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Abstract: The Internet of Things (IoT) connects numerous sensor nodes and devices, resulting in an
increase in the bandwidth and data rates. However, this has led to a surge in data-hungry applications,
which consume significant energy at battery-limited IoT nodes, causing rapid battery drainage. As
a result, it is imperative to find a reliable solution that reduces the power consumption. A power
optimization model utilizing a modified genetic algorithm is proposed to manage power resources
efficiently and reduce high power consumption. In this model, each access point computes the
optimal power using the modified genetic algorithm until it meets the fitness criteria and assigns it to
each cellular user. Additionally, a weight-based user-scheduling algorithm is proposed to enhance
network efficiency. This algorithm considers both the distance and received signal strength indicator
(RSSI) to select a user for a specific base station. Furthermore, it assigns appropriate weights for
the distance, and the RSSI helps increase the spectral efficiency performance. In this paper, the
user-scheduling algorithm was assigned equal weights and combined with the power optimization
model to analyze the power consumption and spectral efficiency performance metrics. The results
demonstrated that the weight-based user-scheduling algorithm performed better and was supported
by the optimal allocation of weights using a modified genetic algorithm. The outcome proved that
the optimal allocation of transmission power for users reduced the cellular users’ power consumption
and improved the spectral efficiency.

Keywords: successive interference cancellation; spectral efficiency; heterogeneous network; power
optimization

1. Introduction

The blooming of emerging technologies is becoming unified through mobile commu-
nication to revolutionize our future by integrating entire global elements: transportation
infrastructures, mailboxes, light switches, humans, cars, appliances, utilities, and any other
entity that might take advantage of heterogeneous connectivity [1]. Presently, the utiliza-
tion of existing mobile network infrastructure is reaching its limits due to massive mobile
data services and a huge increase in user elements. Therefore, the preceding enhancement
to achieve an ultrahigh mobile network bandwidth in the Fifth-Generation (5G) commu-
nication is pursued through the advanced utilization of the millimeter-wave (mmWave)
frequency [2]. This emerging 5G deploymentmodel can be categorized into three types,
including “Enhanced mobile broadband”, with ultimate data rates well above 1 Gbps,
“Massive Machine Type”, with highly dense levels up to one-million devices/km², and
“Ultrareliable and low-latency” communications [3].
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However, there are several limitations, especially in achieving the optimized propa-
gation of mmWave radio signals such as scattering, fading, time delay, multipath effects,
and interference [4]. Moreover, 5G communication also contains challenges in utilizing
resource-constrained devices with the forecasted specifications of high capacity and low-
cost spectral efficiency. The 5G communication architecture is required to accommodate
thousands of devices through reliable and acceptable links [5]. Therefore, interference
stands as a major challenge in such a scenario, where all the neighboring devices are
simultaneously striving to establish connectivity [6]. Due to the interference issues, 5G
communication has been extensively researched to incorporate efficient interference cancel-
lation techniques [7]. The 5G network architecture contains multi-tier heterogeneous nodes
and the cell architecture, including macrocells, femtocells, picocells, and device-to-device
(D2D) connectivity [8]. Similarly, the user end devices have the ability to establish multiple
communication paths to distinct base stations (BSs) or access points (APs) through single
or multiple radio access technologies (RATs). Therefore, the 5G multi-tier architecture
demands optimum coordination between all the tiers in the network to reduce interference
issues among the heterogeneously connected devices. Moreover, a higher bandwidth
achievement in 5G is highly dependent on interference cancellation and spectrum power
management techniques [9]. Fundamentally, the interference phenomenon occurs due
to the negative interaction of signals transmitted by the other devices, resulting in the
reduced specification of the wireless link, such as a decreased bandwidth, higherlatency,
and low QoS [10]. Interference in 5G networks can be categorized into several architectural
multi-tier elements, such as inter-cell interference, intra-cell interference, and inter-system
interference. Therefore, power optimization techniques are widely researched to reduce the
interference effects to achieve the forecasted higher bandwidth, reliability, and enhanced
quality of service (QoS). Similarly, successive interference cancellation (SIC) is a widely
researched interference mitigation technique for the maximum exploitation of the mmWave
spectrum [11]. Hence, we suggest power optimization in multi-tier heterogeneous networks
by utilizing SIC.

The rapid expansion of mobile data services and the surge in the number of users is
putting pressure on the current communication capacities of network infrastructure [12]. The
5G network is faced with the significant challenge of delivering low-power, more spectrally
efficient, high-capacity, high-performance, and cost-effective devices [13]. It also provides
dependable connectivity and a suitable interface for communication among devices in close
proximity. Interference has become a significant concern in multi-tier heterogeneous networks
as hundreds of devices are attempting to connect in the same environment.

2. Related Work

Wireless communication networks are bound to have a robust, reliable, and efficient
spectrum power management mechanism. Similarly, 5G communication is no exception.
All expected enhanced QoS parameters for 5G, such as higher bandwidth and lower power
consumption, depend on improved energy efficiency (EE) and spectrum efficiency (SE)
techniques. In the recent past, several research efforts have been made to propose optimum
techniques and frameworks for power minimization in multi-tier 5G heterogeneous net-
works. The study in [14] suggested a hybrid model containing both on-grid and off-grid
small cell base stations (SBS) in a heterogeneous network. Energy optimization has been
achieved by controlling the on- or off-grid ratio. Similarly, the authors in [15] proposed an
improved wakeup/sleep technique in D2D communication to counter the coverage gaps
caused by closely located BSs. They suggested a joint implementation of fuzzy control
and Q-learning to achieve a fuzzy interference system in a dynamic environment with
varying BS availability. Likewise, the authors in [16] suggested the utilization of dynamic
time-division duplexing and full-duplexing for optimum adaptive transmissions according
to network services and traffic matching. Moreover, the authors in [17] provided a detailed
analysis and discussion of the limitations and various available solutions to accommo-
date resource-constrained devices in 5G networks. It highlighted several requirements for
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spectrum control to provide an optimum power management solution for a 5G multi-tier
heterogeneous network. The proliferation of wireless networks has resulted in increased
interference among them, making the use of interference mitigation techniques necessary.
A statistical framework for throughput analysis [18] has been proposed with successive
interference cancellation to mitigate interference in 5G networks.

