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Abstract: Wafer surface defect detection plays an important role in controlling product quality in
semiconductor manufacturing, which has become a research hotspot in computer vision. However,
the induction and summary of wafer defect detection methods in the existing review literature are not
thorough enough and lack an objective analysis and evaluation of the advantages and disadvantages
of various techniques, which is not conducive to the development of this research field. This paper
systematically analyzes the research progress of domestic and foreign scholars in the field of wafer
surface defect detection in recent years. Firstly, we introduce the classification of wafer surface
defect patterns and their causes. According to the different methods of feature extraction, the current
mainstream methods are divided into three categories: the methods based on image signal processing,
the methods based on machine learning, and the methods based on deep learning. Moreover, the
core ideas of representative algorithms are briefly introduced. Then, the innovations of each method
are compared and analyzed, and their limitations are discussed. Finally, we summarize the problems
and challenges in the current wafer surface defect detection task, the future research trends in this
field, and the new research ideas.

Keywords: wafer defect pattern; image processing; defect identification method; feature extraction

1. Introduction

Silicon wafers are used in the manufacturing of semiconductor chips. The required
patterns are formed on the wafers through lithography and other processes and are very
important carriers in the semiconductor chip manufacturing process. In the manufacturing
process, due to the influence of factors such as the environment and process parameters,
defects will be generated on the surface of the wafer, which will affect the yield of wafer
production. The accurate detection of wafer surface defects can accelerate the identifi-
cation of abnormal faults in the manufacturing process as well as the adjustment of the
manufacturing process, improve production efficiency, and reduce scrap rates.

Early detection of wafer surface defects is often performed manually by experienced
inspectors, which has problems such as low efficiency, poor accuracy, high cost, and strong
subjectivity, which are insufficient to meet the requirements of modern industrialized
products. At present, defect detection methods based on machine vision [1] have replaced
manual inspection in the field of wafer inspection. Traditional machine vision-based
defect detection methods often use manual feature extraction, which is inefficient. The
emergence of computer vision-based detection methods [2], especially the advent of neural
networks such as convolutional neural networks, has addressed the limitations of data
preprocessing, feature representation and extraction, and model learning strategies [3].
With their high efficiency, accuracy, low cost, and strong objectivity, neural networks have
rapidly developed and have been widely applied in the field of surface defect detection in
semiconductor wafers.

In recent years, with the development of electronic integrated circuits, such as smart
terminals and wireless communication facilities, and the promotion of Moore’s Law [4],
while the global demand for chips has increased, the accuracy of the lithography process
has increased. With the advancement of technology, process precision has reached below
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10 nm [5]. As a result, higher requirements have been placed on the yield of each process
step, posing greater challenges for defect detection techniques in wafer manufacturing.

This paper mainly summarizes the related research on wafer surface defect detection
algorithms, including traditional image processing, machine learning, and deep learning.
According to the characteristics of the algorithm, the relevant literature is summarized and
organized, and the problems and challenges faced in the field of wafer defect detection and
future development are prospected. This paper intends to help in the quick understand of
relevant methods and skills in the field of wafer surface defect detection.

2. Wafer Surface Defect Patterns

In actual production, there are many kinds of defects on wafers, and the shapes are
not uniform, which increases the difficulty of wafer defect detection. Among the types of
wafer defects, unpatterned wafer defects and patterned wafer defects are the two main
forms of wafer defects. These two defects are the main cause of chip failure. Unpatterned
wafer defects mostly occur in the pre-lithography stage of wafer production [6], which are
wafer defects caused by machine failures. The scratch defect is shown in Figure 1a, and the
particle contamination defect is shown in Figure 1b. Patterned wafer defects are mostly
found in the middle process of wafer production. Improper exposure time, development
time, and post-baking time lead to defects in photolithographic lines. Defects on the wafer
surface generated during micro/nano-fabrication of spiral excitation coils and fork-shaped
electrodes are shown in Figure 2. The open circuit defect is shown in Figure 2a, the short
circuit defect is shown in Figure 2b, the line contamination defect is shown in Figure 2c,
and the bite defect is shown in Figure 2d.
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Figure 2. (a) Open defects, (b) short defects, (c) line contamination, and (d) bite defects in a patterned
wafer defect map.

