

k[n] + εr
k[n]). Thus, we obtain the new convex constraints (41), (42)

and (43) of problem P1 after the equivalent transformation and relaxation of constraints (26i)
and (26j). In the next step, we continue to deal with the non-convex constraint (26k)
of problem P1. The obstacles in the environment are modeled as cylinders. The UAV
must keep a certain safe distance to them during its flight. We set the safe distance as
dsa f e. During the task, the UAV should ensure that the distance between the projection
coordinates and the center coordinates of the bottom surface of the cylindrical obstacle
exceeds the safe distance or that its flight height is much higher than that of the cylinder to
ensure a safe flight. The respective safety constraint between the UAV and obstacle m is
as follows: ∥∥pxy[n]− pm

∥∥ > dsa f e

or pz[n] > hm + dsa f e.
(44)

This is an “or” constraint that is non-convex. In addition, pxy[n] represents the two-
dimensional coordinates projected by the UAV onto the ground, and pz[n] is the flight
height of the UAV. By introducing the variables 0 and 1, we can express the equivalent form
of the constraint (44) as follows:∥∥pxy[n]− pm

∥∥ + λxy,m[n] · C > dsa f e, (45)

pz[n] + λz,m[n] · C > hm + dsa f e, (46)

λxy,m[n] + λz,m[n] > 1, (47)

λxy,m[n], λz,m[n] ∈ {0, 1}. (48)

where C is a big positive constant and λxy,m[n], λz,m[n] are is a binary number. We further
relax these binary integer constraints

(pr
xy[n]− pm)

T · (pxy[n]− pr
xy[n])

Ar
m[n]

>

dsa f e − λxy,m[n] · C− Ar
m[n].

(49)

where Ar
m[n] =

∥∥∥pr
xy[n]− pm

∥∥∥. By relaxing λxy,m and λz,m in constraint (48), the new
constraints can be obtained as follows:

0 6 λi,m[n] 6 1, i ∈ {xy, z}, (50)

λi,m[n](λi,m[n]− 1) > 0, i ∈ {xy, z}, (51)

The relaxation form of the non-convex constraint (51) can be obtained via a Taylor expansion

−λr
i,m[n]

2 + 2λr
i,m[n]λi,m[n]− λi,m[n] > 0. (52)

where λr
i,m[n] is the r-th iteration of λi,m[n]. So far, we have dealt with all the non-convex

constraints in P0 to obtain the new optimization problem as follows:

P1 : min
J,κ,λ,ε,I,S

JT
(

ω1TT
v Tv + ω2TT

a Ta + ω3I
)

J+

2 ·
(

ω1BT
v Tv + ω2BT

a Ba

)
J

(53)



Electronics 2023, 12, 1841 12 of 25

st : P = TpJ + Bp (54a)

V = TvJ + Bv (54b)

A = TaJ + Ba (54c)

−Vmax − Bv 6 TvJ 6 Vmax − Bv (54d)

−Amax − Ba 6 TaJ 6 Amax − Ba (54e)

Hmin − Bpz 6 TpJz 6 Hmax − Bpz (54f)

p[0] = p0, v[0] = v0, a[0] = a0 (54g)

p[N] = pN , v[N] = vN , a[N] = aN (54h)

Hr
k[n]

2 − 2Hr
k[n](κk[n] + εk[n])

+(κk[n]− εk[n])2 > 4κk[n] · rth
(54i)

N

∑
i=1

[Hr
k[n]

2 − 2Hr
k[n] · (κk[n] + εk[n])

+(κk[n]− εk[n])2] · δ > 4Qth

(54j)

2κr
k[n] · κk[n]− κk[n]− κr

k[n]
2 > 0 (54k)

(pr
xy[n]− pm)

T · (pxy[n]− pr
xy[n])

Ar
m[n]

>

dsa f e − λxy,m[n] · C− Ar
m[n]

(54l)

pz[n] + λz,m[n] · C > hm + dsa f e (54m)

λxy,m[n] + λz,m[n] > 1 (54n)