Similarly, the study [19] highlighted the challenges associated with the expected
tremendous expansion of smart infrastructures related to traffic chocking the bandwidthin
next-generation mobile communication. They proposed a joint resource optimization
approach by combining D2D communication with the 5G edge network architecture. The
computations performed through modular approaches in this study involved local nodes,
edge nodes, and fog nodes linked to a joint energy consumption model, latency model,
and task scheduling model. The proposed solution was evaluated through a simulated
environment of 5G mobile networks. The study in [20] highlighted the challenges related to
spectrum shortage due to the massive deployment of Internet-enabled devices and services
linked to Big Data. They suggested a time-switching method enabled by a power-splitting
technique for minimum extra power transmission and optimum resource utilization. The
study dealt with the joint optimization through two separate approaches, including rate
control according to the transmissions from user end devices and maximizing the device
transmissions under the spectrum-constrained condition of 5G. The simulation results of the
proposed solution indicated substantial enhancement in power optimization. The authors
in [21] presented a solution for the optimum control of the data rate and transmissions from
IoT devices. The solution contained three distinct approaches, a fixed data rate, a fixed
power level, and the optimal combination of both. The solution was evaluated through
simulations to establish the significance of the energy savings in the overall communication.
The authors in [4] exploited SIC to enhance the network performance through improved
throughput, success probability, outage probability, coverage, and ergodic probability.
The study indicated the high potential of SIC techniques for the control and optimization
of spectrum use. Therefore, as an extension of the above-mentioned study, this paper
presents an approach for utilizing the SIC technique for power optimization in a multi-tier
heterogeneous network.

An accurate prediction of power consumption in distributed areas necessitates a
trained deep learning model. This requires the optimization of the hyperparameters for a
provided environment. To address this issue, a technique was presented in [22] to identify
the best parameter values for learning. Furthermore, genetic algorithms were utilized to
optimize the layer parameters of the deep learning models. The paper [23] presented a tech-
nique for tuning the trainable layers of pre-trained models using a genetic algorithm. This
approach was applied to a classification task on single-channel image datasets, consisting
of grayscale images and log-Mel spectrograms generated from preprocessed audio signals.

2.1. Power Optimization in Wireless Networks

In 5G technology, a major objective is to enhance the energy efficiency (EE) and
spectrum efficiency (SE) to meet the increasing demand for high-quality service (QoS)
while utilizing energy and spectrum resources more efficiently to achieve higher data
rates. To examine the challenges related to spectrum efficiency and energy efficiency in
5G networks, a fuzzy-based approach [24] was implemented, aided by a look-up table.
This approach achieved an efficient balanced trade-off between the two, thereby improving
the system’s overall performance. To fulfill the demands of increased capacity, faster data
rates, and better quality of service in next-generation networks, the adoption of energy-
efficient architectures is necessary [25]. Additionally, reducing the power consumption in
wireless networks is important with respect to environmental and social responsibility, as
reducing the carbon footprint is a pressing issue. Thus, green communication has become a
critical need.

In situations where congestion is not complete, the power optimization for low in-
terference and throughput enhancement (POLITE) approach can significantly reduce the
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transmission power of active cells. Furthermore, the design of POLITE allows compatibility
with other MAC components, such as scheduling and beam selection techniques, making
its implementation in real-world systems both practical and possible. The experiment
showcased the impact of various traffic loads managed by base link adaptation (BLA) and
POLITE [26], emphasizing the latter’s benefits in terms of reduced power consumption,
decreased interference, and enhanced capacity in densely populated cells.

The rapid growth of connected devices and mobile terminals in IoT networks is
putting a significant strain on energy consumption, leading to concerns about energy
sustainability. To address this challenge, a dynamic energy management model was
presented in the paper [27] that aimed to improve the energy efficiency. Two new user
scheduling strategies combined with power optimization resulted in enhanced network
performance. The network efficiency was evaluated for a number of APs and by examining
the performance of various precoding techniques. The study compared the results of
various power allocation techniques, and it was proposed that the APs can utilize these
algorithms to regulate the power distribution to user nodes.

Cooperative relay (CR) is a cost-effective solution for improving spectral efficiency and
expanding cell coverage. However, its widespread use can result in high power consump-
tion due to the large number of relay nodes (RNs) used in the network. Furthermore, full
channel state information (CSI) is not always available in dynamic environments, leading to
increased overhead delay and power consumption if the RNs cannot quickly adjust to the
channel changes. To tackle these challenges, the modified genetic algorithm (modified GA)
described in [28] integrated the probability-based selection rules and fitness evaluations.
The performance was measured using the symbol error rate (SER), network capacity, energy
consumption, and power improvement metrics.

2.2. Power Optimization Issues in 5G

The effectiveness of a cognitive radio (CR) network can be gauged by several QoS
metrics, including energy consumption, power improvement, network capacity, and the
SER. However, in a CR network, the addition of RNs to the BS often results in a gradual
increase in the power consumption. To mitigate this issue, several power allocation (PA)
schemes can be utilized, such as equal PA, the particle swarm optimization (PSO) algorithm,
and the GA-based optimization scheme [29–31].

Power optimization is an important concern in designing and deploying 5G networks,
as 5G systems are expected to consume significantly more power than previous genera-
tions of mobile networks. Some specific power optimization issues that may arise in 5G
networks include:

1. High power consumption of 5G access points: The implementation of 5G technology
has already begun globally in a non-standalone setup along with Long-Term Evolution
(LTE) macro-structures. However, LTE has shortcomings for long-term use, and 5G’s
electronic design aims to conserve energy in idle states through reduced transmissions
in an always-on mode, compared to LTE’s brief sleep time of less than 1ms and limited
fast activation components. In a standalone setup, the large projected device density of
one-million per square kilometer would put a significant strain on the 5G base station
in a cell sector, presenting a challenge in terms of reducing energy consumption and
ensuring the network’s sustainability. Two revised power consumption models [32]
that precisely reflect the energy usage of a 5G base station in a standalone network
have been proposed. A new routing protocol has also been introduced to distribute
the load across base stations during inter-cellular communication evenly. The trade-
off between latency and power consumption is considered to create a sustainable
5G network that meets the quality of service requirements, taking into account the
energy-intensive nature of reducing power dissipation.

