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Abstract: In recent years, unmanned aerial vehicle (UAV) image target tracking technology, which
obtains motion parameters of moving targets and achieves a behavioral understanding of moving
targets by identifying, detecting and tracking moving targets in UAV images, has been widely used
in urban safety fields such as accident rescue, traffic monitoring and personnel detection. Due to
the problems of complex backgrounds, small scale and a high density of targets, as well as mutual
occlusion among targets in UAV images, this leads to inaccurate results of single object tracking (SOT).
To solve the problem of tracking target loss caused by inaccurate tracking results, this paper proposes
a strong interference motion target tracking method based on the target consistency algorithm for
SOT based on an interframe fusion and trajectory confidence mechanism, fusing previous frames for
the tracking trajectory correction of current frames, learning again from previous frames to update
the model and adjusting the tracking trajectory according to the tracking duration. The experimental
results can show that the accuracy of the proposed method in this paper is improved by 6.3% and
the accuracy is improved by 2.6% compared with the benchmark method, which is more suitable for
applications in the case of background clutter, camera motion and viewpoint change.

Keywords: UAVs; target tracking; interframe fusion; trajectory confidence

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have developed rapidly. Due to their
small size, low cost and high mobility, UAVs are widely used in exploration, rescue, traffic
monitoring, personnel detection and other urban safety fields [1]. For special missions such
as disaster rescue, urban patrol and anti-terrorist investigation, UAVs are usually used
to accomplish tasks due to the complexity of the environment and mission scenarios [2];
thus, they have great potential for application in the field of urban security. Meanwhile,
they play an important role in emergency rescue work in several security fields such as
emergency mapping, environmental monitoring, earthquake relief, etc., where UAVs play
an important role due to their flexibility, remote operation and powerful scalability [3,4].

With the continuous development of computer vision technology, target tracking in
complex scenes with UAVs has gradually become a challenging research direction and focus,
attracting many experts and scholars to conduct in-depth research and exploration and
promoting the rapid development and wide application of UAV target tracking technology
on the basis of deep learning [5].

Currently, target tracking methods can be divided into three categories: correlation
filter-based target tracking, multi-feature fusion-based target tracking and deep learning
method-based target tracking. Among them, the correlation filter-based target tracking
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method proposes a filtering template for performing operations on candidate target re-
gions. The target position of the current frame is the position of its maximum output
response. Correlation filtering-based target tracking methods are suitable for real-time
applications, especially on embedded systems with limited computational resources. For
example, Qin et al. [6] constructed a target tracking model based on Kalman filtering and
the Camshift method of multi-feature fusion, which can effectively improve the tracking
effectiveness. Zhang et al. [7] introduced the background information of a target’s neigh-
borhood into the similarity measurement between the target and the candidate, proposed a
scale estimation mechanism that relies only on the Hellinger distance mean shift process
and detected the size estimation to reduce the effect of background clutter.

To address the limitations of single features, researchers have investigated ways to
improve the performance of target tracking by fusing different features. The Staple [8]
algorithm uses a combination of the global color histogram and histogram of oriented
gradient (HOG) methods to describe the target. First, in the global color template, the mo-
tion foreground and static background are further computed based on their pre-estimated
positions, and then the score of each pixel is obtained to derive the color response map.
Then, in the HOG template, the HOG features are extracted from the previously deter-
mined target regions, and, thus, the dense response template is obtained. Finally, the
scores of the two templates are linearly combined and the location of the target is finally
estimated. The spatially regularized discriminative correlation filters (SRDCF) [9] tracking
algorithm uses spatially regularized components to address boundary effects, employing
regularized weights to penalize the filter coefficients during training and generate a more
discriminative model. The temporal regularized correlation filters (STRCF) [10] tracking
algorithm introduces temporal regularization into the SRDCF tracking algorithm. The
background-aware correlation filters (BACF) [11] tracking algorithm dynamically models
the foreground and background of the target using HOG features, while an alternating
direction method of multipliers (ADMM) [12] optimization method is designed to solve
the filter. The aberrance repressed correlation filters (ARCF) [13] tracking algorithm sup-
presses the rate of change of the response map that occurs at the time of detection and then
suppresses the aberration of the response map in cases such as target occlusion, as a way to
improve the tracking accuracy.

The purpose of a target tracking method based on deep learning is to optimize the
distance metric between detections. Due to the consideration of a variety of influencing fac-
tors that are not beneficial for target tracking, such as the generally low resolution of aerial
UAV videos, more interfering targets, and faster viewpoint transformation, Bi et al. [14]
proposed a context-based target tracking method for aerial UAV videos. The effect of
regression is improved by connecting multiple convolutional layers with a residual module,
which can effectively improve the tracking effect of the algorithm. Zha et al. [15] added
the semantic space sub-module to the twin network-based model as an adaptation to track
the target captured by the UAV in the middle of the temporal space, which can solve
the problems of target occlusion and target disappearance and improve the accuracy of
target tracking.

In summary, the general step of target tracking is to estimate the trajectory model
(including position, the direction of motion, shape, etc.) of the tracked target in each scene
of the captured video, and a powerful tracker can then assign consistent markers to the
target object in successive scenes. Therefore, visual tracking is an operation designed to
locate, detect and define a dynamic configuration of one or more targets in a video sequence
from one or more cameras. With the rapid development of UAVs and the rapid increase in
video material from aerial UAV photography, single target tracking for aerial UAV video is
one of the key problems studied by scholars, which can provide fundamental support for
practical applications in related UAV fields.