Due to the existence of the above-mentioned wafer defects, when the functional
integrity test of all the chips on the wafer is performed, chip failures may occur. The
chip engineer marks the test results with different colors to distinguish the position of the
chip. Under the influence of different operating processes, corresponding specific spatial
patterns will be generated on the wafer [7]. The wafer image data, i.e., the wafer map,
is thus generated. As stated by Hansen et al. [8] in 1997, defective chips usually have a
clustering phenomenon or show some systematic patterns, and this defect pattern usually
contains the necessary information on process conditions [9]. The wafer map can not only
reflect the integrity of the chip but also accurately describe the spatial position information
corresponding to the defect data. Wafer maps may exhibit spatial dependencies across
the wafer, and chip engineers can often trace the cause of defects and resolve problems
based on defect type. Mirza et al. [10] divided wafer map defect patterns into general
and local types, namely global random defects and local defects. The wafer map defect
pattern diagram is shown in Figure 3, the local defects are shown in Figure 3a, and the
global random defects are shown in Figure 3b. Global random defects are generated by
uncertain factors, which are uncontrollable factors without specific clustering phenomena,
such as dust particles in the environment. Global random defects can only be reduced
through long-term, incremental improvements or expensive equipment overhaul programs.
Localized defects are inherent to a system and are influenced by controllable factors during
the wafer production process, such as process parameters, equipment issues, and improper
operation. They appear on the wafer repeatedly and exhibit a certain level of clustering.
Identifying and classifying local defects to locate equipment anomalies and inappropriate
process parameters plays a vital role in improving the yield rate of wafer production.
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For wafer patterns with a large area, low feature size, low density, and low integration,
the lithography path can be observed with an electron microscope, and trace detection can
be performed directly. With the significant increase in the integration level of chip circuits,
it has become increasingly difficult to perform chip-level inspection. This is because as
integration level increases, the components on the chip become smaller, more complex, and
more densely packed, resulting in a greater number of potential defects [11]. These defects
are difficult to detect and repair through conventional inspection methods, requiring more
sophisticated and advanced detection technologies and tools.

The research on wafer maps is a hot topic in wafer defect detection [12–15]. Liu
Fengzhen of Tianjin University [16] researched wafer map defects caused by abnormal
lithography equipment. For the defects in the actual production process of wafers, we have
conducted in-depth research on photoresist, wafer dust particles, and wafer ring, scratch,
spherical, linear, and other defects through equipment experiments, aiming to find the cause
of defects to improve productivity. To determine the cause of wafer mode failure, Ming-Ju
Wu [11] et al. collected 811,457 real wafer maps from actual manufacturing and created
the WM-811K wafer map dataset, which is currently the most widely used wafer map.
Semiconductor domain experts annotated eight defect pattern types for approximately
20 percent of the wafer maps in this dataset. The eight types of wafer map defect patterns
are shown in Figure 4. Most of the articles cited in this review conducted their testing based
on this dataset.
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3. Wafer Surface Defect Detection Based on Image Signal Processing

Image signal processing is used to convert image signals into digital signals, which are
then processed via computer technology to achieve image transformation, enhancement,
and detection [17–19]. Commonly used in the field of wafer inspection are wavelet trans-
form (WT), spatial filtering (spatial filtering), and template matching (template matching).
This section mainly introduces the application of these three algorithms on wafer surface
defect detection. The comparison of image processing algorithms is shown in Table 1.

Table 1. Comparison of image processing algorithms.

Model Algorithm Innovation Limitation

Wavelet transform
[12,20–24]

The image can be decomposed into multiple resolutions
and presented as local sub-images with different spatial
frequencies. Anti-grain.

The selection of the threshold is very
dependent and the adaptability is poor.
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Table 1. Cont.

Model Algorithm Innovation Limitation

Spatial filtering [25–33] Based on spatial convolution, remove high-frequency
noise, and perform edge enhancement.