0 6 λi,m[n] 6 1, i ∈ {xy, z} (54o)

− λr
i,m[n]

2 + 2λr
i,m[n]λi,m[n]− λi,m[n] > 0 (54p)

Evidently, the problem is a convex optimization problem that can be addressed through the
application of standard convex optimization technology or CVX (for instance, the interior-
point method). However, some of the constraints in the previously presented optimization
problem are sensitive to the initial value after relaxation. Although we have designed a
continuous convex approximation method to solve the problem, the influence of the initial
value is still not negligible. It will influence the convergence time of the algorithm and the
optimal solution. To this end, we designed a CFC-based initialization method, which will
be described in detail in the next section.

3.3. Minimum Time Path Initialization Based on CFC

In practice, the communication capability of SNs is limited by the power and envi-
ronment. It is usually necessary to calculate the communication link under the constraints
of the demodulator threshold, bit error rate, receiver sensitivity, and so on to determine
the supported communication range. We propose flight path segmentation based on a
CFC. Full-speed flight paths are generated according to the trapezoidal criterion [5]. To
find the CFC, we define the effective communication area of the SN k free of interferers:
Ij,k = min{β0 pjd−α

k,j , β0 pjd−α
max}, where is the trajectory within the effective communication

area of the SN, and is the maximum distance. To produce a convex CFC from the jammers
and SN, the following procedures are performed:

1. Find the nearest jammer: calculate the distance between all the jammers and SN k,
choose the nearest jammer j∗, and let the jamming value of the other jammers be
Ij,k = min{β0 pjd−α

k,j , β0 pjd−α
max}, which is the investigated worst-case scenario we have

in mind because the jamming value of interferer j would not surpass Ij,k in the SN k
communication region.
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2. Find critical points: on the line segment between jammer j∗ and the central position
of SN k, find a point Pj∗ ,k along the direction of the center of the SN communication
circle that will meet the communication rate larger than Rmin.

3. Find CFC: pass through pj∗ ,k and ensure that the perpendicular lk,j∗ is on a line between
jammer j∗ and SN k.

The intersection of the half-space on the vertical lk,j∗ side of SN k and the communica-
tion range of SN k, is the CFC, which is a convex polyhedron. The detailed construction
process is described in Algorithm 1. It divides the UAV path into two paths: the communi-
cation path and full-speed flight path. The UAV data are collected on the communication
path, which is within the effective communication range.

Algorithm 1: Given the position of SN k and the position of jammer, find CFCk .
1: function Find_CFC(pk, p, pj)
2: Set the jammer set jammer_open_list = {1, 2, · · · , J} and jammer_close_list = {∅}.
3: Search for jammer closest to the sensor node:
4: j∗ = arg min

j∈J

∥∥pk − pj
∥∥

5: Remove j∗ from the set:
6: jammer_open_list→ j∗

7: jammer_close_list← j∗

8: Set the energy of the remaining jammer:
9: Ij,k = min{β0Pjd−α

k,j , β0Pjd−α
max}

10: Get the line segment
[
pk, pj∗

]
between the nearest jammer, and search for point

pj∗ ,k to make it meet:

11:

pj∗ ,k = arg max
pm,k∈[pk ,pj∗ ]

∥∥∥pj,k − pk

∥∥∥
s.t. B · log2

(
1 + β0 pk‖p[n]−wk‖−α

Ik+σ2

)
≥ Rmin

Ik =
M
∑

j=0,j 6=j∗
Ij,k + β0 pk

∥∥∥pj,k − pk

∥∥∥−α

12: if there is no pj∗ ,k, it is determined that SN k cannot perform the data collection,
stop algorithm.

13: else continue
14: Find the perpendicular of line segment

[
pk, pj∗

]
through point pj∗ ,k:

15: aT
j∗w = bj∗

16: Search for jammer j′ belonging to Ck,n(pk) and perpendicular to line segment[
pk, pj∗

]
through wm′ :

17: aT
j′w = bj′

18: combine perpendiculars:

19: Ak
† ←

 aT
0

aT
1

...

, bk ←

 b0
b1
...