Therefore, to address the problem of inaccurate target tracking results in aerial UAV
video due to complex backgrounds, a high density of small-scale targets and mutual
occlusion between targets, this paper proposes a strong interference motion target tracking
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method based on the target consistency algorithm for UAVs. The main contributions of the
method are as follows:

(1) The interframe fusion method is introduced in the model to correct the model’s
tracking trajectory of the target by fusing the current frame with the previous frames,
and to update the model’s tracking trajectory by combining the tracking results of the
previous frames and learning them again.

(2) The model introduces a trajectory confidence mechanism, which defines the confi-
dence level of the trajectory according to the duration of the tracked trajectory, and
corrects and updates the trajectory in multiple directions to ensure the accuracy of the
tracking results.

(3) The model optimizes the objective function using the ADMM algorithm and solves
the function by iteration to obtain the optimal tracking trajectory.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 details the proposed method. The experiments and results analyses are
provided in Section 4 while introducing the selected dataset and evaluation indicators.
Finally, conclusions are drawn in Section 5.

2. Related Works

At present, scholars related to target tracking methods for aerial UAV video have con-
ducted in-depth research and exploration, and many excellent results have been achieved;
the details of some UAV target tracking algorithms are shown in Table 1. Among them,
Liu et al. [16] constructed a target tracker TLD-KCF based on a conditional scale adaptive
algorithm for aerial UAV video, and this method improved the tracking capability of
quadrotor UAVs in complex outdoor scenes. Li et al. [17] designed a multi-vehicle tracking
method for UAVs by combining SOT-based forward position prediction with results from
intersection over union tracker (IOUT), which enhanced the detection results of the associa-
tion phase. Chu et al. [18] used the results of target detection as SOT results and designed a
multiple object tracking (MOT) network using multiple target interactions, which had a
significant improvement in the performance of the MOT. Since a large number of targets
overlap and obscure each other when performing UAV image multi-object tracking, this
leads to identity-switch problems between targets and affects the performance of the algo-
rithm. Feng et al. [19] used an SOT tracker and a reidentification network of the siamese
region proposal network (SiameseRPN) [20] to extract short-term and long-term cues of
targets, respectively. Then, a data association method with switcher-aware classification
was used to improve the tracking results of the network while solving the identity-switch
problem. However, in this method, the mutual independence of the SOT tracker and
data association prevented the modules from collaborating well in the algorithm. For this
reason, Zhu et al. [21] proposed a dual matching attention network to integrate single object
tracking and data association into a unified framework to deal with intra-class interference
and frequent interactions between targets. Wan et al. [22] designed a target tracking method
based on sparse representation theory for aerial drone videos to solve the problem of partial
occlusion between objects present in aerial drone videos that are used to localize the objects
captured by UAVs, which contain pedestrians, vehicles, etc.

Table 1. Details of some UAV target tracking algorithms.

Proposer(s) Dataset Description Characteristic

Liu et al. [16] VOT 2014
A target tracker TLD-KCF based on a

conditional scale adaptive algorithm for
aerial UAV video.

Improved tracking capability of quadcopter
UAVs in complex outdoor scenarios.

Li et al. [17] UA-DETRAC A multi-vehicle tracking method
for UAV.

Combining SOT-based forward position
prediction with results from IOUT enhances

detection results in the association stage.
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Table 1. Cont.

Proposer(s) Dataset Description Characteristic

Chu et al. [18] MOT15
MOT16

A CNN-based framework for
online MOT.

The MOT network is designed through the
interaction of multiple SOT results, so that the

performance of MOT is significantly improved.

Feng et al. [19] MOT16
MOT17 A unified MOT learning framework.

Makes full use of both long-term and short-term
cues to deal with the complexities of MOT

scenes, and considers potential identity-switch
through switcher-aware classification.

Zhu et al. [21] MOT16
MOT17

An MOT with Dual Matching attention
networks.

Integrates the merits of single object tracking
and data association methods in a unified
framework to handle noisy detections and

frequent interactions between targets.

Wan et al. [22] VOT2015
A target tracking method for aerial UAV

video based on sparse representation
theory.

Solves the problem of partial occlusion between
targets in aerial drone video.

Liu et al. [23] MDMT
A multi-match authentication network

MIA-net for multi-target tracking
missions with multiple UAVs.

Solves cross-UAV association problems by
constructing cross-UAV target topology

relationships through local–global matching
algorithms.

Yeom [24] Practical scenarios A long-range ground target tracking
algorithm for small UAVs.

Selects the most suitable trajectory from multiple
trajectories in a dense trajectory environment

using nearest neighbor association rules.

Jiang et al. [25] The 1st Anti-UAV
Workshop and Challenge

An improved YOLOv5 UAV detection
and tracking algorithm.

High-speed tracking performance by training
low-resolution detectors combined with Kalman

algorithms.

Lin et al. [26] VisDrone2019 An improved UAV multi-target tracking
model based on FairMOT.

Improves model tracking performance by
sorting out temporal correlation structures and

separating different functional heads.

Bhagat et al. [27] Simulation experiments A DQN-based persistent target tracking
model for urban environments.

Enables UAVs to continuously track targets in
different environments while avoiding obstacles

in the environment.

Yang et al. [28] ImageNet A novel framework for hierarchical deep
learning task assignments.

Performs tasks that require intensive computing
with mobile edge computing servers that are rich

in computing resources.

Bi et al. [14] UAV123
A context-based remote sensing target

tracking method for aerial UAV
video MDnet.

Introduction of the RA-CACF module into the
online tracking phase of the tracking network.