Performance depends on the threshold
parameter.

Template matching
[11,17,34–36]

The template matching algorithm has strong anti-noise
ability and fast calculation speed. Sensitive to feature object size.

3.1. Wavelet Transform

Wavelet transform (WT) [20] is a signal time–frequency analysis and processing tech-
nology. Firstly, the image signal is decomposed into different frequency subbands through a
filter to perform wavelet decomposition. Then, by calculating the mean, standard deviation,
or other statistical measures of the wavelet coefficients, each coefficient is analyzed to
detect any anomalies or defects. Anomalies or defects may manifest as sudden changes or
outliers in the wavelet coefficients. Based on the analysis results, pre-defined thresholds are
used to determine the defects and anomalies in the signal, and the location of the defect is
determined by identifying which time and frequency subband it is in. The diagram of the
wavelet decomposition principle is shown in Figure 5, where L represents low-frequency
information and H represents high-frequency information. Each time the image is decom-
posed, the image is decomposed into four frequency bands: LL, LH, HL, and HH. The
lower layer decomposition repeats the decomposition on the upper layer LL band. Wavelet
transform has good performance in boundary processing of wafer defect features [21] and
multi-scale edge detection [22].
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Yeh et al. [23] proposed a method based on two-dimensional wavelet transform
(2DWT), where the ratio between scale coefficients is calculated by a modified wavelet to
transform modulus (WTMS) for the localization of wafer defect pixels. By selecting the
appropriate wavelet base and support length, accurate detection of wafer defects using a
small amount of test data can be achieved. The image preprocessing stage takes a lot of
time, which seriously affects the detection speed. Wen-Ren Yang et al. [24] proposed an
online wafer microcrack detection system based on short-time discrete wavelet transform.
There is no need to preprocess the wafer image. By emitting a continuous pulsed laser beam
to the wafer surface, the reflected signal is collected by a space probe array, and analyzed
by discrete wavelet transform to determine the reflection characteristics of microcracks. In
the case of processing, it can also have a better detection effect on micro-cracks. A large
number of random wafer particles exist on the surface of polycrystalline solar wafers,
resulting in uneven texture in wafer sensing images. In response to this problem, Kim Y
et al. [12] proposed a surface inspection method based on wavelet transform to detect solar
wafer defects. To better distinguish defect edges from grain edges, the energy differences
of the wavelet detail subgraphs of two consecutive decomposition levels are used as
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weights to enhance the discriminative features proposed in each decomposition level. The
experimental results show that this method has a good detection effect on fingerprints and
stains, but the method is not effective on serious micro-crack defects with sharp edges, and
cannot be applied to all defects.

3.2. Spatial Filtering

Spatial filtering is a mature image enhancement technique [25], which is realized
by directly applying spatial convolution [26] on the gray value. The main role in image
processing is image denoising, which is divided into smoothing filters [27] and sharpening
filters [28], which are widely used in the field of defect detection. Figure 6 shows the
denoising effect of the median filter and mean filter in the image with added noise.
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Ohshige et al. [29] proposed a surface defect detection system based on spatial fre-
quency filtering techniques. The method can effectively detect submicron defects or foreign
particles on wafers. Effects of random defects in wafer manufacturing. C.H. Wang [30]
proposed a wafer defect detection method based on spatial filtering, entropy-fuzzy c-means,
and spectral clustering [31], which uses spatial filtering to denoise and extract defect re-
gions, which are obtained by entropy-fuzzy c-means [29] and spectral clustering [32]. A
hybrid algorithm combining mean and spectral clustering is used for defect classification.
It solves the problem that traditional statistical methods cannot extract defect patterns with
meaningful classification. For clustered defects in wafers, Chen SH et al. [33] developed a
software tool based on median filtering and clustering methods, and the proposed algo-
rithm effectively detected defect clusters. Often the performance of spatial filters is highly
parameter-dependent, and it is often difficult to choose their values.
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3.3. Template Matching

Template matching [36,37] detection is achieved by calculating the similarity between
the template image and the image under test, to detect the difference area between the
image under test and the template image.

