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Abstract: We propose SP-NLG: A semantic-parsing-guided natural language generation framework
for logical content generation with high fidelity. Prior studies adopt large pretrained language models
and coarse-to-fine decoding techniques to generate text with logic; while achieving considerable
results on automatic evaluation metrics, they still face challenges in terms of logical fidelity based on
human evaluation. Inspired by semantic parsing, which translates natural language utterances into
executable logical forms, we propose to guide the generation process with a semantic parser. Different
from semantic parsing and QA tasks, of which the logical correctness can be evaluated based on the
execution result, the logic information of the generated content is implicit. To leverage a semantic
parser for generation, we propose a slot-tied back-search algorithm. We follow the coarse-to-fine
generation scheme, but instead of filling the slots with model predictions, which is less uncontrolled,
the slot values are offline searched by the algorithm. The slot-tied back-search algorithm ties the
parameters of a logic form with the slots of a template in one-to-one correspondence. We back-search
the arguments that correctly execute the logic form and fill the arguments (as slot values) into the
textual template to generate the final target, which ensures the logical correctness. Experiment results
of a model built on SP-NLG demonstrates that our framework achieves high fidelity on logical
text generation.

Keywords: data-to-text generation; logical natural language generation; semantic parsing

1. Introduction

Natural language generation (NLG) based on neural network models has developed
remarkable progress recently. Large pretrained language models with an encoder–decoder
structure, such as BERT2BERT [1], BART [2], and T5 [3], are more than capable of generating
fluent and coherent text, gaining high performance on various NLG tasks. However, such
developments are mainly made on the surface realization level: how to “say” the words.
For what to “say”, formally called content planning, many problems remain unsolved, one
of which is low fidelity. Generation fidelity refers to how faithful the generated target is to
the underlying facts, data, knowledge, or meaning representation, i.e., for the data-to-text
task, the generated text should only describe what the data explicitly describe or imply.
Hence, the concept of fidelity can be further interpreted as (1) the surface-level factual
correctness (explicit) and (2) the logical correctness (implicit) of the generated target. Such
a concept was brought up by a recent study of LogicNLG [4].

For the first type of fidelity, a series of recent studies adopt the copy mechanism [5,6]
or model content planning as an individual stage [7–9] to gain higher surface-level fidelity,
though recent encoder–decoder-based deep neural network models tend to be trained in
an end-to-end fashion [10–12] instead of a cascade of two stages. Most of these approaches
simply copied or restated the underlying facts from the input data and gained considerable
results on factual correctness [13]. However, humans are capable of discovering implicit
information by inspecting the data and inferring from the underlying facts (e.g., “Daniel was
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the Governor for 4 years.” in Figure 1). We believe such entailed information is important
for a deeper level of understanding and generating more valuable targets. Therefore, the
main focus of this work is high-fidelity logical content generation. Some factual and logical
statements are shown in Figure 1.

# Governor Took Office
74 Robert 1868
75 Franklin 1872
76 Daniel 1874

Daniel was the 76th South Carolina Governor. 

List of Governors of South Carolina

Franklin took office in 1872.

Robert was the Governor for 4 years. 
Daniel is the second Governor in the 1870s.

#1

#2

#3

#4

Restated facts

Entailed information

Figure 1. Examples of factual and logical statements.

A logical natural language generation (logical NLG) task was already brought up by
LogicNLG [4]. The task definition is to generate natural language statements that can be
logically inferred from the given data (i.e., the table). To avoid confusion, the logic here
refers to the inferences with symbolic operations over the input data [14], which is mainly
numerical reasoning. The generated text is then automatically evaluated on three different
metrics specifically designed for logical fidelity evaluation: the parsing-based, NLI-based,
and adversarial evaluation. More details of the evaluation metrics can be found in their
original paper. Results of recent studies on the logical NLG task are still primitive, which
is mainly due to that (1) it is challenging for existing NLG models to perform reasoning
and symbolic calculations, and (2) the search space of logically entailed statements is
exponentially large due to a vast number of combinations of different operations and
arguments from the table. To partially address these challenges, LogicNLG proposes a
model using the coarse-to-fine generation scheme: the model generates a template that
determines the logical structure globally first and fills the slots conditioned on the template.
The coarse-to-fine generation schema is shown in Figure 2. To construct a logical template,
the numbers and entities are replaced by a placeholder “[ENT]”.

Decoder [ENT] was [ENT] for [ENT] years Robert was the governor for 3 years

The logical correctness of the 
filled values is not guaranteed

The logical template may be correct

# Governor Took Office

74 Robert 1868

75 Franklin 1872

76 Daniel 1874

List of Governors of South Carolina

Figure 2. The coarse-to-fine generation scheme proposed by LogicNLG.