20: Calculate the CFC:
21: Ωk,n = Ck,n(pk) ∩

{
Ak

† · p ≤ bk

}
, Ωj ← Ωk,n

22: end

After acquiring the CFC, the initialization generates discrete points on the path ac-
cording to the “trapezoidal principle” because we expect the UAV to be as slow as possible
when approaching the SN during data collection. Thus, it needs enough time to complete
the task. We conduct the analysis for the case of only one SN, as shown in Figure 3 (the
green area is the CFC).
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Figure 3. Path initialization based on CFC.

We first connect the starting point p1 to sensor position point p3 and terminal position
point p5. The intersection points of the line segment and CFC are denoted as p2 and
p4. Furthermore, |p1 p2| allocates the time and determines the position of discrete points
according to the trapezoidal preparation. The UAV accelerates from the initial position to
the maximum velocity, remains at the maximum velocity for a while and finally gradually
slows down to zero velocity to reach the end point. The total flight time of this period
is t1. In addition, the acceleration period is t11, the period of uniform movement is t12,
and the period of deceleration is t13 such that t1 = t11 + t12 + t13, where t11 = vmax

amax
= t13 ,

t12 = d1
vmax
− vmax

amax
, and d1 is the distance of |p1 p2|. Therefore, the number of discrete points

on the |p1 p2| segment can be obtained as follows:

N11 = round(
vmax

amax · δ
) = N13, (55)

N12 = round(
d1

vmax · δ
− vmax

amax · δ
). (56)

Consequently, the discrete points of segment |p1 p2| can be expressed as follows:

p1(n) =


p1(0) +

1
2

amax · (n · δ)2, n = 0, · · · , N11 − 1

p1(N11 − 1) + vmax · n · δ, n = 1, · · · , N12

p1(N12) + vmax · n · δ−
1
2

amax · (n · δ)2, n = 1, · · · , N13

(57)

|p2 p3| and |p3 p4| are located in the CFC and can meet the minimum communication
rate. We suppose that the time Qth

rth
is necessary to collect data at the minimum rate rth and

the requested minimum quantity Qth. This time period comprises two flight paths with the
flight times t2 and t3, respectively:

t2 + t3 =
Qth
rth

, (58)

N2 + N3 =
Qth

rth · δ
. (59)

We let these two trajectories move at a constant speed. Thus, N2
N3

= d2
d3

, where d2 and
d3 are the distances of |p2 p3| and |p3 p4|, respectively. We determine N2 and N3 as follows:

N2 =
Qth

rth · δ
· d2

d2 + d3
, (60)
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N3 =
Qth

rth · δ
· d3

d2 + d3
, (61)

p2(n) = (1− n
N2

) · p2(0) +
n

N2
· p2(N2 − 1), n = 1, · · · , N2, (62)

p3(n) = (1− n
N3

) · p3(0) +
n

N3
· p3(N3 − 1), n = 1, · · · , N3. (63)

where p2(0) = p2 and p3(0) = p3. |p4 p5| and |p1 p2| can be processed in the same way.
Therefore, we can obtain the initial waypoints of the global plan according to Algorithm 2.

Algorithm 2: For a given initial position p0, end position pN , and position of
the jammer and SN, find the initial global discrete path.

1: function Initial_CFC_path(p0, pN , pSN , pjammer)
2: Compute the CFC of the SN with Algorithm 1:
3: Find_CFC(pSN , pUAV , pjammer)
4: Set the initial point to p1, the end point to p5, and the SN position to p3:
5: p2 = p1 p3 ∩ CFC, p4 = p3 p5 ∩ CFC
6: if UAV is not in CFC and Qcurrent 6 Qth
7: Calculate the discrete points of |p1 p2| and |p4 p5| according to Equation (57)
8: Calculate the discrete points of |p2 p3| and |p3 p4| according to

Equations (60) and (61)
9: elsif UAV is in CFC and Qcurrent 6 Qth

10: Calculate the discrete points of |p4 p5| according to Equation (57)
11: Calculate the discrete points of |p2 p3| and |p3 p4| according to

Equations (60) and (61)
12: else
13: Calculate the discrete points of |pUAV p5| according to Equation (57)
14: Output the path discrete point:
15: pinitCFC = {p1(0) · · · p2(0) · · · p3(0) · · · p4(0) · · · }
16: end

It is worth noting that if the UAV enters the CFC during its flight, the discrete points
of |p1 p2| are not calculated. If the amount of collected data meets the requirements, the
UAV |p3 p4| and |p2 p3| will no longer be calculated. However, the discrete points of the line
segment from the position of the UAV to the destination will be calculated directly.