2. Power optimization of small cells: With the expected surge in 5G users, there will
be a significant increase in power usage for transmitters and receivers. Researchers
are looking for ways to optimize power consumption. One approach to optimizing
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the algorithm design is the application of convex optimization. A mathematical
method for deploying small cell access points [33] has been proposed to reduce energy
consumption in massive MIMO and small cell environments.

3. Power optimization of user equipment: The increased number of 5G users is expected
to result in higher power consumption by user equipment such as smartphones and
tablets. It is essential to optimize the power consumption of user equipment in or-
der to extend the battery life and decrease the overall energy consumption of the
5G network. Various approaches can be employed to tackle these power optimiza-
tion challenges in 5G networks, including enhanced power management algorithms,
advanced hardware design, and the implementation of energy-efficient components.

3. Motivation and Contribution

In the context of massive IoT, many devices are connected to the Internet and in-
teract with one another to share and gather information. This requires a large amount
of bandwidth and a high data rate. An increase in data-hungry applications drains the
battery-powered IoT nodes at a higher rate, leading to the battery drainage and energy
exhaustion challenges. Hence, the current research needs a sustainable energy solution for
future wireless networks. This paper proposes a weight-based user-scheduling algorithm
and a genetic-algorithm-based power optimization model in a multi-tier heterogeneous
network. The SIC-based interference cancellation technique was used at the receiving end
to mitigate the interference challenges.

The key contributions are as follows:

• A modified genetic-algorithm-based optimization model is proposed to allocate opti-
mal power with which a particular access point transmits to a specific user to increase
network efficiency.

• A weighted user-scheduling algorithm is proposed, which takes both the distances
and received signal strength into account to select a user for downlink transmission.

• The suggested algorithms were evaluated for their effectiveness and compared with
other techniques, including those based on particle swarm optimization, equal power,
and genetic algorithms.

4. System Model

The system architecture includes APs, relay nodes, cellular users, and D2D devices as
shown in Figure 1. The placement of network components was randomly dispersed within
a geographical area using a Poisson point process. The Poisson point processes for the relay
nodes, cellular users, and D2D users are represented by ϕR, ϕCU , and ϕD, respectively. The
given area is served by the APs with a total of U single-antenna users distributed all over
the network. Users were assigned to APs based on their needs, with each AP serving a
specific group of users. The densities of the relay nodes, cellular users, and device-to-device
users are represented by λR, λCU , and λD, respectively. In our network, we considered
various channels, including the channel from an access point to a relay node |HAPi ,Ri |, the
channel from relay to relay |HRj ,Ri |, the channel from the relay to the cellular user |HRj ,CUi |,
the channel from the cellular to the relay user |HCUj ,Ri |, the channel from the cellular to the
cellular user |HCUi ,CUi |, and the channel from the D2D to the cellular user |HDi ,CUj |, all of
which experience Rician fading with an exponent of σ and a path loss exponent of γ. The
notations used in paper and their descriptions are provided in Table 1.
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Table 1. Notations and their descriptions.

Notation Description

ϕR PPP of relay nodes
ϕCU PPP of cellular users
ϕD PPP of D2D users
γ path loss exponent

h, f , g fading factor
ρAP transmission power of access point
ρR transmission power of relay node

ρCU transmission power of cellular user
xAP transmit signal of access point
xR transmit signal from relay station
λR density of relay nodes

λCU density of cellular user
λD density of D2D users
xCU transmit signal at cellular user

HAPi ,Ri channel between access point to relay node
HRj ,Ri channel between relay node to relay node

HRj ,CUi channel between relay node to cellular user
HCUj ,Ri channel between cellular user to relay node

HCUi ,CUi channel between cellular to cellular user
HDi ,CUj channel between device-to-device to cellular user

yR received signal
PA,R path loss between access point and relay node
PR,R path loss between relay nodes
nR received noise

PR,U path loss between relay nodes and cellular user
PU,U path loss between cellular users
zDj D2D user signal

SIRT SIR threshold

Ieq(k)
CUi

total interference at the cellular user

4.1. Channel Model

The access point APi transmits the information signal xAPi , which is connected via
relay node Ri. It is fed with multiple signals yR, including the desired signal (DS) from
access points through a channel with path loss PA,R between the access point and relay
nodes, the inter-relay interference (IRI) from Rj through the channel |HRj ,Ri | with path loss
PR,R between relay nodes, the relay self-interference (RSI) through the channel |HRi ,Ri |, and
the received noise nR. To acquire channel estimates, a total of lp pilots are transmitted in
the uplink, which are mutually orthogonal. The channel coefficients for the downlink are
obtained by assuming channel reciprocity.

4.2. Successive Interference Cancellation Technique

Successive interference cancellation (SIC) is a well-studied technique for canceling
interference in wireless networks with room for enhancement. It works by recreating the
interfering signals and then removing them from the received combined signal, thereby
enhancing the desired signal’s signal-to-interference ratio (SIR). The SIC receiver technique
shown in Figure 2. starts by decoding the strongest interfering signal while considering
other signals as noise. It then regenerates the analog signal from the decoded information
and subtracts it from the received combined signal. This results in the desired signal
being free from the strongest interfering signal. The receiver then moves on to decoding,
regenerating, and canceling the second-strongest interfering signal from the remaining
signal, repeating this process until the desired signal can be successfully decoded.
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4.3. SIR Calculation with and without Interference Cancellation Technique

The cellular user link comprises two stages: the connection from the AP to the RN
and the connection from the RN to the CU. In this context, we determine the SINR for the
first link between the AP and RN. The received signal at Ri is a combination of the desired
signal plus all the interference from the surrounding RNs.

IRI =
√

ρRj PR,Rα−
γ
2 ‖ HRj ,Ri ‖ xRj (1)

RSI =
√

ρRi ‖ HRi ,Ri ‖ xRi (2)

DS =
√

ρAPi PA,Rα−
γ
2 ‖ HAPi ,Ri ‖ xAPi (3)

yRi = DS + RSI + IRI + ηRi (4)

Figure 1. Multi-tier heterogeneous network.

The first part of the equation represents the desired signal from APi plus the noise
received at Ri; the second part represents the RSI, and the third part represents the inter-
relay interference (IRI) from the neighboring relay node Rj. Given the received signal, the
SINR at Ri is calculatedas

SINRRi =
ρAPi PA,Rα

−γ
i ‖ HAPi ,Ri ‖

2

IRi + ηRi

(5)

where IRi is the total interference at Ri, which includes both the RSI and IRI.