Han H [36] et al. obtained templates from the wafer image itself mixed into the design
layout scheme of the wafer fabrication process and used the mapping between the physical
space and the pixel space to design a wafer image detection technology that combines
existing a new method for circle template matching detection. Xifeng Liu [16] combined
the SURF image registration algorithm to achieve spatial positioning matching between the
test wafer and the standard wafer patterns. The feature point matching result between the
test image and the standard image is shown in Figure 7. The contour extraction technique
of pattern recognition is applied to wafer defect detection. Khalaj et al. [36] proposed a new
technique that uses a high-resolution spectral estimation algorithm to extract wafer defect
features and compare them with actual images to detect periodic 2D signals or the location
of irregularities and defects in the image.
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4. Wafer Surface Defect Detection Based on Machine Learning

Machine learning is mainly to abstract a specific problem into a mathematical model,
solve the model through mathematical methods, solve the problem, and then evaluate the
effect of the model on this problem. According to the characteristics of training data, it is
divided into supervised learning, unsupervised learning, and semi-supervised learning.
This paper mainly discusses the application of these three machine-learning methods
in wafer surface defect detection. The machine learning model comparison is shown in
Table 2.

Table 2. Comparison on machine learning algorithms.

Classification Algorithm Innovation Limitation

Supervised
learning [38–46]

KNN Insensitive to abnormal data and
highly accurate.

High complexity and
computation intensity.

Decision Tree-Radon Apply Radon to form new defect features. Overfitting is highly proficient.

SVM SVM efficiently classifies multivariate,
multi-modal, and indivisible data points.

It is not friendly to multiple
samples, and the kernel function
is difficult to locate.
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Table 2. Cont.

Classification Algorithm Innovation Limitation

Unsupervised
learning [47–50]

Multilayer
Perceptron-Clustering
Algorithm

The multilayer perceptron is used to enhance
the feature extraction capability.

Depends on the choice of
activation function.

DBSCAN Outliers can be selectively removed based on
defect pattern characteristics.

The sample density is not uniform
or the sample is too large, the
convergence time is long, and the
clustering effect is poor.

SOM
High-dimensional data can be mapped to a
low dimensional space and the structure of the
high-dimensional space can be maintained.

The objective function is not easy
to determine.

Semi-supervised
learning [51–53]

A semi-supervised
framework for
augmented labeling

A semi-supervised model is built by
combining supervised ensemble learning and
unsupervised SOM.

Training is time-consuming and
time-consuming.

Semi-Supervised
Increment-al Modeling
Framework

Improve model performance by actively
learning and labeling samples to
enhance them.

Performance depends on the
amount of data tagged.

4.1. Supervised Learning

Supervised learning is a learning model [38] created from labeled training data, and
based on this model, it makes predictions about the new data samples needed. Supervised
learning is currently a widely used machine learning algorithm in wafer surface defect
detection and has high robustness in the field of object detection.

Yuan, T et al. [40] proposed a noise removal technique based on the k-Nearest Neigh-
bor (KNN), which uses the k-Nearest Neighbor algorithm to separate global and local
defects, providing information about all aggregated local defects of the wafer informa-
tion, classify defects into clusters through similarity clustering techniques, and identify
spatial patterns of defect clusters using a parametric model of clustered defects. Piao M
et al. [41] proposed a decision tree-based wafer defect pattern recognition method. The
radon transformation is used to extract the defect pattern features, the correlation analysis
method is used to measure the correlation between the features, and the defect features
are divided into feature subsets, and each feature subset builds a decision tree according
to the C4.5 mechanism. The decision tree confidences are summed and the category with
the highest overall confidence is selected. The decision tree shows better performance in
specific categories of wafer defect detection, but the maximum, minimum, average, and
standard deviation of projections are not enough to represent all the spatial information of
wafer defects, so the edge defect detection performance is poor.