The initial path obtained by the Algorithm 2 does not consider the treatment of
obstacles. Therefore, we continue to design a method based on expansion for the treatment
of obstacles.

As shown in Figure 4, we first detect the initial path points generated based on the
CFC. If these points are within the obstacle area, we move the direction of the vertical line
to where these path points are located until a safe distance from the obstacle is found. This
is accomplished through the following four steps: (1) Calculate the equation of the line for
the neighboring points pinitCFC(i− 1) and pinitCFC(i) on pinitCFC; (2) calculate the distance
dv from the center of the obstacle to lpinitCFC(i−1)pinitCFC(i); (3) determine if the distance dv is
shorter than rsa f e. Calculate the vertical line lpinitCFC(i)pm going through the point pinitCFC(i);
(4) search for a point pv on the vertical line lpinitCFC(i)pv which satisfies that the distance
from the obstacle center pm to pinitCFC(i− 1) is greater than rsa f e. Use that point as the new
pinitCFC(i). The specific implementation steps are shown in Algorithm 3.
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Figure 4. CFC initial path correction for obstacle avoidance.

Algorithm 3: For a given initial CFC path pinitCFC, the position of obstacles
pm, the safe distance rsa f e, and step factor λ to find the initial global obstacle
avoidance discrete path.

1: function Initial_OA_path(pinitCFC, pm, rsa f e, λ)
2: Loop for i = 2, 3, · · ·
3: Calculate the line going through points pinitCFC(i− 1) and pinitCFC(i)
4: a = [pinitCFC(i)− pinitCFC(i− 1)]

5: Λ =

[
0 1
−1 0

]
6: aTΛp = aTΛpinitCFC(i)
7: Loop for m = 1, 2, · · ·
8: if |a

TΛpm−aTΛpinitCFC(i)|
‖a‖ 6 rsa f e and ‖pinitCFC(i) - pm‖ 6 rm

9: Calculate the vertical line
10: aT p = aTpinitCFC(i)
11: Take a point on the vertical line pv
12: Let av = [pv − pinitCFC(i− 1)]

13: while |a
T
v Λpm−aT

v Λpv|
‖av‖ < rsa f e

14: pv = pv − λ · pv−pinitCFC(i)
‖pv−pinitCFC(i)‖

15: and av = [pv − pinitCFC(i− 1)]
16: endwhile
17: pinitCFC(i) = pv
18: endif
19: End Loop
20: End Loop
21: pinitOA = pinitCFC
22: return pinitOA
23: end

3.4. Replanning

Based on the previously presented conclusions regarding the initialization path, we
propose an SCA-based solution method for the convex optimization problem P1. The
method approximates the optimal solution of the original problem P0 one by one through
good initialization values and an iterative method based on Taylor expansions. The specific
steps are shown in Algorithm 4. First, we initialize the state of the UAV and mission
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settings. Subsequently, we generate the communication corridor path and safe flight path
for obstacle avoidance as the initial values to solve the optimization problem P1 according to
the mission requirements. Good initial values enable the iteration-based SCA algorithm to
converge quickly and obtain a local solution. However, in the actual mission environment,
the disturbance sources and obstacles may change dynamically, and the path determined at
one point in time is not applicable to the whole flight process. For this reason, we propose
a planning algorithm based on replanning in which the UAV plans a new trajectory at a
certain frequency. The specific process is shown in Algorithm 5.