The decoder-based model predicts both the the template YT and the slot-filled target
Y using a left-to-right decoding style. The template and the final text is separated with
the special token “[SEP]”, denoted by Ŷ = [YT ; [SEP]; Y]. The goal is to maximize the
overall likelihood of P(Ŷ | T; β), where T is a sequence of table headers, table captions, and
table content.
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Though such a coarse-to-fine generation scheme could partially improve the logical
fidelity by constraining the generated target to a specific logical structure, we argue that the
slot-filling stage remains uncontrolled. The model lacks reasoning abilities to fill the correct
values that fit the logical template. Suppose that the logical template “[ENT] was [ENT]
for [ENT] years” in Figure 2 is correctly generated. The model may not fully understand
the logic information implied by the word “for” and predict the wrong slot value: Robert
was actually the governor for “4” years instead of “3” years, based on the given table. A
recent work, TAPAS [15], suggests that pretrained models are fairly accurate in “guessing”
numbers that are close to the target. Even the state-of-the-art large language model Chat-
GPT [16] may make mistakes in solving math equations, which is a natural problem for
data-driven probabilistic models. We argue that surface-realization (how to say it) can be
flexible, but the logic behind the words should be absolutely correct. To address the “guess-
ing” problem, we suggest that the logic verification should be completed by a computer
program, as models are “creative writers” while computer programs are deterministic.
Hence, we propose to guide the slot-filling stage with semantic parsing techniques.

Another prior work, Logic2Text [17], formulates the logical NLG task as a logic-form-
to-text problem. The model is provided with both the source table and a logic form, which
represents the semantics of the target text. The training objective is

arg max
β

P(Y | T, S; β) (1)

where Y is the final target, T is a sequence of table headers, table captions, and the table
content, and S is the logic form. With the logic form included, the logic behind the
word “for” from “Robert was the governor for 4 years” can now be represented by a
subfunction di f f {param1, param2} belonging to the logic form. param1, param2 denote the
two parameters of the logic function, and di f f {param1, param2} calculates the difference
between two arguments. The main problem for Logic2Text is the approach they propose
to leverage the logic forms, which is to (1) consider the logic form as a known variable,
and (2) feed the model with both the source data (table) and the logic form linearly as pure
text. Such an approach poses great challenges for the model’s ability to understand the
semantics behind the logic forms, as the logic forms are mainly diversified graph structures.
The limited amount of annotated logic-form-to-text pairs is insufficient for fully training a
model to understand the semantics.

To address the aforementioned problems and further encourage research in this di-
rection, we propose SP-NLG: a semantic-parsing-guided natural language generation
framework to generate content with high logical fidelity. The framework consists of three
modules: (1) logical template generation, (2) semantic parsing, and (3) target ranking.
Figure 3 is an overview of our framework. The modules are presented from bottom to top.

Similar to the coarse part of LogicNLG, we generate a logical template YT based on
the source data (table) T, which can be formally described as P(YT | T; β), where β is
the learnable parameter. Instead of removing entities and numbers from the target to
construct the logical templates, we tie the parameters of the logic form with the slots of the
logical template using heuristic rules. We repurpose the annotated logic-form–text pairs
from Logic2Text train a semantic parser with text–logic-form pairs. The training objective
is to maximize the likelihood of P(S | T, YT ; θ), where S is the logic form with slot-tied
parameters to the logical template YT , and θ is the the learnable parameter. Different from
Logic2Text, instead of requiring the model to understand the logic form, we transform the
understanding problem into a translation problem: the model only needs to “translate”
the logical template YT into a logic form S. Such transformation significantly reduces the
difficulty of model learning. Different from LogicNLG, which predicts the slot-filled target
next to the template in sequence, we design a slot-tied back-search algorithm on the logic
form to find correct arguments in real time. As the the parameters of the logic form are
tied to the slots of the logical template in one-to-one correspondence, these arguments are
also slot values for the template. The correct argument for a single logic form (also a single
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template) may not be distinct. We rank all slot-filled templates (candidate targets) and
consider the one with the highest ranking score as the final generated target. The ranking
label is based on the BLEU score of the candidate target against the golden target. With
SP-NLG, the logical correctness of the generated target can be guaranteed.

eq {
diff {

hop { filter eq {all rows; Year; [TIME0]}; [ENT0]};
hop { filter eq {all rows; Year; [TIME1]}; [ENT0]}

};
[VALUE0]

} = true

eq

diff

hop

filter_eq filter_eq

all_rows Year [TIME0] Yearall_rows [TIME1]

[ENT0]

hop

[ENT0]

[VALUE0]

[ENT0] grew by [VALUE0] in [TIME0] compared to [TIME1].

Retail sales growth grew by 0.2% in 2017 compared to 2016.

[ENT0] [TIME0] [TIME1] [VALUE0] Correctness
Retail sales growth
Retail sales growth

Year
…

2017
2018
2017

…

2016
2017
2016

…

0.2%
0.2%

1
…

✓
X
✓
…

Retail sales growth grew by 0.2% in 2017 compared to 2016.

Year grew by 1 in 2017 compared to 2016.
Retail sales growth grew by 0.2% in 2017 compared to 2016.