IRi =
√

ρRi ‖ HRi ,Ri ‖ xRi +
√

ρRj PR,Rα−
γ
2 ‖ HRj ,Ri ‖ xRj (6)

For the second hop, from the RN to the CU, the received signal at CUi is composed
of the desired signal from Ri plus the noise received, the relay-to-user interference (RUI)
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from Rj, the cellular-to-cellular interference (CCI) from CUj, and the cellular-to-device
interference (CDI) from Dj.

Figure 2. Block diagram of the SIC technique.

The SINR at CUi is determined from the received signal.

SINRCUi =
ρRi PR,Ch−γ

i ‖ HRi ,CUi ‖
2

ICUi + ηCUi

(7)

where ICUi is the total interference at CUi, which encompasses the RUI [34], the CCI, and
the CDI [35,36]. The SINR is calculated as the ratio of the desired signal to the interference
from various network elements. The RUI, CDI, and CCI are estimated as

RUI =
√

ρRj PR,Ch−γ/2 ‖ HRj ,CUi ‖ xRj (8)

CDI = ∑
yj∈λCU

√
ρCUj PC,D f−γ/2 ‖ HCUjCUi ‖ yDj (9)

CCI = ∑
zj∈λCU

√
ρCUj PC,Cg−γ/2 ‖ HCUjCUi ‖ zCUj (10)

ICUi = RUI + CDI + CCI (11)

For a given network, The total SINR at CUi is the cumulative product of the SINR at
Ri and CUi and can be represented as

SINRTCUi
= SINRRi ∗ SINRCUi (12)

In our network, due to several interferences from nearby devices, the environment is
considered to be interference-limited; therefore, noise can be neglected.

SINRTCUi
= SIRTCUi =

ρRi PR,Ch−γ
i ‖ Ho ‖2

ITCUi

(13)
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where ITCUi is the combination of all the interferences from the other relay nodes, D2D
users, and cellular users. Ho is the combination of HAPi ,Ri and HRi ,CUi .

The SIR for the interference cancellation technique is estimated by examining its impact
on cellular users CUi. The total interference at CUi includes the summation of the RUI, CCI,
and CDI. As the k strongest equivalent interferers have been canceled, the received SIR at the
cellular user can be estimated by comparing it with Equation (13).

SIRk
CUi

=
ρRi PR,Ch−γ

i ‖ Ho ‖2

Ieq(k)
CUi

(14)

where Ieq(k)
CUi

is the cumulative interferences at the cellular user from the kth strongest
interferer. Hence, Equation (14) shows the SIR for the kth strongest equivalent interferer,
while k− 1 stronger interferers have already been canceled.

5. Power Optimization

Power optimization involves assigning the optimal power to the users by the access
points. The symbol ρmax represents the maximum transmit power of the access point. The
user distance or channel conditions are used by the AP to determine the power allocation to
different users. The downlink power coefficients ρCU are defined as [ρCU1 , ρCU2 . . . ρCUn ]

T .
The power allocated to the nth cellular user by all the serving APs is represented by ρCUn .
The SIR estimated in the downlink is dependent on ρCU and can be represented as follows,
based on various power allocation [27] methods:

• Equal power allocation: The equal power allocation scheme assigns the same power
to all the users served by an access point. Each AP can serve a maximum of lx users,
and hence, the power for each user is assigned as follows:

ρCUn =
ρmax

lx
(15)

• Fractional power allocation: The fraction of power is allocated to users within a
serving AP and is proportional to the channel gains.

ρCUn = ρmax
(∑aεAu βua)µ

maxiεAu(∑aεAi
βia)µ (16)

where the channel gains are βua; a 3GPP urban microcell large-scale fading model [37]
is given as

βua[dB] = −30.5− 36.7log10
dua

1 m
+ Fua (17)

Here, Fua represents shadow fading, and dua is the distance between UE u and access
point a. µ is a variable that influences the power allocation behavior.

• GA-based power allocation: The goal of the design is to reduce the total power used
by the users while still meeting their required SIR. This design provides a flexible
relaying strategy that can satisfy each user’s needs and achieve the desired quality of
service. The problem of minimizing the total power at the UEs while meeting their
desired SIR targets is stated as

min
n

∑
i=1

ρCUi (18)

The power at each user equipment with optimized weighting can be represented as

ρCUi = wiρi (19)
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The goal is to find the best values of the weights, wi, that minimize the total power in a
network with different types of users, by using the power amplification factor, ρi, at each
UE, subject to SIRCUi > SIRT , where SIRT is the SIR threshold at the UE.

6. Proposed Algorithm

This section introduces a scheduling algorithm that uses weights to determine to
which access point a user is assigned. The probable users are chosen based on the distance
and received signal strength between the user and the access point.

Weight-Based User-Scheduling Algorithm

Various scheduling algorithms have been proposed that consider the minimum dis-
tance between a user and an access point and the maximum channel gain between a user
and an access point to improve network efficiency. The scenario under consideration
involves a multi-layer heterogeneous network with a large number of APs located in a
specific geographical area. Each AP serves a portion of the total number of users (CU)
distributed randomly within the network, with a group of users referred to as CUa .

The flowchart of Weight-based user-scheduling algorithm is depicted in Figure 3.
Let us consider {CU1 , CU2 , CU3 , . . . , CUA} the subset of users assigned to a group of APs
{1, 2, . . . A}. The pilot channels are sent to obtain the channel estimates before sending
the data in the downlink. In the communication scenario under consideration, a large
number of APs are deployed in a certain geographical area, and a group of randomly
distributed users is served by the APs in the network. A set of lx mutually orthogonal
pilot sequences is transmitted in the uplink to minimize interference from subsequent
pilot transmissions. The pilot assignment to users starts by selecting an AP, a∗. In the
weight-based user-scheduling Algorithm 1, the access point uses a hybrid approach that
considers both the distance and received signal strength indicator (RSSI) of each user. The
RSSI value of each user is frequently monitored by its serving and neighboring access
point. A weight is then assigned to both the distance and RSSI. Finally, the user with the
maximum value is assigned a subset of particular access points. Consider wd the weight
assigned to the distance and wβ the weight assigned to the RSSI value. To estimate the RSSI,
the Alpha-Beta-Gamma (ABG) path loss model [38] is used and is given by

PLABG( f , d)[dB] = 10αAlog10(
dua

1 m
) + βB + 10γGlog10(

f
1 GHz

) + χABG
σ (20)

where PLABG( f , d)[dB] denotes the path loss in dB over the frequency and distance, αA and
γG are the coefficients, which are dependent on the frequency and distance, respectively,
and βB is the optimized set value for path loss in dB. χABG

σ is the standard deviation
describing the large signal fluctuations about the mean path loss over the distance.