Algorithm 4: SCA-based trajectory planning method for (P1)
1: Initialization:
2: Set the number of iterations r = 0.
3: Set the initial state of the UAV, position, speed, acceleration, etc.
4: Set the minimum required amounts of the communication bandwidth B and

data Qth. Calculate the maximum communication distance dmax
k and maximum

communication rate rth in accordance with the transmission system.
5: Generate a CFC that satisfies the data collection conditions with Algorithm 1.
6: Generate the initial CFC-based path with Algorithm 2.
7: Generate an obstacle avoidance path based on the initial CFC path for a safe

flight with Algorithm 3.
8: Initialize pr[n], κr

k[n], εr
k[n], λr

i,m[n], etc. with the path pinitOA generated by
Algorithm 3, for n = 1, · · ·, N.

9: Repeat
10: Solve the problem (P1) by CVX and acquire the optimal solutionsn p∗[n], κ∗k [n],

ε∗k[n] and λ∗i,m
11: Update the optimization variables and slack variables at the r-th iteration following:
12: wr+1[n] = w∗[n];
13: κr+1

k [n] = κ∗k [n];
14: εr+1

k [n] = ε∗k[n];
15: λr+1

i,m [n] = λ∗i,m[n];
16: Update r = r + 1
17: Until some termination conditions are met

Algorithm 5: Receding horizon planning.
1: Initialization: Set the minimum communication bandwidth B and data amount

Qth. Calculate the minimum communication rate rth and maximum communication
distance dmax

k in accordance with the transmission system, maximum UAV speed
vmax, maximum acceleration amax, maximum flight height Hmax, start position p0,
and end position. And let init state sUAV = [p0, 0, 0].

2: While: ‖puav − pN‖ 6 ζ do
3: Update the UAV states
4: Solving for global paths with Algorithm 5
5: Select a section of path points for B-spline smoothing
6: End

To obtain a more suitable trajectory for the flight control module, we used B-splines
to smooth the path in Algorithm 5. NQ path points were chosen as control points for the
homogeneous B-spline curve according to the set replanning frequency, which is uniquely
identified via its pb, NQ control points {Q1, Q2, . . . , QNQ} and a knot vector {t1, t2, . . . , tMQ},
where MQ = NQ + pb. To simplify and improve the efficiency of the trajectory assessment,
the B-spline employed in our approach is homogeneous, which implies that each knot
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has the same time interval δ between it and its predecessor. We normalize t as follows:
s(t) = (t− tm)

/
δ. The matrix representation can be used to assess the location [29]:

p[s(t)] = s(t)TMpb+1qm, (64)

s(t) =
[

1 s(t) s2(t) · · · spb(t)
]T , (65)

qm =
[

Qm−pb Qm−pb+1 Qm−pb+2 · · · Qm
]T . (66)

where Mpb+1 is a constant matrix determined by pb. In our implementation, pb is set as 3,
and the third-order Mpb+1 matrix has the following form:

M4 =
1
3!


1 4 0 0
−3 0 3 0
3 −6 3 0
1 3 −3 1

. (67)