Candidate Targets
Golden Target

Align

Entity linking

Graph structure

Slot-tied
back-searching

BLEU score

Logical template

Golden target

Slot-tied 
logic Form

Candidate
arguments
(slot values)

Target ranking

Final Generated Target

Year Retail sales growth
2018 0.9%
2017 1.1%
2016 0.9%
2015 0.2%
2014 1.3%

Source table

Figure 3. An overview of our SP-NLG framework.

To conclude, the contribution of this work can be summarized as follows:
(1) A semantic-parsing-guided natural language generation framework to generate

logical content. The design of slot-tied back-searching allows a generation model to
leverage the arguments and results of the logic form in real time, which guarantees the
logical correctness of the output.

(2) Experiment results of a model built on SP-NLG demonstrates the effectiveness of
our framework on generating text with high logical fidelity.

2. Related Work
2.1. Data-to-Text Generation

Data-to-text generation refers to the task of generating natural language text based on
structured data or meaning representations, which has been widely studied for many years.
Applications of data-to-text generation include automatically generating sports reports [12],
weather reports [18], health reports [19], and dialog responses [20,21].

Prior data-to-text datasets mainly focus on surface-level generation within a particular
schema or domain, for example, ROBOCUP [22], WEATHERGOV [18], E2ENLG [23],
and WebNLG [24]. Several metrics are proposed to evaluate the factual correctness of
surface-level generations, e.g., the entity-centric metric [13] and the overall slot-filling
metric [25]. The faithfulness metrics are roughly calculated as |Fp ∩ Fg|/|Fg|, where Fg is a
set of aligned facts of the golden target and the input data, and Fp is that for the generated
target. Based on such definition, the factual correctness for open-ended generated targets
will be significantly lower than faithful generations. Most datasets require the generation
model to describe all records of the input data. WikiBio [6] expects the generated text
to cover key records only, with no explicit guidance on the topic. Moving a step further,
ToTTo [26] argues that the existing models tend to generate more fluent, but more unfaithful,
targets to the source than faithful ones. Tasks with open-ended targets may lead to subject
generations and challenges for evaluation. Hence, to ensure that the generated text is both
natural and faithful to the source, ToTTo proposes to guide the topic of the target text with a
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set of highlighted table cells. More intuitively, TWT [27] requires the model to generate the
next words based on a given prefix. The prefix mocks a piece of written text by a human
and also serves as a control factor on what to generate next.

Recent studies have brought attention to logical natural language generation. Ro-
toWire [11] is a slightly challenging dataset on generating basketball game results from
multirow tables; while involving a few logical inferences, most targets remain surface-level
factual restatements. Chen et al. [28] studied fact verification on semistructured data by
labeling the statements as entailed or refuted based on linguistic and symbolic reasoning.
Chen et al. [4] proposed a new task to generate natural language text with numerical
reasoning and designed a coarse-to-fine model to address the mismatch problem between
sequence order and logical order. The task was mainly designed for testing model abilities
of generating logically inferred content solely based on the given source. Chen et al. [17]
argued that such task formulation is not yet appropriate for practical NLG applications
due to low logical fidelity and a lack of control on what to generate. To address such
a problem, Logic2Text formulated high-logical-fidelity natural language generation as a
logic-form-to-text task. The generation model was provided with an additional underlying
logic form along with the table; however, such underlying logic forms barely exist in the
real world. A more practical scenario is to consider the logic form as an unknown argument
and reverse the logic-form–text pair to formulate a text-to-logic-form semantic parsing
task. The semantic parser equips the generation model with reasoning abilities to generate
high-logical-fidelity targets.

Traditional NLG approaches [29] adopt a pipeline of two individual stages: content
planning (what to say) and surface realization (how to say it). Recent studies tend to train
generation models in an end-to-end fashion using the encoder–decoder structure [10–12].
More recently, large pretrained language models achieved state-of-the-art results on NLG
tasks and became the new paradigm [3,30,31]. Another line of work brought a sense of
separating content planning as a individual stage again to reduce hallucinated content
which cannot be aligned to any input table record [7,9]. Another hot research topic in
NLG is controlled text generation. Such a task introduces control of the tense [32], senti-
ment [33], politeness [34], text length [35], the identity of the speaker [36], and even the
desired content [27] with control factors. The control factor can be a word, a phrase, or
a piece of text. Our work also belongs to controlled text generation as the the genera-
tion process is controlled by the semantic parser, producing higher-logical-fidelity and
less-open-ended targets.

2.2. Semantic Parsing

Our work is also related to semantic parsing, which refers to the task of mapping
natural language utterances into machine executable programs. The executable program
is a formal, symbolic, complete meaning representation of a sentence [37]. Commonly
used forms of executable programs include a combination of first-order logic (FOL) and λ-
calculus such as CCG [38] and λ-DCS [39]. Text-to-SQL tasks [40,41] can also be considered
as semantic parsing by translating the natural language text into SQL. For natural language
generation, Logic2Text [17] presents a Python-like program including seven common coarse
logic types specifically designed to represent the semantics of the target text.

