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Abstract: This paper proposes a central anti-jamming algorithm (CAJA) based on improved Q-
learning to further solve the communication challenges faced by multi-user wireless communication
networks in terms of external complex malicious interference. This will also reduce the dual factors
restricting wireless communication quality, the impact of inter-user interference within the network,
and the effect of external malicious interference on the communication system to improve multi-
user wireless communication transmission. Firstly, a central base station that coordinates and
allocates channels for users within the network is set up using multi-user wireless communication
network architecture to constitute a centralized wireless communication network. Secondly, the
multi-user system is modeled using the single-user Markov decision process in which the central
base station is the main body. Finally, an improved Q-learning algorithm is used to improve overall
system transmission income using the central base station, based on the network user number
sequential decision action for avoiding external malicious interference. It is designed to avoid the
impact of internal network interference on transmission performance during the early stage of
communication, achieving overall system transmission income improvement. Simulation results
show that in comparison to the existing multi-user independent Q-learning anti-jamming algorithm
and the traditional orthogonal frequency-hopping scheme, the proposed algorithm significantly
improves overall system transmission performance.

Keywords: Q learning; compound intelligent interference; multi-user; centralized wireless
communication network

1. Introduction

As the advancement of communication equipment continues, wireless communication
has developed in a networked manner [1,2]. A wireless sensor network composed of numer-
ous multifunctional sensor nodes is a major example of networking development within
the field of sensor application, and it has been applied in many fields [3,4]. However, due
to the open nature of wireless communication networks and a challenging and increasingly
complex work environment, it can easily be affected by external malicious interference.
This significantly impacts the dependability and efficiency of wireless communication in a
negative way. More specifically, the communication transmission of the system is blocked,
resulting in subpar overall system transmission performance. Internal network factors and
external environment aspects must be considered equally. As the number of network users
increases, the influence of mutual disturbance on them becomes of increasing significance.
Therefore, dealing with external malicious interference and the interference between users
inside the network, ensuring the transmission performance of the infinite communication
network, and realizing the reliable and effective transmission of the network in an effective
manner are urgent issues that must be solved.

Traditional communication anti-jamming technology is mainly based on spread spec-
trum communication anti-jamming technology, including frequency hopping spread spec-
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trum (FHSS) [5] and direct sequence spread spectrum (DSSS) [6]. Conventional communi-
cation anti-jamming techniques can help deal with conventional interference in an effective
manner. However, as alternative communication interference and communication anti-
jamming technology research advances, guaranteeing the dependability and effectiveness
of the communication transmission of the system in the face of malicious interference with
diversity, dynamics, and other intelligent characteristics is quite difficult [7].

Machine learning is a technical means for transforming the collected external data
into its own application knowledge base [8], providing a feasible new approach for multi-
user wireless communication networks for coping with external intelligent malicious
interference and user internal interference [9,10].