Rua = ρCUi − PLABG( f , d) (21)

where ρCUi represents the power allocated to the ith cellular user by all the serving APs.
For each user u, the access point Ai calculates a value that is given by the equation:

τua = wdGua + wβRua (22)

where Gua denotes the free space loss in decibels between the access point and the user. f
is the frequency of communication. Rua denotes the RSSI value between the access point
and user.

Gua [dB] = 20log10(dua)km + 20log10( f )− 147.55 (23)

A user with a maximum value of τua , max(τua), is selected by the AP. This process
repeats until the APs select all the user subsets.
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Algorithm 1 Weight-based user-scheduling algorithm.
Input: A, lp, CU
Output: CUa , aε{1, 2, . . . A}
Initialization: {CU1 = CU2 = . . . = CUA = φ}

y← 1
X ← x
N ← n
while u < lx do

lu← u
while u > lx do

find a∗
a∗ ← max(τua)

l
′ ← argminlε{1,2,...,lx} ∑u−1

i=1,li=l βia∗

lu ← l
′

c = 1
while c < A do

c = c+1
l = 1
while l < lx do

l = l+1
i← argmaxuε{1,2,...,CU}τua

CUi ← CUi ∪ {u}
end while

end while
end while

end while

Figure 3. Flowchart of weighted user-scheduling algorithm.

7. Genetic Algorithm

The genetic algorithm (GA) is a type of evolutionary algorithm, which was inspired
by biological evolution. In biological evolution, the process involves choosing parents
and with the ultimate goal of producing offspring that are biologically superior to their
parents through reproduction and mutation. The fundamental idea is to choose the most-
exceptional individuals as parents from a group and then extend their lineage by generating
new chromosomes through the exchange or blending of genes from healthier parents,
a process referred to as crossover. The genes are then mutated, and this process leads to a
healthier generation. The performance of chromosomes and fitness is evaluated using a
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cost function in which the best genes are selected using this function. The new generation is
created from parent chromosomes after crossover and mutation, ensuring that the children’s
chromosomes satisfy the fitness function. The use of GA was motivated by the following
characteristics [39]:

• Versatility: GAs are utilized to tackle complex issues that possess large search spaces.
GAs excel at traversing extensive areas and quickly discovering the best-possible
solution. Although GAs do not promise the optimal solution, they are beneficial to
prevent local optima with a high likelihood.

• Ability to find good building blocks: The GA operates within a population composed
of numerous chromosomes, allowing it to form various solutions in order to identify
the building blocks. Chromosomes are referred to as building blocks, and in biological
terms, the genes are mixed and interchanged to form healthier offspring out of the
parent chromosomes. These chromosomes again act as a parent and reproduce new
offspring. In this way, a GA can evolve to better solutions through a series of biological
events to form good building blocks.

• Support for multi-objective function: The GA optimization problem supports multiple
parameters since real-time practical problems in various wireless networks require solving
more than one parameter. In practical scenarios involving wireless networks, the objectives
in a multi-objective function may potentially contradict each other.

• Parallel nature and scalability: The GA uses evolutionary approaches to test, improve,
and produce new solutions using various techniques such as selection, crossover, mutation,
and recombination. These parallel approaches in the GA help it become a suitable
framework for optimization and solve various scalable problems in wireless networks.

• Support for global optimization: The GA supports global optimization, which involves
finding the optimal solution to problems containing local optima and is suited to
global optimization because of a number of properties: (1) searching by means of
a population of individuals; (2) encoding multiple parameters; (3) using a fitness
function to evaluate its merit; (4) probabilistic search.

8. Optimization Using the Modified GA Approach

A GA is a form of heuristic search that falls under the category of evolutionary
algorithms. It is used to tackle search and optimization problems. The natural evolutionary
processes, such as inheritance, mutation, selection, and crossover, inspired the approach of
the GA. The modified GA is a type of GA that has a different approach to clustering. At each
iteration, the modified GA groups the fittest chromosomes, which then again reproduce
offspring chromosomes. In the modified GA, the best solution is computed that moves
closer to the optimal solution in every iteration. The next best chromosomes are selected
based on selection, crossover, and mutation. After these processes, the chromosomes with
low fitness values are eliminated and only high-quality chromosomes go forward to the
next step, which then again act as the parent chromosomes. In crossover, the chromosomes
are mixed to produce stronger chromosomes, which inherit the properties from the parents,
and then, the genes of the chromosomes are mutated, which is controlled by a mutation
parameter and the step size. Lastly, elitism helps prevent the loss of the best chromosomes
in the current iteration.

In the modified GA, chromosomes are called solutions and the value of the solutions is
evaluated by a fitness function as either “good” or “bad”. The solutions that are “good” can
move forward to the next step and are then used to form a new set of solutions, whereas
the “bad” solutions are terminated. This new set of solutions again reproduces a set of
solutions through the same process and then has to pass the test at each iteration. This
cycle is repeated until an optimal solution is found. Once the optimal solution is found, it
provides us the best cost. The illustration in Figure 4. depicts the proposed modified GA
approach. The important elements of the modified GA are explained further below.
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Figure 4. Flowchart of the modified GA.

8.1. Population Size

The population size refers to the number of individuals in each iteration and must be
determined based on the extent of the search area. A larger population size results in a
more precise search of the solution space, but a too large population can lead to divergence.

8.2. Selection

The algorithm starts with a randomly generated population. The population of size N
is selected, and a dictionary is created to hold the population. Each individual is associated
with chromosomes (positions) and a cost function. Each position in a chromosome is filled
with randomly generated values between the lower limit of −1 and the upper limit of +1,
which are called genes. Among the various selection methods, the roulette wheel was
adopted, where the probability of individuals is calculated as

Pi =
Fi

∑N
i=1 Fi

(24)

where Fi is the fitness function and N is the population size. In order to increase the average
fitness of the population, a new population is generated from the previous one. It has a
higher probability to be included in the new generation depending on the fitness value of
the chromosomes. The fitness value is computed for each chromosome as ∑n

i=1 Fi.
The fitness function Fi is given by

Fi = min
N

∑
i=1

ρCUi (25)
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In Figure 5. entire set of boxes outlined in green color is a chromosome. A chromosome
is made up of genes. The green colored box within a chromosome is called a gene and
collection of chromosomes is called a population.