Similar to NLG tasks, semantic parsing tasks have achieved remarkable progress in
recent years by adopting neural sequence-to-sequence models. To train a semantic parser
under the fully supervised setting [42,43], a large amount of utterance–program pairs is
required, which can be expensive and labor-intensive. When there is a lack of labeled data,
weakly-supervised approaches and data augmentation methods should be considered
first. OVERNIGHT [44] demonstrates how to build a domain-specific semantic parser from
scratch with no training data. Recent studies tend to train a semantic parser with indirect
supervision [45]: only the correct output of a program is labeled, instead of the program
which produced the output. For example, for the knowledge base question-answering
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(KBQA) task [46], only the knowledge base, question, and answer are provided. The model
is required to learn the possible logical expressions from the indirect supervisions.

Different from QA tasks, the NLG task has no direct answer. The target is more
open-ended, which is the main difficulty in introducing semantic parsing into generation.
As the answer (target) is not unique, training a semantic parser under semisupervised
settings can be difficult. The labeled logic-form–target-text pairs from Logic2Text are
insufficient for fully training a semantic parser to provide the generation model with
reasoning abilities. One way to address this problem is to adopt data augmentation
methods similar to OVERNIGHT. For SP-NLG, the logic template generation module and
the semantic parser from the semantic-guided slot-filling module can be trained either
jointly or separately, leaving the flexibility to plug in/out different semantic parsers and
logic template generation modules. In other words, each of these modules can be trained
offline with the best resources possible. A strong logical NLG model can be built by
combining the best trained modules in cascade, along with a few more steps of joint tuning.

3. Task Definition and Dataset
3.1. Task Definition

We study the logical table-to-text generation task proposed by LogicNLG [4]. The
input of the task is a table T along with its title and caption. T consists of RT rows and CT
columns, with Tij being the (i, j)-th cell:

T = {Tij | i ≤ RT , j ≤ CT} (2)

Tij could be a word, a phrase, a number, or even a piece of natural language text. The
golden target is a sentence:

Y = y1, y2, ..., yn (3)

where yn is a word from the sentence. The logic form S is a symbolic meaning representation
representing the semantics of the golden target Y and can be executed on the table T:

S = s1, s2, ..., sm (4)

where sm is a token from the logic form. The task objective is to train a neural generation
model p(Y | T) that generates a sentence Ŷ which is both fluent and faithful (factually
and logically) to the given table T. For the fully supervised setting, where logic form L is
annotated, the training objective is p(Y | T, S), and for the semisupervised setting, where
the golden S is unknown, the training objective would be p(Y | T, Ŝ).

3.2. Dataset

We study logical natural language generation on two datasets.

• LogicNLG [4] is based on the positive statements of TabFact [28], a table-based fact
verification dataset including both positive and negative statements. The statements
are collected from the “complex” channel, of which the sentences require annotation
with reasoning.

• Logic2Text [17] is built on WikiTables [47], a set of open-domain tables crawled from
Wikipedia. The over-complicated tables are filtered out, and only tables with fewer
than 20 rows and 10 columns are adopted. Seven common logic types are designed
to describe multi-row tables: count, superlative, comparative, aggregation, majority,
unique, and ordinal.
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The Logic2Text dataset includes annotated logic forms while the LogicNLG dataset
only provides table–sentence pairs. Table 1 shows statistics of the two datasets. It should
be noted that according to LogicNLG, using the whole table greatly compromises the
performance. Therefore, only a partial table PT is adopted, which is built with entity-
linking-based alignment between the whole table T and the target sentence Y. We adopt
the same strategy for our work.

Table 1. Dataset statistics.

Dataset Train Validation Test Tables Logic Form

LogicNLG 28,450 4260 4305 7392 Not included
Logic2Text 8566 1095 1092 5554 Included

4. Methodology

By adopting transformer-based [48] structures and fine-tuning pretrained language
models on task-specific data, NLG models can be easily applied to data-to-text generation
tasks. For example, on Logic2Text, both the table and the logic form are fed into the
encoder and the target text is fed into the decoder for training. During inference, the model
generates targets conditioned on both the table and the logic form.

Based on similar structures, we propose the SP-NLG framework. The framework
structure with all module designs are presented in Figure 4. The framework consists
of three modules: (1) the logical template generation module, (2) the semantic-guided
slot-filling module, and (3) the target ranking module. We use a transformer-based encoder–
decoder structure to generate a template based on the table, which determines the global
logic structures. Then, a different transformer-based model is employed to generate the
corresponding logic form conditioned on both the table and the template, which serves
the semantic parsing purpose. As the table is already encoded for template generation,
the semantic parser can either share the table representation from the template generation
module or encode the table separately. We further design a strategy to tie the slots of the
template and the parameters of the logic form in one-to-one correspondence. Based on the
generated logic form, we propose a back-search algorithm to search possible arguments
that execute the correct result. Such arguments are considered as candidate slot values
for the template. We use the same logic form proposed by Logic2Text, where the correct
execution result is always “true”. As the parameters of the logic form are slot-tied to
the template, the candidate slot values can be directly filled into the template to build
candidate targets. The slot values are only correct in terms of logical correctness, but are
not necessarily the best for making up a whole sentence from the aspects of fluency and
coherence. Thus, a target ranking module is required to select the best candidate target
which is both logically faithful to the source and fluent as a natural language text. We use
the BLEU metric score as supervision to train the target ranking module. The higher the
BLEU score, the higher the rank for a candidate target. The target with the highest ranking
score is considered as the final generated target. We describe the details of module designs
in the following subsections.
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Encoder
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Logical Template
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Pair-wise Logistic Loss

compared to [TIME1]