By relying on user actions in the network and feedback from the outside environment,
reinforcement learning, which is an indispensable subfield of machine learning, can be used
for constructing a model that is not based on interference itself [11]. The method of “search-
ing for optimal solutions through errors” can then be used to adjust the choice of actions in
the feedback from the environment as a means of realizing intelligent anti-jamming commu-
nication for the network. Reinforcement learning algorithms that are applied to multi-user
wireless communication networks can be categorized as distributed anti-jamming [3,12–14]
and central anti-jamming [15,16], based on different decision subjects. With distributed
anti-jamming, the subject that performs anti-jamming decisions through the algorithm is
each user in the network. Yao et al. [3] proposed a collaborative anti-jamming algorithm for
multi-user networks, but the internal users are tiny, and the external interference is sweep
interference, which means that the interference has strong regularity and can easily be mas-
tered by the communication party. Lowe et al. [12] proposed an actor–critic-based algorithm
that is applicable to multi-user communication networks and fully considers the interfer-
ence between users, effectively improving the transmission performance of the system.
However, it lacks consideration of external malicious interference. Zhang et al. [13] adopted
the double Q-learning algorithm for effectively dealing with the constant interference of
power tracking. This can improve the maximum throughput of a multi-user wireless com-
munication network. Zhang et al. [14] proposed a model-based Dyna-Q learning algorithm
for distributed multi-user systems. By transmitting data in the jamming environment from
the source to the host, Dyna-Q selects appropriate relay nodes for maintaining multi-user
wireless communication network communication, thereby improving convergence speed.
Wang et al. [17] used a model-free reinforcement learning algorithm (MRL), combined with
the concept of mean field, and proposed a mean field Q-learning algorithm, which can
effectively solve large-scale network communication problems; Yao et al. [18] modeled
the multi-user anti-interference channel intervention problem of fully connected peer-to-
peer networks as a Markov game. They also proposed a multi-intelligence Q-learning
anti-interference channel access algorithm based on multi-intelligence, which can enable
intra-network users to learn jointly by avoiding inter-user bypassing and external sweep
interference. However, the subject of the central anti-jamming decision is the central base
station in the network, which is responsible for the coordination and distribution of actions
for each user. Aref et al. [15] designed a multi-user cooperative anti-jamming algorithm
for the central network, but it has a poor convergence effect. Zhou et al. [16] proposed an
anti-jamming scheme that is based on multi-user joint Q-learning. However, network user
disturbance during the early stages of communication cannot yet be avoided. For effec-
tively dealing with intelligent malicious interference, reducing the influence of interference
between users in the initial communication network and realizing the reliable transmission
of a multi-user wireless communication network, a central base station is added in this
paper. This enables the coordination and activation of access channels for internal users on
the system architecture of a loosely coupled multi-user wireless communication network.
At the same time, a central anti-jamming algorithm is proposed that is based on improved
Q-learning. This paper makes the following contributions:

A centralized multi-user anti-jamming algorithm based on improved Q-learning that
models the system model using a single-user Markov decision process is proposed for a
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multi-user wireless communication system with an additional central base station as the
decision subject. This will be used to deal with the multi-user wireless network intelligent
anti-jamming communication problem. Simulation results find that the proposed algorithm
has the ability to effectively improve multi-user wireless communication network system
transmission income.

The paper is arranged as follows: Section 2 focuses on the modeling of multi-user
wireless communication networks and provides definitions of important assumptions;
Section 3 introduces the proposed algorithm CAJA and the algorithm flow; Section 4 shows
the simulation and the result analysis of the algorithm; and Section 5 provides a conclusion
and a discussion of the outlook for the future.

2. System Model and Problem Modeling
2.1. System Model

This paper makes the following assumptions for a multi-user wireless communication
system containing a central base station to facilitate the research.

1. Atypical multi-user wireless communication network has M transmission channels
accessible to every active user of the network, in addition to N active communication
users. Generally, a typical multi-user wireless communication network provides a
sufficient number of channels available for access by users, so set N < M. To improve
the success rate of the access channels in this network, in this paper, a central base
station is added to the multi-user wireless network. This is used to unify the channel
coordination and allocation for each user in the network. The structure schematic is
shown in Figure 1.

2. All network users are equipped with broadband spectrum-perceived capability and
have the ability to obtain the channel where current malicious interference is located
through perception. The central base station serves as the decision-making center of
the network and has the capacity to learn and make decisions. It can also coordinate
users to access the transmission channel through a command signal, thereby enabling
the combined anti-jamming of the system. All system users are within usable range of
the central base station. None of the system users, nor the central base station, have
prior information relating to external malicious interference.

3. Competition arises when all system users simultaneously use the same channel for
transmission, and users in competition cannot successfully transmit data. For the
central base station to be able to reasonably coordinate and uniformly allot internal
user access channels to avoid competition during transmission, users of the system
must have the ability to communicate with each other and exchange the perceived
results. In addition, this paper sets the channel noise so it is not sufficient for affecting
the communication performance of users within the system.