He et al. [29] Visdrone-mot2020
A method for tracking different classes
of multiple targets in different scenarios

COFE model

Includes three main modules: multi-class target
detection, coarse-class multi-target tracking and

fine-grained trajectory refinement.

Liu et al. [23] proposed a multi-matching identity authentication network (MIA-Net)
for a multi-target tracking task with multiple UAVs. The MIA-Net effectively solved the
cross-UAV association problem by constructing cross-UAV target topology relationships
through a local–global matching algorithm, and effectively complemented the obscured
targets by taking advantage of multiple UAV viewpoint mapping. Yeom [24] studied
ground target tracking algorithms at long distances (up to 1 km) using small UAVs and
improved the association between trajectories by selecting the most suitable of multiple
trajectories in a dense trajectory environment using nearest neighbor association rules. The
detection of moving targets in the algorithm also includes frame-to-frame subtraction and
thresholding, morphological operations and false alarm elimination based on object size
and shape property, and the target’s trajectory is initialized by the difference between the
two nearest points in consecutive frames; then, the measurement statistically nearest to the
state prediction updates the target’s state. Jiang et al. [25] proposed an improved YOLOv5
UAV detection algorithm and tracking method to address the difficulties of poor imaging
contrast, complex background and small target scale. The method improved UAV detection
probability by adding a detection head and attention module, and achieved high-speed
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tracking performance by training low-resolution detectors combined with the Kalman
algorithm. Lin et al. [26] proposed an improved UAV multi-target tracking model based on
FairMOT. The model contains a structure that separates the detection head and the ReID
head to reduce the influence between each functional head. In addition, they developed a
temporal embedding structure to enhance the characterization capability of the model. By
combing the temporal association structure and separating the different functional heads,
the performance of the model in UAV tracking tasks is improved.

Bhagat et al. [27] proposed a deep learning technique based on target-tracking DQN
networks for persistent target tracking in urban environments. After experiments, it
was shown that the algorithm enabled UAVs to persistently track targets in different en-
vironments while avoiding obstacles in both the training environment and the unseen
environment. Since UAVs are generally severely limited in power supply and have a
low computational power to perform tasks requiring intensive computation on their own,
this poses a great challenge in terms of computational power, low latency and inference
accuracy. Based on the above reasons, Yang et al. [28] proposed a novel hierarchical deep
learning task assignment framework in which UAVs are embedded in the lower layers of
the pre-trained CNN models, while mobile edge computing servers with abundant com-
putational resources handle the higher layers of the CNN models; the effectiveness of the
proposed offloading framework was demonstrated after experimental results. Bi et al. [14]
proposed a context-based remote sensing target tracking method MDnet for aerial UAV
video. In the network structure, residual connections are applied to fuse multiple con-
volutions, thus improving the network representation of remote sensing targets. In the
pre-training phase, an enhancement strategy of rotating an adversarial autoencoder is
used to generate enough negative samples to enhance the ability to distinguish between
targets and background interference. In the online tracking phase, the RA-CACF module is
introduced into the tracking network for remote sensing target tracking in aerial UAV video
applications. He et al. [29] proposed a COFE method model for tracking different classes of
multi-targets in different scenarios. The method contains three main modules: multi-class
target detection, coarse-class multi-target tracking and fine-grained trajectory refinement.

With the development of UAV target tracking technology, we must at the same time
be primarily aware of the risks involved. Especially when UAV target detection technology
is applied in the field of urban security, it is important for professionals to be aware of
the importance of UAV communication security, to understand possible threats, attacks
and countermeasures related to UAV communication. It is also able to secure its commu-
nication using technologies such as blockchain technology, machine learning technology,
fog computing and software-defined networking to guarantee the security and privacy of
relevant data [30]. To deal with attacks and security threats such as jamming, information
leakage and spoofing in UAV communication, Ko et al. [31] proposed a secure protocol
after studying the security prerequisites of UAV communication protocols as a way to
protect the communication between UAVs and between UAVs and ground control stations.
The protocol can achieve perfect forward secrecy and non-repudiation, and is believed to
have good applications in the field of urban security, where a high level of communication
security is required. In summary, the correlation filter-based target tracking method can
update the tracker at any time according to the diverse changes of the tracked targets, and
it runs faster and is more suitable for target tracking in aerial UAV videos. Existing discrim-
inative correlation filter-based trackers use predefined regularization terms to optimize
learning for the target, such as to suppress the learning for the background or to adjust the
change rate of the correlation filter. However, the predefined parameters not only require a
lot of effort to adjust, but also cannot be adapted to new situations where no rules have
been established.

Therefore, the automatic spatio-temporal regularization tracker (AutoTrack) [32] track-
ing algorithm improves on the STRCF algorithm, which uses the connection of the responses
of two adjacent frames as an adaptive spatio-temporal regularization term and uses the
global response change to determine its update rate, thus improving the tracking perfor-
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mance. The spatio-temporal regularization term proposed in this algorithm can make full
use of local and global response variations to achieve both spatial and temporal regular-
ization, as well as automatic and adaptive hyperparameter optimization, based on the
local and global information hidden in the response graph. The algorithm uses response
variation to achieve regularization because the information hidden in the response graph is
crucial in the detection process, and its quality somehow reflects the similarity between the
target appearance model learned in the previous frames and the actual target detected in
the current frame. Additionally, the reason why the algorithm utilizes both local and global
response changes is that, if only global response map changes are used, then local response
changes in the plausibility of different locations in the target image are ignored, and drastic
local changes will lead to low plausibility, and vice versa.