Support Vector Machine (SVM) in supervised learning is also a mature application
of defect detection. When the samples are unbalanced, the k-nearest neighbor algorithm
has a poor classification effect and a large amount of computation. Decision trees have
similar problems and are prone to overfitting. The support vector machine still has good
performance in the classification of small samples and high-dimensional features, and
the computational complexity of the support vector machine does not depend on the
dimension of the input space, and the multi-class support vector machines are robust to
overfitting problems, so it is often used as a classifier [42–44]. R. Baly et al. [45] used a
Support Vector Machine (SVM) classifier to classify 1150 wafer images into two categories,
high-yield and low-yield, and then demonstrated through comparative experiments that
relative to decision trees, k-Nearest Neighbor (KNN), Partial Least Squares Regression (PLS
regression) and Generalized Regression Neural Network (GRNN), the nonlinear support
vector machine model is better than the above four wafer classification methods. The multi-
class SVM has better classification accuracy in the classification of wafer defect patterns.
L. Xie et al. [46] proposed a wafer defect pattern detection scheme based on a support
vector machine algorithm. The linear kernel, Gaussian kernel, and polynomial kernel are
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used for selective testing, and the kernel with the smallest test error is selected through
cross-validation for the next step of support vector machine training. The support vector
machine method can deal with the problem of false positives caused by image translation or
rotation. Compared with neural networks, SVM does not require a large number of training
samples, so it does not need to spend a lot of time training data samples for classification.
More robust performance for composite or diverse datasets.

4.2. Unsupervised Learning

In supervised learning, researchers need to classify defect sample types in advance
as prior knowledge for training. In actual industrial production, there are a large num-
ber of unknown defects and the defect characteristics are ambiguous, and it is difficult
for researchers to judge and classify through experience. In the early stages of process
development, sample annotation is also limited. Aiming at these problems, unsupervised
learning [47] has opened up new solutions, which do not need a lot of manpower for label-
ing data samples and performing clustering according to the feature relationship between
samples. Unsupervised learning also has advantages when new defect patterns are added.
In recent years, unsupervised learning has become one of the important research directions
of industrial defect detection.

The defect patterns on the wafer pattern are unevenly classified and the features are
irregular, and the unsupervised clustering algorithm has strong robustness against this
situation and is widely used to detect complex wafer defect patterns. Due to the difficulty
in detection as a result of cluster defects, such as scratches, stains, or local failure modes, C.
J. Huang [48] proposed a new method to solve this problem. An automatic wafer defect
clustering algorithm (k-means clustering) using self-supervised multilayer perceptrons
to detect defects and label all defective chips was proposed. Jin C H et al. [49] proposed
a wafer pattern detection and classification framework based on Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), which selectively removed outliers
according to defect pattern features, and then the extracted defect features can complete
the detection of abnormal points and defect patterns at the same time. Yuan, T et al. [40]
proposed a multi-step wafer analysis method, which provides clustering results with
different precisions based on a similarity clustering technique to identify six mixed-type
defect patterns according to the spatial location of local defect patterns. Using location
information to distinguish defect clusters has certain limitations, and when multiple clusters
are close to or overlap with each other, the classification effect will be affected.

Di Palma, F et al. [50] employed unsupervised Self-Organizing Map (SOM) and
Adaptive Resonance Theory (ART1) as wafer classifiers on nine different classes of wafers
tested on a simulated dataset. Both SOM and ART1 rely on the competition between
neurons to gradually optimize the network for unsupervised classification. Since ART1 is
pushed to the reference vector by “AND” logic, when processing a large number of data sets,
the number of calculations increases, and the real number of defect categories cannot be
obtained. Adjusting the network identification threshold does not make any improvement.
The SOM algorithm can map high-dimensional input data to a low-dimensional space
while maintaining the topological structure of the input data in the high-dimensional
space. First, the category and number of neurons are determined, and other parameters are
determined through several comparison experiments. After determining the parameters,
after several learning cycles, the data reaches an asymptotic value and performs well on
both simulated and real datasets.