Figure 5. Selection process.

8.3. Crossover Operation

Crossover is a process in which genes are exchanged between two chromosomes to
create a new population. In the current generation, crossover occurs at designated points,
chosen randomly, and can take place at multiple points. The probability of crossover,
typically set at a high value between 80% and 95%, controls the crossover operation and
aims to enhance the genes in the chromosome structure. We considered a uniform crossover
operation for our optimization algorithm. The chromosomes from two parents are inherited
to create the offspring chromosomes. In this operation showin in Figure 6, each gene from
Parent 1 is multiplied by θ and by (1− θ) for Parent 2, and then, results are added to
generate a single gene of the offspring chromosome, where θ is the crossover rate. The
operation for crossover is explained in Algorithm 2, in which a set of Chromosomes
C = {C1, C2, C3 . . . Cn} and N (Population size) is taken as input. The loop executes for
each population and from each population n chromosomes are chosen for crossover process.
The output is then the offsprings which are stronger and better than their parents.

Figure 6. Crossover operation.
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Algorithm 2 Crossover operation.
Input: C = {C1, C2, C3 . . . Cn}, N
i = 0

while (i < N) do
i = i + 1
P1i = Ci;
P2i = Ci+1;
θi = random value between −1 and 1;
C1i = P1i ∗ θi + (1− θi) ∗ P2i

end while

8.4. Mutation Parameter

Mutating the chromosomes is necessary in genetic algorithms because it may result in
a revolutionary solution that can solve our complex problems more efficiently. It consists
of three parameters: child chromosomes, the mutation rate (m), and the step size (∆). The
mutation rate is used to define the number of genes in a child chromosome that will undergo
mutation. A random value is generated, which is compared to that of the mutation rate,
and if the value is less than the mutation rate, new genes are generated by multiplying the
original gene value by the step size. In Figure 7, the genes in blue are the chromosomes that
are to be mutated and are multiplied by the step size, which results in a mutated chromosome.
Algorithm 3 takes a number of chromosomes (n), mutation rate (m), step size (∆) as input and
loops over each chromosome. If a random number generated is less than a mutation factor a
gene gets multiplied by a step and this process is repeated for each chromosome.

Figure 7. Mutation operation.

Algorithm 3 Mutation operation.
Input: Ci, m, ∆, n (number of chromosomes)
i = 0

while (i<n) do
generate a random number V
if (V < m)

Cik = Cik ∗ ∆
end if
i = i + 1

end while

8.5. Elitism

Elitism selects some of the strongest chromosomes from the population and ensures
that they are carried over to the next iteration unchanged, without undergoing any other GA
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operations such as crossover or mutation. This prevents the loss of the best chromosomes
in that iteration. By utilizing elitism, the fittest chromosomes from the current generation
are automatically included in the next iteration. In the modified GA, the constraints are
formulated as follows:

1. Bound constraint: 0 ≤ ρCUi ≤ ρmax
2. Linear constraint: SIRCUi > SIRT

Algorithm 4, shows the process of modified GA used for power optimization model.
Population size, number of chromosomes and number of genes in a chromosome are taken
as input parameter and optimum weights are returned as output. Initial population of size
N is generated and random weights between −1 and 1 are initialized to each chromosome
and binary encoded. The fitness of each chromosome is computed until a criteria for a
fitness function is met. The function of selection, crossover and mutation takes place in a
loop and in each loop fitness function is checked and then finally returns optimum weights.

Algorithm 4 Power optimization model using the modified GA.
Input: N (population size), n (number of randomly selected chromosomes), k (number of
genes in a chromosome)
Output: optimum weights wik
Initialization: gen = 0, r = 0.85 (crossover fraction)
random weights assigned to each chromosome: wik
Generate the initial population
Binary Encode
Compute f itness(i) f or each i ∈ wik

while (fitness criteria are not met) do
gen = gen + 1
roulette wheel selection
crossover
mutation
compute fitness (i) for each i ∈ wik

end while
Return the fittest individual from wik

9. Results and Discussion

This paper evaluated the performance of the suggested model by using a power
optimization technique. The optimal weight was calculated to improve the system’s
performance. The simulation was performed using MATLAB. The power transmission of
the access point and the relay node was fixed at 43 dBm and 23 dBm, respectively. A Monte
Carlo simulation with 5000 iterations was carried out. The simulation model involved
multiple macrocell and multiple femtocells, picocells, and users evenly spread out within
the coverage area of the macrocell as shown in Figure 8. A network area of 2.5 × 2.5 km
with 100–400 randomly placed access points was utilized. The users were evenly spread
within the coverage area. The simulation was run with different parameter variations and
power optimization techniques. The PLABG( f , d)[dB] in Equation (20) was utilized for the
path losses PA,R (access point to relay node), PR,R (relay to relay node), and PR,U (relay to
user node) for the implementation in the MATLAB simulation. The simulation parameters
are listed below in Table 2.

SIRT is an important metric for ensuring the reliability of wireless communication
systems and is used in conjunction with the SIR to maintain a minimum quality threshold
for a reliable communication. When the SIR decreases below a given threshold, the signal
becomes weak and is unable to be detected at the receiver, leading to errors. Hence, the
condition (SIRCUi ≥ SIRT) should be met for the proper communication between a pair of
a transmitter and a receiver. The SIR is a bottleneck for any transmitter and receiver pair in
wireless networks. We made the assumption that the background noise is zero, and hence,
the SINR is equal to the SIR. For a successful transmission, the SIR of each cellular user
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SIRCUi should be greater than the SIR threshold SIRT . The condition (SIRCUi ≥ SIRT) is
also known as the coverage probability. Hence, SIRT is set for a given system, and then,
performance metrics such as power consumption and spectral efficiency are calculated for
those users that meet the condition (SIRCUi ≥ SIRT). Similarly, the power consumption
and spectral efficiency are calculated for a set of SIRT and plotted.