Existing target tracking algorithms use a frame-by-frame approach to update the
model, which can easily ignore the issue of whether the tracking effect of the current frame
is accurate or not and update the tracker blindly, which can lead to tracker learning errors.
Therefore, this paper proposes a strong interference motion target tracking method based
on the target consistency algorithm for the problem of losing the tracked target due to the
inaccurate tracking result of the current frame.

3. Method
3.1. Overall Structure

We propose in this paper a strong interference motion target tracking method based on
the target consistency algorithm for aerial UAV video, and the general framework is shown
in Figure 1. In the tracking model, the current frame is fused with the previous frame for
tracking trajectory correction, and the previous frame is combined to update the model.
Secondly, a trajectory confidence mechanism is proposed in the tracking model. The longer
a trajectory is tracked, the more reliable this trajectory is, as a way to enhance the accuracy
of subsequent tracking. Finally, the objective function is optimized using ADMM, and the
problem is decomposed into multiple sub-problems to iteratively solve the problem and
finally obtain the global optimal solution.
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3.2. Interframe Fusion

Since the tracking effect of the AutoTrack algorithm on the target only depends on the
response map linkage between adjacent frames, when there is wrong tracking, it will cause
the model to lose the effective tracking target information. Therefore, this paper improves
the method based on the AutoTrack algorithm to enhance the interframe fusion capability
of the model.

The method learns online and updates the relevant parameters automatically, using
spatial local response variation as spatial regularization, allowing the filter to focus on
learning the plausible places while using global response variation to determine the update
rate of the filter and ensure its stability. This method adaptively learns and continuously
adjusts the predefined parameters, which also use local as well as global response maps,
with local variation indicating local plausibility in the target bounding box and global vari-
ation indicating global plausibility in the target bounding box, where severe illumination
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changes and partial occlusion reduce the plausibility of the appearance, to dynamically
adjust the spatial as well as temporal weights so that it is possible to make better use of the
local and global information implied in the response map.

When the problem of losing the tracking target due to inaccurate tracking results of
the current frame occurs, the method fuses the previous frames on the tracking results of
the current frame for tracking trajectory correction, and updates the model by combining
the previous frames to learn again to avoid tracker learning errors, thus enhancing the
accuracy of subsequent tracking.

3.3. Trajectory Confidence Mechanism

To integrate the decomposability of the pairwise ascent method with the excellent
convergence properties of the augmented Lagrange multiplier method, an improved form
of the optimal alternating direction method of multipliers (ADMM) has been proposed.
The aim is to be able to decompose the original function and the augmented function to
facilitate parallel optimization under more general assumptions.

The core of the correlation filter-based target tracking problem is the solution of filters.
With the advent of advanced algorithms, the models of filters are becoming more and more
complex and computationally slow, making the advantage of correlation filtering in terms
of computational speed less and less obvious. For example, the AutoTrack algorithm we
improved in Section 3.2 uses spatio-temporal regularization to solve the boundary effect,
and this measure to solve the boundary effect will make the tracking of correlation filtering
face the challenge of real-time. Therefore, introducing the ADMM algorithm in this context
can be a good way to divide a large optimization problem into multiple subproblems that
can be solved simultaneously in a distributed manner, so that the objective function of
the filter can be quickly minimized by iterating over the subproblems to obtain the global
optimal solution.

The ADMM algorithm provides a framework for solving optimization problems with
linear equation constraints, allowing us to break down the original optimization problem
into several relatively well-solved suboptimization problems for iterative solving. This
“disassembly” function is the core of the ADMM algorithm. The algorithm takes the
following form.

min
x,z

f (x) + g(z)

s.t.Ax + Bz = c
(1)

Here, both f (x) and g(z) are convex functions. At this point, their corresponding
augmented Lagrangian functions are:

Lρ(x, z, y) = f (x) + g(z) + yT(Ax + Bz− c) +
(ρ

2

)
‖Ax + Bz− c‖2

2 (2)

Additionally, its optimization steps are:

xk+1 := arg min
x

Lρ

(
x, zk, yk

)
zk+1 := arg minLρ

(
xk+1, z, yk

)
yk+1 := yk+ρ

(
Axk+1 + Bzk+1 − c

) (3)

This is a combination of the pairwise ascent method and the multiplicative Lagrange
multiplier method. Theoretically, the optimization variables can be further split into more
blocks, such as x, z, z1, . . . If we express the optimal solution of the original problem as:

p∗ = in f { f (x) + g(z)|Ax + Bz− c} (4)

then the ADMM algorithm, satisfying the basic assumptions, ensures that:

f
(

xk
)
+ g

(
zk
)
→ p∗ask→ ∞ (5)
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This also reflects the convergence of the algorithm, i.e., the final global optimal solution
is obtained.

In summary, the trajectory confidence mechanism in this paper refers to the process of
fusing the previous frames, which is not just a simple additive relationship, but is adjusted
according to the tracking duration during the tracking process. The longer the tracking
duration indicates that the tracking is more stable and therefore this trajectory is more
credible, the higher the weight occupied by the current frame, as shown in Equation (6).
This method performs fusion in a cumulative manner, not only with a particular frame, as
a way to solve the tracking problem that is overly dependent on two adjacent frames.

Si = α ∗ Si−1 + β ∗ Ri (6)

where i is the current frame, Ri is the detection position of the current frame, Si is the correct
position of the current frame and α and β are the weighting coefficients.