4. Communication time is divided into time slots of duration Ts as the minimum time
unit for continuous transmission, and interference time is divided in the same way.
The time slots are further divided according to the responsibilities of each element in
the system. The communication time slots of each system user are divided into obser-
vation sub-time slot Tobs and action sub-time slot Tact, which are used for observing
the external interference and the actions of other users in the system and commu-
nication transmission, as can be seen in Figure 2a. The communication time slots
of the central base station are divided into decision sub-time slot Tdec and learning
sub-time slot Ttea, which are used for transmitting decision information, such as user
information, channel selection information, and execution of algorithms, as can be
seen in Figure 2b.

5. External malicious interference is set as high-power malicious interference in this
paper, and the communication used by users is within the effective range of the
malicious jammer. The external jammer senses the channel where each network
user is located and selects the J channel with the highest time slot utilization up
to the current time slot—a single interference lasts for L communication slots. The
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interference style is Multi-channel Probabilistic Tracking jamming (MPT-jamming).
Based on this, sweep interference is added for a specific user in the network to
squeeze the central base station to coordinate and allocate the choice space of the
user for channel access. The interference style is defined as compound intelligent
jamming (CIJ).

6. The constituent elements within this network, which include the central base station
and each user, share communication time. Each time slot is strictly synchronized,
and the perceived capability and perceived results for each user are kept consistent.
The external malicious interference time is the same and is synchronized with the
communication time within the network.
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2.2. Problem Modeling

Regarding interference between users in the multi-user wireless communication net-
work, the central base station is taken as the main body of the multi-user system, and
single agent learning behavior is used for obtaining the optimal transmission strategy of
the system. Therefore, the Markov decision process (MDP) is adopted for modeling the
wireless communication network. The model can be expressed as a quadruple 〈S, A, P, R〉,
where S represents system state space, A represents system action space, P represents
state transition probability, and R represents reward function. In addition, based on the
description of the number of users N in the system, after the network is modeled as a
single-agent system, the number of users is represented as the dimension of the system
state space and the system action space. The following definition of a quadruple is used in
this paper:

1. State space S: this mainly reflects the current state of the channel that is provided
by the environment. Taking a channel as an example, when it is idle, the channel
status is id (idle), when it is jammed, the channel status is ja (jamming), and when it
is occupied by users in the system, the channel status is tr (transmission). In the last
two cases, the channel is defined as bu (busy) in this paper, which means the channel
is occupied and busy. The communication decision of the system in the environment
of external malicious interference is based on the perception result, or whether or not
each channel is occupied. However, occupied channel information, which includes
interference and information occupied by users in the system, is the knowledge that
must be learned and applied by the system. Therefore, the system state space S is
defined as:

S , { s|s = (b1 · · · bz)} (1)

where s = (b1, b2, · · · , bz) represents the set of crowded channels that is observed by the
communication user, and b1 · · · bz subscript is the initial channel serial number in order
from smallest to largest, Z ∈ [1, M] and Z ∈ R. Therefore, CZ

M possible states exist in state
space S.
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2. Action space A: in the multi-user scenario, the action space is a collection of actions
that are independently chosen by each system user. According to the setting in this
paper, the action of each communication user is choosing a single channel from the M
optional channels provided by the environment as a means of completing communi-
cation transmission. Therefore, the independent action subspace A that belongs to
each user in the joint action space Ai of the system is the same, i.e., A1 = A2 · · · AN .
Independent action space Ai for a single user can be defined as follows.