[ENT0] grew by [VALUE0] in [TIME0]</s> compared to [TIME1]

Figure 4. The SP-NLG framework structure.

4.1. Logical Template Generation

The logical template generation module here is similar to the coarse part of the coarse-
to-fine model proposed by LogicNLG [4]. It determines the global logical structures of what
to generate. We use the same entity linker to identify aligned entities and numbers between
the table T and the target sentence Y. LogicNLG replaces the aligned items with a fixed
placeholder “[ENT]” to construct the template YT . For our work, we need to assign each
aligned item a unique placeholder so that each slot can be uniquely identified to fill the
corresponding argument of the logic form. To fully leverage language models and reduce
the difficulty of learning, we use the slot type with id as the placeholder for uniqueness, in
case the target sentence Y contains more than one slot with the same type. For example,
given the sentence “Retail sales grew by 0.2% in 2017 compared to 2016”, the template
with unique placeholders would be “[ENT0] grew by [VALUE0] in [TIME0] compared to
[TIME1]”. The placeholders are predefined and considered as single tokens for the model
vocabulary. Supported slot types and placeholders are listed in Table 2.

Table 2. Slot types and placeholders.

Entity Value Time

ENT[0–4] VALUE[0–4] TIME[0–4]

The training object for the logical template generation module is to maximize the
overall likelihood of

P(YT | T; β) (5)

where β is the learnable parameter of the logical template generation module. The training
objective is equivalent to minimizing the cross-entropy loss (denoted as CE) between the
generated and golden logical template.
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Ltemplate = CE(y, ŷ) = −
d

∑
i=1

yi log(ŷi) (6)

It should be noted that for simplicity, the slots can be assigned with only slot types
(without ids) or even “[ENT]” only for template generation. For the same example, the
template would be “[ENT] grew by [VALUE] in [TIME] compared to [TIME]” or “[ENT]
grew by [ENT] in [ENT] compared to [ENT]”. The unique slot placeholders shall be assigned
before semantic parsing.

To encode the source table, we follow previous studies on linearizing structured tables
as natural language text [49]. In detail, we adopt a global (table level) template “Given the
table of [TABLE NAME], in the 1st row, the [COLUMN0 NAME] is [COLUMN0 VALUE],
in the 2nd row, the [COLUMN1 NAME] is [COLUMN1 VALUE], ...” to flatten the whole
table T as a passage:

PT = w1, w2, ..., w|T| (7)

where w|T| is a word from the constructed template. |T| denotes the length of the paragraph.
The table cells are scanned row by row horizontally to construct the paragraph. PT is fed
into the model as the proxy of T to generate the template YT . As the language models
are pretrained on natural language text, converting structured information to a natural
language passage fully leverages the pretrained parameters.

Another approach to encode the table T is to flatten the table cells directly while
introducing additional embeddings to the model. Each cell is represented by a local (cell
level) template: hc | hr | v, where hc and hr are the row and column names of cell v.
According to TAPAS [15], the following embeddings are required to identify the structural
information: the row embedding r, the column embedding c, and the type embedding t.
r and c are built with the coordinates of the cell. t represents the input type, which could
be the table title, table caption, or table cell. Letting w be the word embedding, p be the
positional embedding, we have the final input representation:

e = w + t + p + r + c (8)

4.2. Semantic-Parsing-Guided Slot-Filling
4.2.1. Semantic Parsing

The semantic parsing module takes both the template and the table as input and
outputs the logic form that can be correctly executed on the table and represents the
semantics of the target text. Logic2Text and other similar studies require the model to
understand the structural semantics in diversified graph structures, leading to learning
difficulties and challenges for model design. We transform the semantic understanding
problem into a “translation” problem, which is the main insight of this work. The translation
direction is from a natural language text template (with table information) to a program
language logic form. The constructed templates and their corresponding logic forms are
considered as parallel corpus. The model is only required to complete the translation
task, which reduces the difficulty significantly compared to understanding the semantics.
We leave the semantic understanding part to an offline interpreter, which is a computer
program that checks the grammar validity and executes the logic form.