4. Experiment
4.1. Experimental Environment

The operating system of this experimental platform: Memory 16GB, GPU: NVIDIA
GeForce RTX 2060, Graphic memory: 8GB.

4.2. Dataset

This experiment used the VisDrone-SOT [33] UAV image single target tracking dataset.
This dataset was collected by the AISKYEYE team at the Lab of Machine Learning and
Data Mining, Tianjin University, China. The benchmark dataset consists of 400 video clips
formed by 265,228 frames and 10,209 static images captured by various drone-mounted
cameras, covering a wide range of aspects including location (taken from 14 different cities
separated by thousands of kilometers in China), environment (urban and country), objects
and density (sparse and crowded scenes). The dataset was collected in different scenarios
and under various weather and lighting conditions. These frames were manually annotated
by more than 2.6 million bounding boxes or frequent target points of interest, and contain
a total of 10 categories of targets for bus, car, van, truck, awning-tricycle, tricycle, motor,
bicycle, pedestrian and people. To better utilize the data, some important attributes are also
provided, including aspect ratio change, background clutter, camera motion, full occlusion,
illumination variation, low resolution, partial occlusion, scale variation, similar objects,
viewpoint change and several other cases. Based on the above, we believe that the dataset
contains geographic factors, scene factors, weather and lighting factors and common target
types in urban security, and can represent a real urban security environment to some extent.

4.3. Evaluation Metrics

To verify the effectiveness of the proposed method, a comparison is made using
precision and success rates.

(1) Precision Plot

The accuracy graph mainly measures the percentage of successful frames of the target
rectangular bounding box predicted by the tracker within a given threshold distance,
and the distance between the predicted target position and the center point between the
actual positions was calculated to obtain the accuracy value. The number of video frames
whose distance between the predicted position and the center point of the actual position
was smaller than the set threshold varies for different thresholds, and their percentage is
different, so a curve can be obtained.
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(2) Accuracy Plot

The accuracy rate plot shows the proportion of bounding boxes predicted by the
tracker with a coincidence rate score greater than a given threshold. The overlap rate is
defined as:

OS =
|a ∩ b|
|a ∪ b| (7)

where OS is the coincidence score, which takes values from 0 to 1, a is the rectangular
bounding box of the target predicted by the tracker, b is the rectangular bounding box of
the real position of the target and |•| denotes the number of pixels in the region. A frame is
a successful frame if its coincidence score is greater than a given threshold. The accuracy
rate is the number of all successful frames as a percentage of the number of all frames.

4.4. Experimental Results and Analysis of Target Tracking Algorithms for UAVs

Since the algorithm proposed in this paper is based on a UAV’s target tracking task in
the urban security domain, we will validate and analyze the experimental results of the
algorithm proposed in this paper and some of the UAV tracking algorithms mentioned in
Section 2 on the VisDrone-SOT dataset in this section.

The results in Table 2 show that our proposed algorithm is in the leading position in
terms of accuracy compared with other UAV target tracking algorithms at 59.8%. However,
in terms of precision, the SO-MOT algorithm [34] is the best at 91.7% and our algorithm is
91.5%, with a difference of 0.2%. This is due to the presence of a strong detector based on
Cascade RCNN and an embedding model based on a multi-grain network in the SO-MOT
algorithm and the creation of a simple online multi-target tracker. The model initializes
some tracklets based on the estimated bounding box in the first frame, and in subsequent
frames, associates the bounding box with the existing tracklets based on the distance
measured by the embedding features, making it possible to update the appearance features
of trackers at each time step to handle appearance changes.

Table 2. Experimental results of target tracking algorithms for UAVs.

Methods Precision (%) Accuracy (%)

FairMOT + ReID [26] 90.4 57.8

TF-DQN [27] 88.4 52.6

Mdnet [14] 90.2 54.9

COFE [29] 91.1 58.7

SO-MOT [34] 91.7 59.6

Ours 91.5 59.8

In summary, we believe that the algorithm proposed in this paper can satisfy a UAV’s
target tracking task in urban security in terms of precision and accuracy. Although the
present algorithm is for single-target tracking, we believe that it can still be improved and
applied to multi-target tracking tasks, which will be the next step of our research.

4.5. Visualization of Experimental Results

Figure 2 shows a visualization of the experimental results of the proposed method on
the dataset, where the leftmost image is a screenshot of the original video, and the three
images on the right are screenshots of the visualization of the algorithm tracking a single
target on the original video, where the target labeled by the bounding box is the target we
need to track.



Electronics 2023, 12, 1773 10 of 20Electronics 2023, 12, x FOR PEER REVIEW 10 of 18 

Figure 2. Visualization results of the algorithm under different conditions. The leftmost figure 

shows the original image in the dataset, and the right three figures show the resultant video 

frames of the tracking model. (a)(i) shows the tracking effect when the light is sufficient and the 

Figure 2. Visualization results of the algorithm under different conditions. The leftmost figure shows
the original image in the dataset, and the right three figures show the resultant video frames of
the tracking model. (a,i) shows the tracking effect when the light is sufficient and the targets are
small in scale; (b,f) shows the tracking effect when the light is sufficient and the targets are obscured;
(c,h) shows the tracking effect when the light is insufficient and the targets are dense; (d,e) shows the
tracking effect when it is dark and the targets are small in scale; (g) shows the tracking effect when
the targets are sparse and too small in scale.
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4.6. Analysis of Trajectory Confidence Parameters

For the weight coefficients α and β in Equation (6), α should be less than 0.5, β
should be greater than 0.5 and the sum of the weight coefficients should be 1, which means
α + β = 1, since the detection position of the current frame should account for a larger
percentage. Since the method proposed in this paper is an improvement of the AutoTrack
algorithm, we used its experimental results as a benchmark to find the optimal weighting
values by comparing the experimental results of α and β of the grid search taking values.