4.3. Semi-Supervised Learning

Semi-supervised learning is a machine learning method that combines supervised
learning and unsupervised learning [51]. Semi-supervised learning can use a small amount
of labeled data and a large amount of unlabeled data to solve problems. The ensemble-
based semi-supervised learning process is shown in Figure 8. The cost consumption and
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mislabeling of fully labeled samples are avoided. Semi-supervised learning has become a
hot topic of research in recent years.
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Supervised learning usually achieves good recognition results, but relies on the accu-
racy of sample labeling. The wafer data samples may have the following problems. The
first is that the wafer sample data needs to be manually marked by professionals. The
manual marking process is subjective, and some mixed defect modes may be incorrectly
marked. The second is that some defect modes have insufficient samples. The third is that
some defect patterns are not marked in the first place. As a result, unsupervised learning
methods cannot exert their performance. Aiming at this problem, Katherine Shu-Min Li [52]
et al. proposed an ensemble-based semi-supervised framework to realize the automatic
classification of defect patterns. First, a supervised ensemble learning model was trained
on labeled data, and then the unlabeled data were trained by this model. Finally, the
unsupervised learning algorithm is used to process the samples that cannot be correctly
classified to achieve an enhanced labeling effect and improve the accuracy of wafer defect
pattern classification. Yuting Kong and Dong Ni [53] proposed a semi-supervised incremen-
tal modeling framework for wafer map analysis. A semi-supervised incremental model
improved by a ladder network and SVAE model is used to classify wafer maps, and then
the model performance is improved by active learning and pseudo-labeling. Experiments
show that it has a better performance than the CNN model.

5. Wafer Surface Defect Detection Based on Deep Learning

In recent years, with the development of deep learning algorithms, the improvement
of GPU computing power, and the emergence of the convolutional neural network [54],
the field of computer vision has been qualitatively developed, and it has also been widely
used in the field of surface defect detection. Before deep learning, relevant personnel were
required to have extensive knowledge of feature mapping and feature description to be
able to draw features manually. Deep learning enables multi-layer neural networks to
automatically extract and learn target features through abstraction layers, and detect target
objects from images.

Cheng KCC et al. [55] used machine learning algorithms and deep learning algorithms
for wafer defect detection, respectively. They used Logistic Regression [56], Support Vec-
tor Machine (SVM) [57], Adaptive Boosting Decision Tree (ADBT) [58], and deep neural
networks to detect wafer defects. Experiments have proved that the average accuracy of
the deep neural network is better than the above machine learning algorithms, and the
wafer detection algorithm based on deep learning has a better performance. According
to different application scenarios and task requirements, the deep learning model is di-
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vided into a classification network, detection network, and segmentation network. This
section discusses the innovations and compares the performance of each deep learning
network model.

5.1. Classification Network

Classification networks are one of the older deep learning algorithms. The classifica-
tion network extracts the characteristic information of the target object in the input image
through a series of operations, such as convolution [54] and pooling [58], and then passes
through the fully connected layer [59] to classify according to the preset label category.
The network model is shown in Figure 9. In recent years, many classification networks for
specific problems have emerged. In the field of wafer defect detection, focusing on defect
features and enhancing feature extraction capabilities has promoted the development of
wafer detection.

Figure 9. Classification network model structure diagram.

In the wafer manufacturing process, several different types of defects are coupled in a
wafer, called mixed defects. These types of defects are complex, changeable, and highly
random, and have become a key challenge for semiconductor companies. In response to
this problem, Wang J et al. [60] proposed a hybrid DPR (MDPR) deformable convolutional
network (DC-Net) for wafer defect classification. They designed a multi-label output of
deformable convolution and a one-hot encoding mechanism layer, focusing the sampling
area on the defect feature area, effectively extracting defect features, classifying mixed
defects, outputting single defects, and improving the classification accuracy of mixed de-
fects. Kyeong and Kim [61] designed a separate classification model for each type of defect
in the wafer image of the mixed defect mode and detected the defect mode of the wafer
through the combined classifier network. The authors tested the wafer map database of six
different modes with MPL, SVM, and CNN combined classifiers, and only the algorithm
proposed by the authors was classified correctly. Takeshi Nakazawa and Deepak V. Kulka-
rni [62] used CNN for wafer defect pattern classification. They trained and validated their
CNN model using synthetically generated wafer images. Additionally, a method of using
simulated generated data was proposed to solve the problem of unbalanced data of real
defect categories in manufacturing and achieve reasonable classification accuracy. This
effectively solves the problem of difficult wafer data collection and few available samples.
The classification network model comparison is shown in Table 3.