Building a semantic parser matching the translation goal is simple. The transformer-
based encoder–decoder structure is a natural fit for tasks with parallel corpus. We adopt a
heuristic approach to align the template slot values with the logic form parameters. The
aligned logic form parameters are assigned with the same corresponding slot placeholders
of the template. As shown in Figure 3, the overall process to construct a logical template
and its corresponding logic form is that we first align the annotated target sentence with
the table using entity-linking methods to build slots with unique placeholders. Then, we
align the arguments of the annotated logic form with the slot values of the template using
heuristic approaches. Finally, the logic form with the same slots as the logical template is
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constructed. For example, the logic form of the target sentence “Retail sales growth grew
by 0.2% in 2017 compared to 2016” is

eq {
d i f f {

hop { f i l t e r _ e q { a l l_rows ; Year ; 2 0 1 7 } ; R e t a i l s a l e s growth
} } ;

hop { f i l t e r _ e q { a l l_rows ; Year ; 2 0 1 6 } ; R e t a i l s a l e s growth
} }

} ;
0.2%

} = true

The definitions of the functions of the above logic form are explained in Table 3. All
functions defined by Logic2Text can be found in the appendix of their original paper.

The logical template built for the example is “[ENT0] grew by [VALUE0] in [TIME0]
compared to [TIME1]”, which suggests that “retail sales growth”, “0.2%”, “2017”, and
“2016” are the aligned slot values. Hence, these slot values are employed to align with the an-
notated logic form, constructing the following logic form with the same slots corresponding
to the logical template.

eq {
d i f f {

hop { f i l t e r _ e q { a l l_rows ; Year ; [ TIME0 ] ; R e t a i l s a l e s
growth } ;

hop { f i l t e r _ e q { a l l_rows ; Year ; [ TIME1 ] ; R e t a i l s a l e s
growth }

} ;
[VALUE0]

} = true

The slots between the logical template and the logic form are tied with the same unique
placeholders, so that the arguments (slot values) of the logic form that execute the correct
result can be directly filled into the corresponding template slots. We explain how to search
the correct arguments in the next subsection.

Table 3. Logic form function definitions.

Function Arguments Output Description

eq object, Object bool Returns if equal
diff object, Object object Returns the difference
hop Row, table header object Returns the column value of the row

filter_eq View, header string, object view Returns the subview with column values
equal to object

To train a semantic parser, we use both the table and the logical template as input and
the corresponding logic form as output. The training objective is to maximize the overall
likelihood of

P(S | T, YT ; θ) (9)

where S is the logic form and θ is the learnable parameter. We minimize the cross-entropy
loss Lsemantic between the generated and golden logic form. Note that the golden logic form
is the one with tied slots.

We propose two methods to encode the table information for the semantic parsing
module. The first method is the same as the one adopted by the logical template generation
module. We feed both the linearized table and the template to the encoder to generate the
corresponding logic form. Considering that the linearized table is already encoded in the
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logical template generation module, and encoding the table again for the semantic parsing
module can be redundant and resource-costly, we allow the semantic parsing module to
share the encoded table representation. Specifically, letting hT

t denote the last encoder layer
output (the table representation) of the template generation module and hS

t denote the last
encoder layer output (the template representation) of the semantic parsing module, the
final hS

t would be
hS

t = hT
t ⊕ hS

t (10)

where ⊕ denotes vector concatenation. The shared representation saves computing re-
sources and improves the model performance on table encoding.

4.2.2. Slot-Tied Back-Search Algorithm

Given the logic form with undetermined parameters (unfilled slots), we need to search
groups of arguments (slot values) that execute the logic form correctly. Such arguments
are considered as candidate slot values. We design a dynamic-programming-like breadth-
first search program to find correct arguments. The search program can be described as
Algorithm 1. We transform the flattened logic form into a graph structure, denoted by
S = {N1, N2, ..., Nm}, where Nm is a node of the logic form graph. There are two types of
nodes: a function node denotes a subfunction of the logic form, which is also a subgraph,
while a text node is always a leaf node (an actual value). The slots can be constructed
on text nodes only. The blue and gray nodes in Figure 3 denote function and text nodes,
respectively.

The goal of the back-search algorithm is to build a collection of logic forms C =
{S1, S2, ..., Sn}, where the slots of each S are filled with positive arguments P = {p1, p2, ..., pr}.
Here the “back-search” concept refers to finding possible arguments based on the given
execution result of the logic form. For the logic form defined by Logic2Text, the correct
execution result is always “true”. The main idea of the back-search algorithm is to breadth-
first search the logic form graph and traverse the nodes in reverse order, which is from
text nodes to function nodes, from inner functions to outer functions. If the node is a
determined text node (an unfilled slot) Ni, we search and verify positive arguments P of Ni.

The search process is to generate a number of possible arguments based on the pa-
rameter type. Only the following parameter types can make up a slot: “row”, “header”,
“bool”, “num”, and “str”. Depending on the parameter type, the parameter position,
and the function, the possible arguments are listed in Table 4. The search space of pos-
sible arguments cannot be reduced for conditions that are not listed in the table. For
these conditions, the search space is the full table: {row1, row2, ...rown, col1, col2, ..., coln,
header1, header2, ..., headern}. The possible arguments of some parameter types can not be
inferred, such as a “str” or “obj”. We assign a unique placeholder any_obj as the possible
argument and leave it to be determined during recursion.