The precision and total precision of the proposed method in various scenarios when
the weights α and β were taken as different values are shown in Table 3 and Figure 3. The
results of the experiments show that the improved method proposed in this paper does
not have the best accuracy in all cases. Among them, in the cases of complete occlusion,
illumination change and partial occlusion, the detection precision is higher for the cases of
occlusion and the complex environment because the AutoTrack algorithm itself introduces
a temporal regularization term to locate similar targets between different video frames.
Similarly, the improved method with α = 0.4, β = 0.6 is better in the case of aspect ratio
variation and low resolution, because the key information of the target in the previous
frames is more helpful for the model to achieve better interframe fusion to track the target
correctly in the case of aspect ratio variation and low resolution. The improved method
of α = 0.1, β = 0.9 works better when the background is cluttered, the camera is moving
and the viewpoint is changing, also because the target position information of the current
frame is more important than the previous frame in the above case, which can guarantee
the precision better. Finally, according to the results of total precision, it can be seen that
the precision of all four weight distributions is higher than that of the original AutoTrack
algorithm, among which the precision is highest when α = 0.1, β = 0.9, which is 6.3% better
than that of the AutoTrack algorithm.

The accuracy and total accuracy of the proposed method in various scenarios when
the weights α and β take different values are also shown in Table 3 and Figure 3. The
results of the experiments also show that the improved method proposed in this paper does
not have the best accuracy in all cases. Among them, in the cases of aspect ratio change,
complete occlusion, illumination change and low resolution, the accuracy of video frame
detection in the case of large front-to-back changes of the target and a complex environment
will be higher because the AutoTrack algorithm itself has a temporal regularization term.
Meanwhile, the improved method of α = 0.2, β = 0.8 works better in the case of proportional
change because in this case, the key information of the target in the previous frame needed
to be balanced with the target information of the current frame to ensure the detection
accuracy of video frames. The improved method of α = 0.1, β =0.9 works better when the
background is cluttered, the camera is moving and the viewpoint is changing, again because
in this case, the target position information of the current frame was more important than
that of the previous frame, which can better guarantee the accuracy. Finally, according to the
results of the total accuracy, it can be seen that the accuracy of all four weight distributions
is higher than that of the original AutoTrack algorithm, and the accuracy is still the highest
when α = 0.1, β = 0.9, which is 2.6% higher than that of the AutoTrack algorithm. Therefore,
this paper adopts the improved algorithm with α = 0.1, and β = 0.9 weight distribution.
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Table 3. Comparison of precision and accuracy under different weights.

Weights
Aspect Ratio

Variation
(%)

Background
Clutter

(%)

Camera
Motion

(%)

Completely
Obscured

(%)

Illumination
Variation

(%)

Low
Resolution

(%)

Partial
Occlusion (%)

Proportional
Changes

(%)

Similar
Objects (%)

Viewpoint
Changes (%) Total (%)

AutoTrack
precision 80.7 78.8 83.5 88.0 94.9 91.9 94.0 92.8 92.8 75.2 85.2

accuracy 50.5 50.6 56.4 61.3 64.9 57.9 65.5 63.4 58.6 48.1 57.2

A = 0.4
B = 0.6

precision 82.4 86.7 89.7 87.5 94.5 94.1 93.8 92.8 92.8 84.9 90.7

accuracy 49.9 53.3 58.5 60.5 63.1 57.7 65.4 63.6 59.2 52.5 58.8

A = 0.3
B = 0.7

precision 80.6 81.8 89.8 87.5 89.6 80.0 93.8 92.8 80.9 86.5 87.3

accuracy 50.2 50.3 58.6 60.5 60.2 50.6 65.4 63.6 52.1 52.5 56.7

A = 0.2
B = 0.8

precision 80.3 87.3 90.1 87.5 94.6 91.9 93.8 92.8 92.8 87.0 91.1

accuracy 50.3 54.2 59.3 60.8 63.5 57.6 65.5 63.7 59.2 53.7 59.5

A = 0.1
B = 0.9

precision 80.0 87.9 90.6 87.5 94.4 91.9 93.8 92.8 92.8 87.9 91.5

accuracy 49.8 54.7 59.6 60.8 63.2 57.3 65.5 63.5 59.2 54.6 59.8
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Figure 3. Comparison of total precision and total accuracy under different weights. (a) is the precision
when α = 0.4, β = 0.6, (b) is the accuracy when α = 0.4, β = 0.6, (c) is the precision when α = 0.3,
β = 0.7, (d) is the accuracy when α = 0.3, β = 0.7, (e) is the precision when α = 0.2, β = 0.8, (f) is the
accuracy when α = 0.2, β = 0.8, (g) is the precision when α = 0.1, β = 0.9 and (h) is the accuracy when
α = 0.1, β = 0.9.