Table 2. Parameter specification.

Parameter Default Value

Frequency (f) 2.3 GHz
Bandwidth 20 MHz

Tc (Coherence time) 2 ms
Bc (Coherence bandwidth) 100 kHz

A 100
σ2 −94 dBm

Transmit power 46 dBm
Fading model Rayleigh fading

Path loss exponent 3
Transmission range 500 m

SIR threshold (SIRT) −10 dB to 30 dB
Transmit antenna 2
Receive antenna 2
Population size 50

Crossover fraction 0.85
Mutation probability 1

Function tolerance 1× 108

Iteration 100
wd 0.5
wβ 0.5
αA 2
βB 31.4 dB
γG 2.1
σX 2.9 dB

A comparison of various related works with proposed algorithm has been done and is
presented in tabular format in Table 3. In table, it points out the methodology, strategies,
algorithms and performance metrics that has been used in related works as compared to
that of proposed model.

Figure 9 shows that the modified genetic algorithm converged faster than the other
algorithms and the best cost for the modified GA was 0.000013698. The modified GA
evaluates solutions as chromosomes, classifying them as “good” or “bad” based on the
fitness function. The proposed algorithm’s results indicated that it reduced the power
consumption and increased the network spectral efficiency, as compared to other methods
such as equal power allocation, particle swarm optimization, and genetic algorithm.

Figure 8. Simulation model of a heterogeneous network.
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Table 3. Comparison table.

Reference Related Works Proposed Work

[24]

1. A fuzzy-based optimization was used to meet
the demands for a higher data rate and high
spectral efficiency.

2. Maximized the energy efficiency by optimizing the
transmission power.

3. Assumption of infinite battery capacities during
flooding, which is impractical.

1. A modified-GA-based optimization was proposed for
power optimization and high spectral efficiency.

2. Minimized the power at user nodes and increased the
spectral efficiency.

3. Battery capacity was limited and tried to optimize the
use of the battery of a cellular user.

[25]

1. Presented an energy-efficient architecture for
power optimization.

2. Analyzed the impact of carbon emissions on the life
cycle of the mobile device.

3. Handoff and coverage problems between adjacent
small cells impacted the energy efficiency (EE).

1. Presented a scheduling and optimization algorithm in
a heterogeneous environment.

2. Analyzed the minimization of the transmit power
and also met the QoS demands.

[27]

1. A fractional power allocation scheme was used along
with the minimum channel gain and minimum dis-
tance scheduling techniques.

2. A centralized transmit pre-coding scheme at the
downlink was used to cancel out interference.

3. Degradation in network performance with the spatial
correlation with both the maximal ration (MR) and lo-
cal partial minimum-mean-squared error (LPMMSE).

1. The modified genetic algorithm (GA) along with a
weighted user scheduling technique was used.

2. A mathematical model for the successive interference
cancellation technique was used to suppress interfer-
ence in a multi-tier heterogeneous network.

3. Improved the network performance with both the GA
and scheduling approach.

[28]

1. A cooperative-relay-based technique along with GA-
based power optimization.

2. Increased spectral efficiency and enhanced the cover-
age area.

3. The optimization algorithm took a longer time to
converge when the number of relay nodes increased.

1. Minimized the power of the cellular user, and the
optimization took place at the access points.

2. Enhanced spectral efficiency by the use of the interfer-
ence cancellation technique and also improved the trans-
mission success probability.

3. The convergence rate was higher since the schedul-
ing algorithm checked the number of users that can
access the channel.

Figure 9. Best Cost vs. Iteration using various optimization techniques.
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9.1. Power Consumption Performance

As 5G networks require much less energy to transmit the same data as 4G, they are
more efficient in the ratio of power consumption to traffic. However, 5G’s higher speed
and bandwidth might also increase the number of devices using the network extensively;
this could become a problem. In particular, IoT devices equipped with multiple sensors can
present a challenge due to their constant transmission of large amounts of data, as they are
not connected to the electrical grid. On the other hand, a sensor that transmits data seldom
can do this sporadically in a 5G network, while in 4G environments, it has to be constantly
transmitting. Likewise, while 5G’s power consumption will require more access points per
square kilometer, these will only need as much power as required—whereas predecessor
networks were always “on”.

In this section, the power consumption of a network is analyzed based on the number
of users and the signal-to-interference ratio threshold (SIRT) using various power opti-
mization techniques in the proposed model. Power optimization refers to finding the best
weights for transmitting access points to each user, increasing the spectral efficiency. Three
different optimization techniques, (i) particle swarm optimization, (ii) the genetic algorithm,
and (iii) the modified genetic algorithm, were used to optimize the weights with which
the access point transmits to each user. Each user selects the access point according to the
proposed user-scheduling algorithm, and then, the access point assigns an optimal power
for downlink transmission, then this power is calculated, which is shown in Figure 10. The
graph shows that the downlink power consumption for each access point increases with
the increase in the number of users attached to a given access point. SIC-based hybrid
transmit precoding is used to cancel out interference in multi-tier heterogeneous networks.
However, transmitting data from an AP to one user can interfere with neighboring users.
This interference can be mitigated by using an SIC-based receiver, but it still contributes
to the overall energy consumption during the data capture and communication processes.
The energy consumption from transmission and reception is modeled as

Erx(b) = Eelecb (26)

Etx(d, b) = Eelecb + Eampbdn (27)

where Eelec represents the electronic transmission energy, Eamp represents the amplification
energy, d represents the distance between the transmitter and receiver, b represents the
number of bits, and n represents the path loss exponent. The power consumption of each
user for a given period of time t is now calculated as

Ptot =
Etot

t
=

Erx(b) + Etx(d, b)
t

(28)

As the number of nodes increases, the users’ power consumption also increases. This
is because there is more interference and more transmission is required to achieve the
desired signal-to-interference ratio threshold. Power consumption is lower for the modified
genetic algorithm as it optimizes the weights and transmission power. It shows that the
power consumption for equal power allocation is the highest as it allocates equal power to
all the users irrespective of the distance and channel gain.