Table 3. Classification network model comparison.

Algorithm Innovation Acc

DC-Net [60] The sampling area is focused on the defect feature
area, which is very robust to mixed defects. 93.2%

CNN-Based Combined
Classifier [61]

Separately design classifiers for each defect, strong
adaptability to new defect modes. 97.4%
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Table 3. Cont.

Algorithm Innovation Acc

Classification Retrieval
Method Based on CNN [62]

Simulated datasets can be generated to account for
data imbalances. 98.2%

5.2. Object Detection Network

The target detection network can not only classify the target object but also identify its
location. The target detection network is mainly divided into two types. The first type is
the two-stage network [63,64], as shown in Figure 10. The candidate boxes are generated
based on the region proposal network, and then the candidate boxes are classified and
regressed. The second category is single-stage networks [65–67], as shown in Figure 11,
that is, end-to-end object detection, which directly generates classification and regression
information of target objects without generating candidate boxes. Relatively speaking,
the two-stage network has a higher detection accuracy, and the single-stage network has
a faster detection speed. The comparison of the detection network models is shown in
Table 4.
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Table 4. Detection network model comparison.

Algorithm Innovation Acc Ap

PCACAE [68] Automatic coding of concatenated roll types based
on two-dimensional principal component analysis. 97.27% \

YOLOv3-GAN [33] GAN enhances the diversity of defect patterns and
improves the versatility of YOLOv3. \ 88.72%

YOLOv4 [69] Updated backbone network, enhanced with
CutMix and Mosaic data. 94.0% 75.8%
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Yu J et al. [68] proposed a deep neural network PCACAE based on a convolutional
autoencoder based on two-dimensional principal component analysis and designed a
new convolution kernel for extracting wafer defect features. The product autoencoder is
cascaded to further improve the performance of feature extraction. Aiming at the problems
of difficult collection of wafer data and few public datasets, Ssu-Han Chen et al. [33]
used a combination of the generative adversarial network and target detection algorithm
YOLOv3 for the first time to detect wafer defects in small samples. The diversity of defects
is enhanced by GAN, which improves the generalization ability of YOLOv3. Prashant P.
SHINDE et al. [69] proposed the use of advanced YOLOv4 to detect and locate wafer defects.
Compared with YOLOv3, the backbone extraction network was improved from Darknet-19
to Darknet-53, and the mish activation function was used to make the network robust. The
stickiness is enhanced, the detection ability is greatly improved, and the detection and
positioning performance of complex wafer defect modes is more efficient.

5.3. Segment Network

Segmentation networks perform pixel-level segmentation of regions of interest in
input images [70]. Most of the segmentation network is based on the structure of the
encoder and decoder, as shown in Figure 12 is a schematic diagram of the segmentation
network model structure. Through the encoder and decoder, the ability to extract the
features of the target object is improved, and the analysis and understanding of the image
by the subsequent classification network are strengthened. It has a good prospect to be
applied to wafer surface defect detection.
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Takeshi Nakazawa et al. [70] proposed a deep convolutional encoder–decoder neural
network structure for anomaly detection and segmentation of wafer defect patterns. The
author designed three encoder–decoder wafer defect pattern segmentation networks based
on FCN, U-Net, and SegNet to segment the wafer, local defect model. Global random
defects in the wafer often lead to noise in the extracted features. After segmentation, the
influence of global defects on local defects is ignored, and more information about defect
clusters is helpful for further analysis of the reasons. Aiming at the problem of unbalanced
wafer defect pixel categories and insufficient samples, Han Hui et al. [36] designed an
improved segmentation system based on a U-net network. Based on the original UNet
network, the RPN network is added to obtain defect area suggestions, and then input
to the Unit network for segmentation. The designed two-stage network has an accurate
segmentation effect on wafer defects. Subhrajit Nag [71] et al. proposed a new network
structure WaferSegClassNet with a decoder–encoder architecture. The encoder extracts
better multi-scale local details through a series of convolutional blocks, and the decoder
is used to perform classification and generation. Segmentation mask, which is the first
wafer defect detection model that can classify and segment at the same time, has a good
segmentation and classification effect for mixed wafer defects. The segmentation network
model comparison is shown in Table 5.
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Table 5. Segmentation network model comparison.