Table 4. Possible arguments for different parameter types, positions, and functions.

Parameter Type Position Function Possible Arguments

row any hop, only {row1, row2, ..., rown}
row any any but hop, only any_obj
header any any {header1, header2, ..., headern}
bool any any {true, f alse}
num any any {1, 2, ..., len(rows)}

str, obj 3 any with 3 params
and param 2 is header

{cell_1, cell_2, ..., cell_n}
∈ colheader

str, obj 1, 2 avg, sum, diff any_obj
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Algorithm 1 Back-search logic form arguments.

Require: S = {N1, N2, ..., Nm}
Ensure: C = {S1, S2, ..., Sn}

1: C ⇐ {}
2: i⇐ m
3: while i > 0 do
4: if Ni is an text node then
5: if Ni is undetermined (an unfilled slot) then
6: P⇐ search arguments of Ni
7: P⇐ verify arguments of (P, Ni)
8: if P 6= {} then
9: for each parameter p ∈ P do

10: Lclone = {Nclone
1 , Nclone

2 , ..., Nclone
m } ⇐ clone L

11: assign p to all Nclone
m with the same placeholder as Ni

12: C ⇐ C ∨ {Lclone}
13: end for
14: else
15: break search
16: end if
17: end if
18: else[Ni is a function node]
19: if the execution result of Ni is unknown then
20: if Ni is not executable (includes unfilled slots) then
21: P⇐ search arguments of Ni
22: P⇐ verify arguments of (P, Ni)
23: if P 6= {} then
24: for each parameter p ∈ P do
25: Lclone = {Nclone

1 , Nclone
2 , ..., Nclone

m } ⇐ clone L
26: assign p to the execution result of Nclone

i
27: C ⇐ C ∨ {Lclone}
28: end for
29: else
30: break search
31: end if
32: else[Ni is executable]
33: p⇐ execute Ni
34: assign p to the execution result of Ni
35: end if
36: end if
37: Back-search logic form arguments of Ni recursively
38: end if
39: i⇐ i− 1
40: end while

The search process only provides possible arguments which are legal for the function.
The verify process checks if a possible argument is correct by executing the function with
the argument and verifying the result. Through such a process, we limit the search space
as possible with the result of a subfunction to verify if an argument is correct in a reverse
way. The result of the subfunction is gathered either from the saved result during recursive
searching or by executing the function in real time, if the subfunction is executable. Whether
the argument can be verified depends on many conditions, such as if the child or parent
nodes are undetermined and if the argument is any_obj. As the recursive search carries on,
most arguments can be finally determined.

Now we have the verified arguments P for node N1. For each p of P, a separate branch
starting from the current node is formed. In others words, each positive argument of each
slot matches an individual branch of the same logic form with different arguments. For a
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function node, we check if the function is executable and the result of the subfunction is
known. The function is executable only if any subnode of the function is not undetermined.
Subfunctions with unknown results need to be processed. If the function is not executable,
we search and verify the positive arguments of Ni using the same algorithms. The only
difference is that the positive arguments are saved as possible results of this function to
reduce search space for its undetermined subnodes. The result of the outer function (node)
serves as a constraint on the possible parameters of its inner function (subnode). We also
need to maintain multiple branches for each possible function result. If the function is
executable, we save the execution result directly. The back-search algorithm needs to be
called recursively for each function node. To reduce time cost, we limit the maximum
number of logic forms to five. Finally, we obtain a collection of five logic forms with
correct arguments. Based on the tied-slots, the logic form arguments can be filled into the
corresponding slots of the logical template, building candidate targets which may become
the final target.

During inference, the back-search algorithm works in coordination with the model.
First, the semantic parsing module generates the logic form S with undetermined arguments
based on the table T and the logical template YT . Then, the back-search algorithm takes S
as the input and produces a collection of possible logic form arguments. As the logic form
and the logical template are slot-tied, the determined arguments produced by the back-
search algorithm can be filled into the corresponding slots of the logical template directly.
Compared to the search algorithms adopted by weakly-supervised semantic parsing [50]
and SP-Acc [4], the search algorithm we proposed works more efficiently with less time
cost. The comparison of different search algorithms is shown in Table 5.

Table 5. Comparison of different search algorithms.