4.7. Experiment Results and Analysis of Target Tracking Algorithm Based on Correlation Filtering

To test the effectiveness of the tracking algorithms proposed in this paper, we selected
three excellent target tracking algorithms with correlation filter-based performance, Au-
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totrack, Staple and ARCF, mentioned in Sections 1 and 2, and compared them with the
algorithm proposed in this paper using the VisDrone-SOT dataset. Among them, Autotrack
is the benchmark model of the algorithm proposed in this paper, which achieves both spa-
tial and temporal regularization by making full use of local and global response variations
through the spatio-temporal regularization term to achieve target localization. Additionally,
Staple, based on the color response map derived from the global color histogram, uses
the HOG method to extract the HOG features to obtain the dense response template and
linearly combines the scores of the two templates to estimate the target location. In contrast,
ARCF suppresses the rate of change of the response map at the time of detection, thus sup-
pressing the distortion of the response map in the case of target occlusion and improving
the tracking accuracy. Through experimental comparison with these three methods, the
effectiveness of the proposed algorithm in this paper can be verified from three perspectives:
the baseline model, the target tracking in complex cases and the target tracking in occlusion
cases. The evaluation was performed using One-Pass Evaluation (OPE), which initializes
the first frame of the image with the position of the actual labeled target, and the average
accuracy and precision were obtained by calculation.

4.7.1. Precision and Accuracy Comparison of Different Correlation Filtering Algorithms

The comparison results of the precision and accuracy of different correlation filtering
algorithms for various scenarios are shown in Table 4 and Figure 4.
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Figure 4. Comparison of the total precision and total accuracy under different correlation filtering
algorithms. (a) is the total precision of different algorithms, (b) is the total accuracy of different
algorithms.

It can be seen that the precision of Staple is higher in the cases of aspect ratio change,
camera motion and viewpoint change, because Staple can derive the target location by
combining both color response maps and HOG dense response templates, and thus has
the best target precision performance for the case of target scale change. Meanwhile, the
precision of AutoTrack is higher in cases of complete occlusion, illumination change and
partial occlusion, also because it has its spatio-temporal regularization term, which can
guarantee the detection precision in the case of target occlusion change. Our proposed
algorithm, on the other hand, can still guarantee detection precision in background clutter
due to the introduction of the trajectory confidence mechanism. Finally, the comparison
of the total precision of different correlation filtering algorithms shows that the precision
of the proposed method is as high as 91.5%, which is not only higher than the precision
of the AutoTrack algorithm, but also higher than the precision of the Staple and ARCF
algorithms. Therefore, the method proposed in this paper is better under the comprehensive
consideration of multiple cases.
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Table 4. Comparison of the precision and accuracy under different correlation filtering algorithms.

Algorithm
Aspect Ratio

Variation
(%)

Background
Clutter

(%)

Camera
Motion

(%)

Completely
Obscured

(%)

Illumination
Variation

(%)

Low
Resolution

(%)

Partial
Occlusion

(%)

Proportional
Changes

(%)

Similar
Objects (%)

Viewpoint
Changes (%) Total (%)

AutoTrack
precision 80.7 78.8 83.5 88.0 94.9 91.9 94.0 92.8 92.8 75.2 85.2

accuracy 50.5 50.6 56.4 61.3 64.9 57.9 65.5 63.4 58.6 48.1 57.2

Staple
precision 82.5 86.9 94.0 85.0 90.4 79.5 92.5 90.6 78.2 94.0 90.8

accuracy 53.1 57.7 62.8 62.7 61.1 42.2 64.6 56.7 47.1 64.1 59.9

ARCF
precision 66.6 79.9 88.6 62.8 83.4 79.2 81.4 76.0 63.4 84.3 85.9

accuracy 39.8 49.8 61.2 45.5 54.5 43.9 57.7 53.4 32.5 55.8 57.1

Ours
precision 80.0 87.9 90.6 87.5 94.4 91.9 93.8 92.8 92.8 87.9 91.5

accuracy 49.8 54.7 59.6 60.8 63.2 57.3 65.5 63.5 59.2 54.6 59.8
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Again, it can be seen that the accuracy of Staple is higher in the cases of aspect ratio change,
background clutter, camera motion, complete occlusion and viewpoint change, again because
Staple can derive the location of the target from the color response and dense response templates,
and thus has the best accuracy for detecting targets in video frames in cases such as target
scale change. At the same time, the accuracy of AutoTrack is higher in the case of illumination
changes and low resolution, also because it has its spatio-temporal regularization term, which
can guarantee detection accuracy in the case of large target changes. Our proposed algorithm,
on the other hand, is able to guarantee detection accuracy in the case of scale changes and similar
objects due to the introduction of an interframe fusion mechanism. Finally, the comparison of
the total accuracy of different correlation filtering algorithms shows that the accuracy of the
proposed method in this paper reaches 59.8%, which is higher than the accuracy of AutoTrack
and ARCF algorithms and approaches the 59.9% accuracy of Staple. Therefore, the method
proposed in this paper still has an excellent performance in a variety of situations.

4.7.2. Robustness Testing of Different Correlation Filtering Algorithms

To verify the robustness of the algorithms, the data set was disrupted in time and space
and then evaluated using two evaluation metrics, namely Temporal Robustness Evaluation
(TRE) based on disrupted time and Spatial Robustness Evaluation (SRE) based on dis-
rupted space. SRE evaluates whether the algorithm is sensitive to initialization by slightly
translating and scaling up or down the real labeled target position to produce an initialized
position for target tracking, and finally obtains the average accuracy and precision.