Ai , { ai|ai ∈ {1, 2 · · ·M}} (2)

where i ∈ {1, 2 · · ·N} represents the communication user serial number, and ai ∈ {1, 2 · · ·M}
represents the channel serial number that is selected for transmission by communication
user i, so the joint action a of all communication users is a combination of the transmission
channels of each communication user. The definition is as follows.

a = {a1, a2 · · · aN} (3)

Therefore, joint action space A is defined as:

A = A1 ⊗ A2 ⊗ · · · ⊗ AN (4)

where ⊗ denotes the Cartesian product. According to the above setting, a single communi-
cation user is only able to choose one channel for transmission at a single time. Therefore,
there are M possibilities in action subspace Ai, so there are MN joint actions in joint action
space A.

3. State transition probability P: S× A× S′ → [0, 1] represents the probability of the set
of agents transitioning to state S after taking joint action A in the channel state.

4. Reward function R: the reward that is obtained by action ai taken by communication
user i in channel state S and is dependent on the crowded transmission channel. A
single transmission reward function r for users in system i is defined in the follow-
ing way:

r(s, ai) =

{
1
0

ai 6= jz
ai = jZ

(5)

where i ∈ {1, 2 · · ·N} is the user serial number in the system and the instant reward for a
single successful transmission by a single user is unit 1. When the user selects a channel for
transmission, it is already occupied by other system users or interfered with externally, so
there is no instant reward. All network users share instant reward function r, which means
that the overall transmission instant reward function of system R is the sum of the instant
reward functions of each system user.

R(S, A) = ∑N
i=1 r(s, ai) (6)

The system is transformed into a whole through the above modeling for solving the
optimal decision of communication anti-jamming of the close-connected multi-user wireless
communication network. Based on the Markov decision process (MDP), Q-learning is used
for identifying the optimal strategy corresponding π∗ to the maximum cumulative return
reward under the discount condition. The state-action function that corresponds to any
strategy π (also known as the Q value) is expressed as:

Qπ(S, A) = E
{
∑∞

τ=0 γτrr+τ |st = s, at = a, π
}

(7)

3. Central Anti-Jamming Algorithm Based on Improved Q-Learnings

A central base station is added to the network in this section for coordinating the
channel access problems of system users as a means of effectively dealing with the problems
of external malicious interference and inter-user interference in the multi-user wireless



Electronics 2023, 12, 1803 7 of 17

communication network. A centralized anti-jamming algorithm based on improved Q-
learning (CAJA) is proposed.

In order to reduce the competition phenomenon in multi-user wireless communication
networks where internal users cannot transmit successfully, as they are crowding the same
channel at the same time, the algorithm in this paper follows the sequential decision of the
user number in the system; the central base station then learns the current state, one by one,
based on the user number in the learning sub-time slot Tlea. For example, the central base
station must only learn the current channel that is occupied by external interference when
planning action a1 of user 1 in the next time slot. At this time, state subspace S1 of user 1 is
as follows:

S1 = {s|s = (b1 · · · bZ)} (8)

When the central base station is planning the action of user 2 in the next time slot, it
must learn both the external and internal environments of the system, i.e., the result of the
channel that was previously assigned by the central base station to user 1 for transmission.
At this point, state subspace S2 of user 2 is as follows:

S2 =

{
S1

S1 ∪ {ba1}
a1 The selected channel is not inter f ered

a1 The selected channel is f ree
(9)

where ba1 denotes the channel that is occupied by the user 1 selection transmission in
the system when the elements in the state subspace of user 2 contain {b1 · · · bZ, ba1}, in
accordance with the above definition of state space, reordered according to the channel
serial number, constituting a new state subspace S2:

S2 = {s|s = (b1 · · · ba1 · · · bZ)} (10)

Similarly, when the central base station begins learning actions ai of system users i in
the next time slot, the occupied channel perceived by user i includes the intersection of the
channel where the current interference is located and the result of the channel occupied by
previous i− 1 user, and the state subspace Si is as follows:

Si =
{

s
∣∣s = (b1 · · · ba1 · · · bai−1 · · · bZ

)}
(11)