3.5. Convergence and Complexity Analysis

Motion planning of a UAV in a data collection mission with dynamic jamming consists
of five main parts: CFC construction, generation of the initial CFC path, generation of a
safe path, SCA-based path optimization, and B-spline-based trajectory optimization. The
convergence of the algorithm depends mainly on solving the P1 problem, which uses a
method based on SCA. Section 2.1.2 in [30] presents an analysis of the convergence of
SCA. We set x̄ as the limit point of the iterative result produced via Algorithm 4, which
met and slater condition holds at the point x̄. Subsequently, x̄ becomes a KKT point of
P1. First of all, problem P1 indicates that there exist 5MN obstacle avoidance constraints
of the UAV, 3N speed constraints, 3N initial position constraints, and 3N end position
constraints, 6N equation of state constraints, and a 4NK quality of communication link
or the amount of collected data. Hence, the computational complexity is approximately
O(R(5MN + 12N + 4NK)), where R represents the number of iterations, M is the obstacle
number, N is the number of time slots, and K is the SN number. In the construction process
of the CFC, the goal is to acquire an effective communication area by applying geometric
approaches. The complexity is only associated with the number of sensors and jammers.
Thus, its complexity is O(KJ). In the generation of the CFC initial path and safe path, the
calculation volume is also related to the number of obstacles and number of sensors. Thus,
the assistance is also O(2KM). Finally, the B-spline trajectory only computes a local number
of control points. Because we can ignore the number of operations, the total complexity is
O(R(5MN + 12N + 4NK) + 2KM + KJ + N). It is worth mentioning that motion planning
in this paper is divided into global path planning and local trajectory optimization.The
replanning time of global path planning is 1Hz; that is, it is updated once every second.In
the hardware environment mentioned in reference [12], when the main frequency is 3 GHz,
for a sensor, when the number of obstacles is 5, the number of interference sources is 2, the
number of discrete points is 100, and the calculation time of the algorithm is about 3 ms.
Therefore, it can fully support 1 s update frequency of path planning.At the same time,
the local trajectory optimization directly selects the path points and adopts the B-spline
method for fitting, which takes almost no time and is consistent with the literature [27].
The planning time is about 0.8ms, which can support the update frequency of 1000 Hz.

4. Simulations and Discussion

In this section, we present the results of numerical simulations to compare the al-
gorithm in this paper with the SCA algorithm forinitialization proposed in [6] and the
traditional DWA algorithm for dynamic environments. We mainly consider two dynamic
sources of interference and several obstacles in the environment. To facilitate the simula-
tion, we simulate a data collection task for an SN. Table A1 lists some crucial parameters
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and their values. We made some changes to ensure that the SCA algorithm for AStar
initialization from [6] is applicable to the scenario presented. In this paper, we divide the
path into two segments: the paths between the origin and the SN and between the SN
and the end point. The two paths are initialized separately with the A star algorithm. We
further interpolate the A star initial path points in order to obtain initial conditions that can
meet the required data volume. For the DWA algorithm, we design different cost functions
depending on the stage of the task, as shown in Appendix A.

Figure 5 presents the motion plan for 200 kbit data collection in an environment
without jamming and environments with static and dynamic jamming. In the jamming-free
environment, the SN has the largest communication range, which covers the entire mission
path of the UAV. In the static environment, the communication range of the SN is smaller
and “pear-shaped”; the UAV can only collect data within this area. The communication
range of the SN varies according to the motion of a jammer in a dynamic environment.

The red dashed line in Figure 6 represents the global path that is initialized via the
CFC, the blue dashed line denotes the global path that is initialized via the AStar algorithm,
and the green dashed line denotes the local path that is initialized through the DWA. The
light green region is the SN’s effective communication range; in the absence of interference,
it should be a circle in the 2D top view. The effective communication range of the SN
becomes “pear-shaped” when suppressed by two sources of interference. The grey circle
is the obstacle, and the 3D shape is a cylinder. Evidently, both the red dashed and blue
dashed lines are at safe distances from the obstacle and pass through the SN. This is exactly
what we want: a safe initial path to collect data.

(a) No jamming environment (b) Static jamming environment (c) Dynamic jamming environment

Figure 5. 200 kbit data collection with three algorithms for motion planning in environments without
jamming and with static and dynamic jamming.

Figure 6. Initial path.
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Figure 7 illustrates the residual amount of data collected by the UAV during the
mission. In the jamming-free environment, the CFC and AStar algorithms complete the
mission in approximately 25 s, while the DWA algorithm needs 30 s. In the static jamming
environment, the CFC and AStar algorithms complete the entire mission in approximately
40 s, whereas the DWA algorithm needs 45 s. In the jamming interference environment,
the CFC and AStar algorithms require similar times to complete the task, while the DWA
algorithm needs more time.
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Figure 7. The residual amount of data collected for three algorithms in different environments.