In Figure 11, the SIR threshold is gradually increased from −5 dB to 20 dB, and then,
the power consumption is evaluated for the fixed number of users. The number of users was
fixed to be 50. The result showed that the power consumption from−5 dB to 5 dB remained
almost constant using all of three optimization techniques because the given SIR threshold
can be achieved with less power; hence, the power consumption was lower at a lesser
SIR threshold. As the SIR threshold increased, power consumption also increased. For an
SIR threshold greater than 5 dB, the power consumption increased exponentially because
more power was required for transmission to achieve the given threshold and maintain
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the quality of service. The figure shows that the power consumption using the modified
genetic algorithm was relatively lower than the other two optimization algorithms.

Figure 10. Power consumption vs. number of users for different optimization techniques.

Figure 11. Power consumption vs. the SIRT for different Power optimization techniques.

9.2. Spectral Efficiency Performance

The average spectral efficiency [40] is determined by dividing the total throughput of
all users by the effective bandwidth and the number of transreceivers (TRx ). If there are
N users, each with M TRx , and they are transmitting with a BW effective bandwidth, the
average spectral efficiency νavg can be calculated as follows:

νavg =
∑N

i=1 Ri(T)
T.BW.M

(29)
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where Ri(T) is the number of correctly received bits by user i over a period of time T and
BW is the bandwidth. In our proposed weight-based user-scheduling algorithm, we took into
consideration both the distance and received signal strength to select a user by a particular
access point. Basically, for downlink transmission, low transmission power is allocated to
the user near the base station and high power is assigned to the user away from the base
station [41]. Similarly, transmission power is allocated based on the channel gain of the user. If a
user has a low channel gain, he/she receives a high transmission power, and if a user has a high
one, he/she receives a low transmission power. Boosting the transmission power improves
the data rate and signal-to-noise ratio and increases interference to nearby stations. Thus, it is
important to allocate the transmission power optimally to enhance the network efficiency.

Thus, this paper considered both the distance and received signal strength for a user
to select an access point. Equal weight is provided to both the distance and received signal
strength, and the base station calculates the resultant value depending on which access
point decides which user to be selected. The weight is essential in selecting a user and
improving the spectral efficiency. In our research, we took equal weights; however, future
work can study the varying of the weight.

Here, throughput increased with the increase in the signal-to-noise ratio of each
individual user, and hence, the spectral efficiency shown in Figure 12 increased, whereas
the power optimization was carried out to allocate the optimal power for each user; the
SIC-based receiver led to better interference suppression in a multi-tier heterogeneous
environment, resulting in improved spectral efficiency (SE) performance. The optimal
power allocation optimized the combined spectral efficiency of a set of users by allocating
the appropriate transmission power, resulting in increased spectral efficiency for most of
the users.

Figure 12. Spectral efficiency with respect to SIRT for different power optimization techniques.

In Figure 13, spectral efficiency is analyzed for three different scheduling algorithms
in a multi-tier heterogeneous network. The SIC-based receiver was used for a weight-
based scheduling algorithm, and optimal power allocation for the users associated with a
particular access point was performed using a modified genetic algorithm. In contrast, in the
minimum distance scheduling and maximum channel gain algorithm, the local minimum-
mean-squared error (LMMSE) precoding [27] technique was used. It uses fractional power
allocation for optimal power allocation. In the minimum distance scheduling algorithm, the
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user u is assigned to access point A∗ based on the shortest distance between them. The user
with the shortest distance is assigned the highest power, while the user with the farthest
distance is assigned the lowest power using fractional power allocation. Therefore, the
spectral efficiency is better for MDS at lower distances. In the case of maximum channel gain
scheduling (MCS) algorithm, the maximum power is allocated to the user with strong channel
conditions and the minimum power to users with the worst conditions. The weight-based
user-scheduling algorithm takes into account both the distance and received signal strength
and allocates optimal power using an iterative GA approach to increase the spectral efficiency.
The SIC-based interference cancellation technique is used at the receiver in order to mitigate
interference in a multi-tier heterogeneous network. Thus, the proposed method, which uses
weighting to assign different power levels to multiplexed users to minimize interference [42],
performed better in terms of spectral efficiency compared to the minimum distance scheduling
(MDS) and MCS algorithms.

Figure 13. Spectral efficiency with respect to SIRT for various user-scheduling algorithms.

10. Conclusions

In massive IoT networks, large numbers of devices are connected for various applica-
tions, and hence, the power consumption of these devices is a crucial factor in determining
sustainability and cost-effectiveness. The power consumption of such devices depends on
two main factors:

1. Types of devices: power-hungry applications and the type of sensors, communication,
and processing power consumption;

2. Communication frequency and data rate: a device will consume more power with
frequent communication at a high data rate

Hence, to minimize power in massive IoT networks, energy-efficient hardware and
power-saving strategies must be applied to low-power communicating protocols. To
decrease the energy consumption in devices with limited battery power, network providers
are seeking environmentally friendly energy solutions to fulfill the energy needs of these
networks. This paper presented an optimization technique along with a user-scheduling
algorithm that allocates optimal power to each user and increases the network performance.
A weight-based user-scheduling algorithm was proposed in which equal weights were
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assigned to the distance and received signal strength to select a set of users to be served
by each AP. A perfect CSI was assumed for downlink transmission, and the performance
of the proposed scheduling algorithm was evaluated with a modified genetic algorithm
for optimal power allocation. The performance was measured in terms of the power
consumption and spectral efficiency. The results showed the improvement in power
consumption with the use of the genetic approach, which helped in the optimal assignment
of powers to each users, so that the received SIR was always greater than SIRT . The current
research on the proposed weighted user-scheduling algorithm considered an equal weight;
however, further improvements can be made and the performance can be evaluated under
various weights. Moreover, the assignment of a proper weight helps in the enhancement of
the performance metrics.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
D2D Device-to-device
BS Base station
RAT Radio access technology
SIC Successive interference cancellation
EE Energy efficiency
SE Spectrum efficiency
SBS Small cell base station
POLITE Power optimization for low interference and throughput enhancement
BLA Baseline link adaptation
MDS Minimum distance scheduling
MCS Maximum channel gain scheduling
CR Cooperative relay
CSI Channel state information
SER Symbol error rate
PSO Particle swarm optimization
GA Genetic algorithm
LTE Long-Term Evolution
MIMO Multiple-input, multiple-output
SIR Signal-to-interference ratio
CU Cellular user
RUI Relay-to-user interference
CCI Cellular-to-cellular user interference
DDI Device-to-device interference
CDI Cellular-to-device interference
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