The CAJA algorithm makes sequential decisions based on user serial numbers in the
system in each iteration. Every user executes its own action ai in the joint action a according
to state subspace Si composed of the current perceived interference result and the channel
information occupied by previous users and based on an action selection strategy that is
executed by the central base station. It updates respective state S′i in the next time slot,
while obtaining instant reward ri that belongs to that user at this time, before updating the
value in the respective Q table based on Equation (12). This helps realize the optimization
of the strategy, and the Q value update rule for each user is as follows:

Qi(s, a) =
{

Qi(s, a) + α[r + γmaxQi(s′, a′)−Qi(s, a)]
Qi(s, a)

,
,

s = s′, a = a′

else
(12)

where i is the serial number of the system user, α is the learning factor, r is the instant
reward from the environment feedback when user i performs an independent action a
under current state s, and y is the discount factor.

Once the Q value has been updated, the central base station updates the joint state
of system S′i of the next time slot and actions a′i that are to be performed by the system
following the completion of the allocation of every user access channel in the system and
distributes them to each user as their own independent actions a′i through the command
signal. Therefore, the tightly associated multi-user wireless system achieves a complete
iteration under the overall allocation of the central base station, repeating this until the
iteration is complete. Each complete time slot corresponds to a complete iteration of the
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algorithm. The sequential coordination diagram of the central base station according to the
Q table of each user can be seen in Figure 3.

The pseudocode of the centralized anti-jamming algorithm (CAJA), based on improved
Q-learning, is as Algorithm 1:

Algorithm 1: CAJA

1: Initialisation: α, γ; For any Si ∈ S, ai ∈ A, set in their respective current states Qi(Si, ai)
2: for t = 1, 2, · · · , T do
3: Each user executes action ai according to joint action a that is sent back by the central base
station of the last time slot
4: Each user perceives the channel where current external interference occurs and obtains the
current state of the external environment
5: The user perception results are shared to the central base station, which updates the status of
each user according to the serial number
6: Each user receives instant reward ri from the environment by performing action ai in their
respective state Si
7: The central base station makes sequential decisions based on user numbers in the system,
updating their respective Q values according to Formula (12)
8: The central base station makes a unified summary and calculates the overall Q value of the
system at this time using the following formula:

Q(S, a) =
N

∑
i=1

{
Qi(s, a) + α

[
ri + γmaxQi

(
s′, a′

)
−Qi(s, a)

]}
(13)

9: The central base station assigns the next time slot to each user based on the following action
selection strategy a′i :

a′i

{
πε(st+1) = argmaxai∈AQi(si, ai)
∀a ∈ A

When the probability is 1− ε

When the probability is ε
(14)

10: Update the respective states and actions: Si = S′i , ai = a′i ; the central base station distributes
the command signal to the respective users in the system;
11: t = t + 1
12: end for

The specific procedure is as follows:
From the current perception results, each system user is then assigned the channel

that is accessed by each user by the central base station uniformly and initializes their
respective exclusive Q-table by user number, based on the results shared by each user. The
following actions are then completed in each complete time slot: system users perform their
own independent actions ai according to joint actions a that were sent back by the central
base station in the previous slot (line 3); in observation sub-slot Tobs, each user perceives
the current external state (line 4) and synchronously shares the perception results with
the central base station; in learning sub-time slot Tlea, the central base station updates the
state of each user (row 5) according to the user number and the execution of independent
actions ai by each user, calculating the instant reward ri (line 6) for each user to perform
their respective actions in the current state, updating the Q value in the exclusive Q table of
each user (line 7) and aggregating the Q value of the system as a whole (line 8); in decision
sub-time slot Tdec, the central base station coordinates and assigns independent actions a′i
for each user in the next time slot, based on Equations (13) and (14) (line 9); the central base
station ultimately distributes the decision result of joint state S′ and joint action a′ to each
user as independent state S′i and independent action a′i through command signals (line 10),
pending the execution of the action assigned in this time slot at the start of the next iteration
in execution sub-time slot Tact by each user. A complete iteration is completed at this point
(line 11). The flow of decisions within the time slot can be seen in Figure 4.
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4. Simulation Results and Experimental Analysis

In this section, the proposed centralized anti-jamming algorithm (CAJA) that is ap-
plicable to the tightly correlated multi-user wireless communication network is simulated
on the MATLAB platform. This will verify the performance index of the proposed algo-
rithm in anti-jamming communication under the dual influence factors of external and
internal interference.