Figure 8 shows the normalized energy consumption of the UAV. We used the integral
of the UAV acceleration to present the UAV energy consumption. According to the figure,
the DWA algorithm consumes much more energy than the CFC and AStar algorithms
for the three environments. The AStar algorithm consumes slightly less energy than the
CFC algorithm in the jamming-free environment, whereas the CFC consumes slightly less
energy than the AStar algorithm in the jamming environment. It is also worth noting that
the complexity of the AStar algorithm is O(N2 log N), while the complexity of the CFC
algorithm is only O(KJ + 2KM + N). Therefore, collecting data with the CFC algorithm is
much less expensive than with the AStar algorithm.
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Figure 8. Variation in flight energy consumption for three algorithms in different environments.
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The UAV trajectories for the different required data volumes are shown in Figure 9.
Accordingly, the UAV trajectories planned for a required data volume of 0 bits ignore the
communication corridors and interference. With growing amount of required data, the
UAV trajectory stays in the communication corridor for a longer period of time.

(a) (b)

(c) (d)

Figure 9. UAV paths for different data collection volumes: (a) 0 bits; (b) 100 kbits; (c) 500 kbits; (d) 1 Mbits.

Figure 10 shows the variation in the amount of remaining data for different collection
requirements. The larger the amount of required data, the longer the task takes to be
completed, which is in line with the general rule. Figure 11 shows the variation in the
in-flight energy consumption for different collection requirements. The lowest energy is
consumed for zero collected data, and the highest energy is consumed for the collection of
1 Mbit.
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Figure 10. Variation in the amount of data remaining for different data collection requirements.
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Figure 11. Normalized flight energy consumption.

Figure 12 displays the instantaneous communication rate of the UAV for different
amounts of required data. The sky-blue dashed line indicates the communication threshold.
Evidently, the greater the data demand exceeds the communication threshold area; for
example, the red line in the figure is the instantaneous communication rate when the data
collection volume is 0, which is basically less than the communication threshold. It does
not need to consider the data collection task only needs to fly with the lowest energy
consumption to focus. When the data collection volume is 1 Mbit (as shown by the green
curve in the diagram), it will stay above the communication threshold as much as possible
until the task has been completed.
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Figure 12. Instantaneous communication rate.

Figures 13 and 14 show the speed and flight altitude of the UAV during data collec-
tion for different required data volume, respectively. The UAV accelerates, decelerates,
accelerates, and decelerates again, which is very much in line with the trapezoidal criterion
we used during initialization. Therefore, the UAV should fly at full speed before entering
the CFC, then decelerate appropriately to remain in the area long enough to collect the
required amount of data in the CFC, and then fly at full speed to the end point. The flight
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altitude also increases and then decreases, which is very much in line with the dynamics of
a low-energy flight.
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Figure 13. Instantaneous flight speed variation.
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Figure 14. Instantaneous flight height.

5. Conclusions

In this study, the motion programming of UAVs collecting data in a dynamic jamming
environment was examined. Our main optimization objective was to find a safe path that
consumes a minimum amount of energy and results in the required amount of collected
data. As the constructed optimization problem is non-convex, we introduced auxiliary
and relaxation variables to relax the original problem and used the SCA algorithm to
solve the new relaxation problem. To obtain a well-localized optimal solution with the
SCA algorithm, we propose a fast initialization path method that is based on a CFC for
processing. We constructed the CFC and solved for the initial path of the UAV with the
UAV’s perceived interference intensity and the transmission capability of the SN. Finally,
we compared the simulation results with those of the AStar and DWA algorithms. The
results demonstrate that the algorithm presented in the current paper is feasible and
performs reliably.
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Appendix A

Table A1. Key simulation parameters.

The Notation Physical Meaning Value

P0 SN transmission power 500 mW

Pj Jammer transmission power 5000 mW

B Total channel bandwidth 10 kHz

vmax Maximum UAV speed 25 m/s

amax Maximum UAV acceleration 5 m/s

Hmax Maximum UAV height 200 m

Hmin Minimum UAV height 10 m

σ2 Noise power spectral density −169 dBm/Hz

α Path loss exponent 2

rth Minimum collection rate 2.4 kbps

δ Minimum update period 1 s

fc Communication carrier frequency 2 GHz
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