Algorithm Innovation Acc

FCN [62] Replacing fully connected layers with convolutional
layers to output 2D heatmaps. 97.8%

SegNet [62] Combining encoder–decoder and pixel-level
classification layers. 99.0%

U-net [36] Copy and crop the feature maps in each encoder layer to
the corresponding decoder layer. 98.9%

WaferSegClassNet [70] Simultaneous classification and Segmentation using
shared encoders. 98.2%

6. Conclusions and Outlook

With the continuous development of electronic information technology and the con-
tinuous improvement of lithography technology, wafer surface defect detection occupies
an important position in the semiconductor industry, and has attracted increasing attention
from scholars in this field. This paper analyzes and summarizes the research on image
signal processing, machine learning, and deep learning related to wafer surface defect
detection. In the early days, image signal processing methods were mainly used, among
which wavelet transform methods and spatial filtering methods were widely used. Machine
learning is very robust in wafer defect detection. Algorithms such as k-Nearest Neighbor
(KNN), Decision Tree (Decision Tree), and Support Vector Machine (SVM) are widely used
in this field and have achieved good results. Deep learning has brought vitality to the field
of wafer inspection with its powerful feature extraction capabilities. The latest manufactur-
ing technology for integrated circuits has advanced to 4 nm, and predictions suggest it will
continue to develop towards even smaller scales. However, as these trends emerge, the
complexity of surface defects on wafers will also increase, posing more stringent challenges
to the reliability and robustness of models. Therefore, the analysis and processing of these
defects become increasingly important to ensure high-quality manufacturing of integrated
circuits. Although some achievements have been made in the field of wafer surface defect
analysis, there are still many problems and challenges.

1. There are few public datasets of wafer defects. Due to the high cost of wafer produc-
tion and labeling, there are very few high-quality public datasets, and the few datasets
are not enough to support training. It is possible to consider creating a synthetic
wafer defect database and performing data augmentation on the existing dataset to
provide more accurate and comprehensive data samples for neural networks. Due to
the versatility of defect types in gradient features, such problems can be addressed
using transfer learning, mainly to solve problems such as negative transfer and model
inappropriateness in transfer learning [72]. A flexible and efficient migration model
does not currently exist. Using transfer learning to solve the problem of a few samples
in wafer surface defect detection is a difficult topic for future research.

2. During the wafer fabrication process, new defects are continuously generated, and the
number and types of defect samples are continuously accumulated. Using incremental
learning [73] can improve the recognition accuracy of the network model for new
defects and the ability to maintain the classification of old defects. It can also be used
as a research direction for the expanded sample method.

3. With the rapid development of technological progress, the chip feature size is becom-
ing smaller and more complex, resulting in multiple defect types in a wafer, and the
defects are folded with each other, resulting in non-uniform and inconspicuous defect
features. increase the difficulty of detection. Multi-step, multi-method hybrid models
have become the mainstream method for detecting hybrid defects. How to optimize
the performance of the deep network model and maintain a high detection efficiency
is a problem that needs to be further solved.

4. During the wafer fabrication process, wafer patterns for different purposes will
produce different defects. Currently, a network model trained on a single data set is
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not sufficient to identify defects in all wafers for different purposes. How to design a
universal network model to detect all defects, thereby avoiding the waste of resources
caused by designing a training model separately for all wafer defect data sets, is a
direction worth thinking about in the future.

5. The majority of defect detection models are offline models, which are unable to
meet the real-time requirements of industrial production. To address this issue, an
autonomous learning model system needs to be established, which enables the model
to rapidly learn and adapt to new production environments, thereby achieving more
efficient and accurate defect detection.
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