4.1. Parameter Settings

Relevant parameters in the simulation are set as Table 1:

Table 1. Simulation parameter settings.

Parameter Numerical Value

Number of users N 3
Number of available channels M 10

Length of communication time slot Ts 0.3 ms
Observation sub-time slot Tobs 0.1 ms

Decision sub-time slot Tdec 0.1 ms
Action sub-time slot Tact 0.2 ms

Learning sub-time slot Tlea 0.2 ms
Selective number of tracking jamming J 2

Number of continuous time slots of follower jamming L 3
Discount factor γ 0.6

Learning rate factor α 0.8
Greedy factor ε 1/

√
t

Total number of time slots Ns 2000

For the effective evaluation of the performance of the centralized anti-jamming algo-
rithm (CAJA) that is proposed in this paper, the following two anti-jamming schemes are
set up for comparison:

Independent Q-learning (IQ): each user in the network perceives and performs Q-
learning independently based on the perception results. No interaction occurs between
network users, and information is not shared, with each user independently executing
the decision.

Orthogonal frequency hopping (OFH): each user selects the transmission channel
according to the mutually orthogonal frequency-hopping pattern that is agreed upon in
advance. According to the hopping pattern, no mutual interference exists between network
users, and there is no “competition” phenomenon, where two or more users share the
same channel.

4.2. Analysis of Simulation Results

Both the proposed algorithm and the comparison algorithm are simulated using the
MATLAB platform.

The first 30 time slots (0–30 time slots) of the close-related multi-user wireless commu-
nication network as it begins working were obtained based on the parameter settings from
the previous section, under the distribution and coordination of the central base station.
The time slot-channel selection diagram of three users can be seen in Figure 5.
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Figure 5. Schematic diagram of 3-user system time slot-channel selection cube, including the central
base station.

The intelligent tracking interference is based on the channel selection of users in past
time slots, where the probability of selecting an interfering channel per time slot changes dy-
namically according to the channel selected by the communicating party’s communication.
The implementation of composite intelligent interference (CIJ) will sweep the interference
to user 3, i.e., user 1 and user 2 within the network face an intelligent tracking-type interfer-
ence threat. Figure 6 shows the thermal diagram of the implementation probability time
slot-channel distribution of tracking sub-interference in composite intelligent interference.
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The system-jamming reality diagram was drawn by combining Figures 5 and 6 with
the characteristics of intelligent tracking sub-interference and swept frequency sub-jamming
for user 3 in compound intelligent interference. This can be seen in Figure 7.

With the double threat of intelligent tracking-type jamming and sweep jamming in
the compound intelligent jamming environment, the multi-user wireless communication
network that contains a central base station has a poorer transmission effect than that of
the ordinary multi-user wireless communication network at the beginning of the work. In
this case, the user channel selection cubes in the system collide with the jamming cubes
more often.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 7. Real interference-communication diagram of a 3-user system with a central base station. 

However, due to the channel selection coordination of the central base station for 
users in the system, the central anti-jamming approach avoids “competition” between net-
work users that will result in transmission failure for relevant users in that time slot by 
virtue of the advantage of sequential decision making. This is conducive to reducing trans-
mission failure caused by internal factors in the early stage of the system. In other words, 
the reason for transmission of user failure within the system in a particular time slot is 
external compound interference, and this situation is favorable for enabling the wireless 
communication network to take advantage of the technical advantage of reinforcement 
learning, which allows it to search for optimal solutions through errors. The central base 
station learns the feedback from the environment, acquiring knowledge and using it as a 
basis for better coordinating the channel that is accessed by each user in the wireless com-
munication network in the next time slot. This gives full play to the learning advantage of 
reinforcement learning during unknown interference. 