Comparisons of the precision and accuracy of different correlation filtering algorithms
under TRE or SRE are shown in Table 5 and Figure 5. In the case of TRE metrics, it can be
seen that the precision of ARCF is higher in the case of aspect ratio change, background clutter,
camera motion, complete occlusion, partial occlusion and viewpoint change; AutoTrack is more
precise in the case of illumination change, low resolution and similar objects; and Staple is more
precise in the case of scale change. AutoTrack is more accurate in the case of low resolution
and similar objects, and ARCF is more accurate in several other cases. In terms of overall
performance, the total precision and total accuracy of the ARCF algorithm under TRE are higher
than the other algorithms compared with the total precision and total accuracy, which are both
low under OPE. Meanwhile, it can be seen in the case of SRE metrics that AutoTrack has higher
precision in cases of aspect ratio change, complete occlusion, partial occlusion, scale change
and similar objects, while Staple has higher precision in several other cases. The accuracy of
AutoTrack is higher in cases of complete occlusion, partial occlusion, scale change and similar
objects, while the accuracy of Staple is higher in cases of aspect ratio change, background clutter,
camera motion, illumination change and viewpoint change, and the accuracy of the proposed
method in this paper is higher in the case of low resolution. In terms of overall performance, the
Staple algorithm has the highest total precision and total accuracy.

In conclusion, after the results of comparison experiments and robustness experiments
are evaluated, the method proposed in this paper outperforms AutoTrack in the case of
background clutter, camera motion and viewpoint change, the method proposed in this
paper has higher precision than other algorithms in the case of background clutter and the
method proposed in this paper has higher accuracy than other algorithms in the case of scale
change and similar objects. In terms of robustness, the proposed method in this paper is
sensitive to the initial position given in the first frame, which will cause a relatively large
impact at different positions or frame initials, and is also sensitive to the bounding box given
during initialization. Therefore, the generalizability of the algorithm proposed in this paper in
detecting both the temporal and spatial aspects of the video needs to be improved by further
research. However, at the same time, this algorithm is intended to be applicable to UAV target
tracking tasks targeting the urban security field, so a high accuracy and precision in the case
of background clutter, camera motion, viewpoint change and similar objects can meet the task
requirements well. Additionally, the generalizability of the algorithm for time and spatial
location can be compensated to some extent by means of human intervention during the task.
Therefore, this method can be well-applied to tracking tasks related to urban security.
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Table 5. Comparison of the precision and accuracy of different correlation filtering algorithms under different metrics.

Algorithm Evaluation
Metrics

Aspect Ratio
Variation

(%)

Background
Clutter

(%)

Camera
Motion

(%)

Completely
Obscured

(%)

Illumination
Variation

(%)

Low
Resolution

(%)

Partial
Occlusion

(%)

Proportional
Changes

(%)

Similar
Objects (%)

Viewpoint
Changes (%) Total (%)

AutoTrack

TRE
precision 71.7 81.9 87.8 78.2 89.8 81.5 89.1 87.8 81.9 85.7 87.3

accuracy 46.6 54.7 61.1 55.0 62.2 47.3 65.2 60.8 55.2 60.1 59.3

SRE
precision 83.6 77.7 87.3 91.3 90.0 78.3 95.6 95.1 81.3 81.8 84.4

accuracy 49.2 44.9 55.0 61.6 55.9 43.2 62.5 62.7 44.5 49.0 51.8

Staple

TRE
precision 70.5 81.7 88.2 78.2 88.7 79.3 89.1 88.7 81.5 86.8 87.2

accuracy 47.0 56.7 60.8 57.7 61.9 43.9 66.0 55.5 54.9 62.3 59.1

SRE
precision 81.6 87.0 93.6 85.5 90.5 80.6 92.7 91.1 79.9 93.4 90.9

accuracy 49.5 54.4 59.8 60.1 57.6 40.0 61.8 54.4 44.2 60.7 56.8

ARCF

TRE
precision 74.5 83.1 90.0 79.4 89.6 78.1 89.7 88.4 79.1 89.6 88.2

accuracy 50.0 57.9 64.4 60.2 64.1 46.4 68.4 61.8 54.7 65.1 61.9

SRE
precision 66.5 77.7 86.9 65.4 83.0 79.6 82.7 77.7 64.9 80.9 84.4

accuracy 38.4 45.8 57.0 46.6 51.3 40.8 55.5 52.2 31.2 51.7 52.8

Ours

TRE
precision 64.8 78.1 86.1 69.9 85.1 78.0 85.0 82.5 73.0 82.4 84.6

accuracy 42.2 51.3 59.1 46.7 58.1 45.6 60.8 56.9 49.1 56.4 56.9

SRE
precision 71.1 72.6 83.0 74.2 85.0 79.0 87.1 83.9 70.9 74.2 80.8

accuracy 40.7 42.3 52.2 48.7 52.7 45.4 56.6 55.2 40.3 44.5 49.9
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different correlation filtering algorithms under SRE.

5. Conclusions

To address the problem of losing the tracked target due to inaccurate tracking results of
the current frame, this paper proposes a strong interference motion target tracking method
based on the target consistency algorithm. When there is a tracking problem in the current
frame, the tracking accuracy of the subsequent tracking is enhanced by combining the
previous trajectories to learn again and updating the model according to the trajectory
confidence mechanism to avoid tracker learning errors. The experimental results prove
that the proposed method of this paper improves 0.2% of the accuracy compared with
the current advanced UAV target tracking algorithm SO-MOT on the basis of guaranteed
tracking precision, and also improves 6.3% of the total accuracy and 2.6% of the total
accuracy compared with the benchmark model AutoTrack, which proves the effectiveness
of the method. In particular, the high precision and accuracy in the case of background
clutter, camera movement, viewpoint change and similar objects can well-meet the needs
of target tracking tasks in aerial UAV video in the field of urban security. In the future, we
expect that this method can be better applied in the field of urban security drone inspection
to ensure the safety and stability of urban environments.
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