Therefore, the jamming-communication reality of the wireless communication net-
work in the middle of the iteration (1000th to 1030th time slots) is chosen as a comparison. 
The schematic of this situation can be seen in Figure 8. 

Figure 7. Real interference-communication diagram of a 3-user system with a central base station.

However, due to the channel selection coordination of the central base station for
users in the system, the central anti-jamming approach avoids “competition” between
network users that will result in transmission failure for relevant users in that time slot
by virtue of the advantage of sequential decision making. This is conducive to reducing
transmission failure caused by internal factors in the early stage of the system. In other
words, the reason for transmission of user failure within the system in a particular time slot
is external compound interference, and this situation is favorable for enabling the wireless
communication network to take advantage of the technical advantage of reinforcement
learning, which allows it to search for optimal solutions through errors. The central base
station learns the feedback from the environment, acquiring knowledge and using it as
a basis for better coordinating the channel that is accessed by each user in the wireless
communication network in the next time slot. This gives full play to the learning advantage
of reinforcement learning during unknown interference.

Therefore, the jamming-communication reality of the wireless communication network
in the middle of the iteration (1000th to 1030th time slots) is chosen as a comparison. The
schematic of this situation can be seen in Figure 8.
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A longitudinal comparison of Figures 7 and 8 shows that the multi-user wireless com-
munication network with a central base station is better protected from sweep interference
and intelligent tracking interference threats in the composite intelligent interference at the
middle of the set iteration time than at the start of the communication. In comparison
to the loosely coupled multi-user wireless communication network, with relatively fixed
anti-jamming strategies for each system user during the convergence state, the multi-user
wireless communication network with a central base station does not possess a fixed anti-
jamming strategy. The channel selection strategy for each user is more flexible under central
base station unified coordination, regardless of whether user 1 and user 2 face an intelligent
tracking-type interference threat, or user 3 faces conventional sweep jamming.

When internal users are faced with a complex intelligent interference threat, the de-
fined intelligent tracking interference becomes more random as a result of the flexible
channel selection strategy. At this point, randomly implemented tracking interference is
prone to conflict with the hopping channel selection strategy of the user. This then causes
transmission failure for a certain user in a certain time slot, making the randomness event
unavoidable. In addition, a closer observation of Figure 8 reveals that channel selection
and interference collision during transmission is not as small as that envisioned when user
3 faces only a conventional sweep jamming threat. This is because conventional sweep
interference is more regular and can more easily be perceived by users and mastered by the
central base station in comparison to intelligent interference. Therefore, the transmission
income of user 3 should have been the best in this system. However, due to the character-
istics of the sequential decision making of the central base station and the number-based
coordination of access channels, the first coordinated user has a larger alternative space for
action selection, and the second has a smaller space for action selection. In addition, the
external malicious interference implements conventional frequency sweep interference for
user 3, further reducing the action selection space of the central base station for it. User
3 should have the best interference-avoiding effect, but possesses has many transmission
failure slots as a result of non-self-factors caused by algorithm inadequacies.
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To make a more intuitive horizontal comparison between the proposed algorithm and
the system transmission performance under the same conditions, this paper defines the
average user transmission income of the system as follows:

rave(t) = ∑N
i=1 Ei(t)/N ·W (15)

where rave(t) is used for calculating the average transmission income of users up to time slot
t in a closely interconnected multi-user wireless communication system. Ei(t) represents
transmission income from the environment for user i up to time slot t; ∑ is the cumulative
transmission income of all system users up to time slot t; N is the number of network
users, which this paper sets as 3; W is the number of independent algorithm runs, which is
executed once in each unit time slot. Based on the definition of system model transmission
income, the income from the environment of a single user in the system at a certain time
slot is unit 1, so Ei(t)/W is the ratio of the successful transmission time slot of user i to the
current accumulated time slot as of time slot t. A comparison is performed between the
proposed algorithm, the comparative anti-jamming algorithm, and the scheme transmission
income performance, which is shown in Figure 9.

Following the observation of Figure 9a, it can be seen that the proposed centralized anti-
jamming CAJA has the best average user transmission income, followed by the independent
Q-learning anti-jamming algorithm. The orthogonal frequency hopping anti-jamming
scheme exhibits the worst performance. At the 500th time slot, the average transmission
income value is 0.749 for CAJA users, 0.678 for IQ users, and 0.592 for orthogonal frequency
hopping users. The proposed algorithm improves the average income by approximately
10.49% in comparison to IQ users and approximately 26.47% in comparison to the traditional
orthogonal frequency hopping scheme.
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After performing an analysis of the characteristics of the three aforementioned anti-
jamming schemes in Figure 9a, the transmission performance of the central anti-jamming
algorithm was found to be the best. However, due to the complex intelligent interference
characteristics, user 3 targeted by the sweep interference exhibits compressed action selec-
tion space due to the sequential decision of the central base station, and it collides with the
sweep interference, which results in a transmission failure in a certain time slot. This then
causes overall system transmission income fluctuations. Due to the independent perception
and decision of each system user, it is not possible to completely avoid interference between
users. The average transmission income of the system users is limited by the influence
of interference, which results in an inferior transmission performance compared to the
wireless communication network that includes the central base station. However, the
traditional orthogonal frequency-hopping method is able to completely escape interference
between users, but malicious external interference cannot be completely avoided. This is
particularly evident in the complex intelligent jamming environment of this paper where
anti-interference ability is limited, and transmission performance is mediocre.

By analyzing the above three anti-interference schemes in Figure 9b, we find that the
OFH method has the fastest convergence speed, but the lowest income, and the CAJA
method has the highest average income, although its convergence speed is slower compared
with that of the OFH method. Compared with OFH and CAJA, the convergence speed of
the IQ method is slower than that of OFH, and the income is lower than that of CAJA, so
the results are relatively mediocre.

5. Conclusions

To further improve multi-user wireless communication network adaptability in a
complex interference environment, a central base station for unified coordination and
allocation of access channels for each user in the network was added, based on loosely
coupled multi-user wireless communication network architecture. This also helped ef-
fectively avoid complex external interference and mutual interference between network
users, improving the overall transmission income of the system in an interference envi-
ronment. In addition, the central base station was taken as the decision-making body of
the system. The system model and external environment were modeled according to the
single-user Markov decision process of the multi-user wireless communication network,
and the anti-jamming algorithm of the system was designed using improved Q-learning.
The proposed algorithm used the perceived result shared by all system users as one of the
decision bases of the central base station and made decisions to be executed sequentially
based on the user number in the system. At the same time, the action of the previous user
was taken as the decision environment of the next user, and transmission was completed
in the form of a Q-table. After the central base station completed the action decision of
all users in the next time slot, it distributed it to each user in the form of their respective
independent actions through the command signal. Simulation results found that the pro-
posed CAJA algorithm improved the transmission income by approximately 10.49% over
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the independent Q-learning multi-user anti-jamming algorithm and approximately 26.47%
over the traditional orthogonal frequency hopping anti-jamming scheme in the composite
intelligent interference environment set up in this paper. The next step will be attempting
to combine deep learning and reinforcement learning to help the communication party
fully learn the external environment and interference characteristics. Reinforcement learn-
ing will be added to deep learning as a means of helping the system realize the optimal
communication decision under the interference environment while further enhancing the
overall communication network performance.
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