Weakly-Supervised SP SP-Acc Our Search Algorithm

Input Table & answer Table & target Table & logic form
Search target Logic forms & args Logic forms & args Args
Time cost Medium High Low

4.3. Target Ranking

For n logic forms with correct arguments, now we have n candidate targets. Though
these logic forms can be correctly executed, which guarantees logical fidelity, the arguments
may not match the logical template in terms of fluency and coherence as a natural language
sentence. Therefore, a ranking model is required to determine which group of arguments
is the best for the logical template. We follow the learning to rank (LTR) task and adopt
a pairwise logistic loss function similar to RankNet [51] to rank the candidate targets
according to their BLEU scores. The loss function is defined as

Llogistic = log(1 + e−pairwise_label∗pairwise_logits) (11)

where
pairwise_logits = f (xi)− f (xj) (12)

pairwise_label =

{
1, labeli > labelj,

−1, labeli ≤ labelj.
(13)

We only need to consider positive labels when labeli > labelj, which simplifies the loss
function as

Llogistic = log(1 + e−pairwise_logits)

= log(1 + e−(xi−xj))

= max( f (xj)− f (xi), 0) + log(1 + e−| f (xj)− f (xi)|)

(14)
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To acquire the pairwise logits, we use BERT [52] with a projection layer on the pooled
representation “[CLS]” to score the candidate–golden target pairs. Supposing that xi =
[[CLS]Tgolden[SEP]Tcandidate], Tgolden and Tcandidate denote the golden and candidate target,
respectively, the score model is defined as

f (xi) = sigmoid(MLP(BERT(z))) ∈ (0, 1) (15)

We calculate the BLEU score for Tcandidate against Tgolden as labeli. The training objec-
tive is to minimize Llogistic between the pairwise_logits and the pairwise_label. We sum all
three losses as the final loss for training:

L = Ltemplate + Lsemantic + Llogistic (16)

During inference, the ranking model predicts a score for each candidate–golden target
pair. We choose the candidate target with the highest score as the final generated target.

5. Experiments and Results

We examine the SP-NLG framework with BART [2] (except the ranking module, which
is based on BERT [52]), a pretrained language model targeted on NLG tasks with both
encoder–decoder structures. It should be noted that our framework can be built on any
pretrained language model with a decoder, such as BERT2BERT [1] and T5 [3].

For the baseline model, we use the pretrained model “GPT-TabGen” and a nonpre-
trained model “Field-Infusing + Trans”. Both methods are from the original work of
LogicNLG [4]. The motivation of this work is to propose a new perspective of logical
natural language generation. The idea of combining semantic parsing techniques with
generation approaches provides new insights and possibilities on generating logical in-
ferred content instead of simply restating facts. Thus, comparing the performance of a
specific model built on our framework with other models is not a priority of this work.
The BART-based model we built on the SP-NLG framework should be considered as a
baseline. In fact, each module of this framework can be further optimized with additional
model designs or a larger amount of annotated data. We hope the SP-NLG framework
may encourage further endeavors on the logical NLG task. As only the Logic2Text dataset
provides annotated logic forms, we use the LogicNLG dataset here for data augmentation
purposes. The experiments are conducted on the Logic2Text dataset.

5.1. Setup

We follow the same data preprocessing steps adopted by Chen et al. [4]. First, the
target is aligned with the given table with a entity parser to build a logical template. Then,
we identify the arguments matching the same aligned entities of the target and replace them
with unique placeholders. We save the correspondence between the slots of the logical
template and the placeholders in order to fill the arguments searched from Algorithm 1.

Both the logical template generation module and the semantic parsing module are
initialized with BART, and the embedding weights of the two modules can be either shared
or not shared. We conduct experiments on both settings and compare the difference. The
target ranking model is built on BERT. The max input and output tokens are set to 1024
and 128, respectively based on the top 90% token length of the dataset examples. We pad
the input tokens to the max length with a special “[PAD]” token. Tokens that exceed the
maximum length will be truncated. The learning rate is set to 3× 10−5, combined with a
linear learning rate scheduler. We further employ the Adam optimizer with the epsilon
set to 1× 10−6. Decoding is conducted via beam search with a beam size of four. Due
to limited computing resources, we train our model with eight NVIDIA Tesla V100 32G
GPUs. The final batch size combined with gradient accumulation and multiple GPUs is
64. We evaluate both the baseline and our model on the following metrics: BLEU-1/2/3,
SP-Acc, and NLI-Acc. The SP-Acc and NLI-Acc are two automatic metrics proposed by
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LogicNLG to evaluate the logical fidelity of the generated text from the aspect of parsing
and entailment. The metrics are computed with their official released scripts.

5.2. Results

Table 6 shows the comparison between different settings of our approach and the
baseline. We observe that (1) the SP-NLG model with back-search outperforms all methods
on almost all metrics, (2) shared embedding weights does not further improve the model
performance, and (3) due to the best model checkpoint being selected based on the best
BLEU-3, the SP-NLG model tends to be optimized for maximizing the BLEU-3 score.

Table 6. Experiment results.

Surface-Level Fidelity Logical Fidelity

Model BLEU-1 BLEU-2 BLEU-3 SP-Acc NLI-Acc

Field-Infusing + Trans 37.7 21.0 10.5 38.5 42.4
GPT-TabGen 46.5 30.9 19.9 42.4 66.5
SP-NLG 44.4 30.3 21.5 31.4 56.2
SP-NLG (shared embeddings) 43.1 28.9 19.5 34.1 52.9
SP-NLG (back-search & rank) 84.0 78.9 74.8 48.7 64.6

Golden Target (oracle) 1.0 1.0 1.0 64.3 72.8
Note: The logical template generation module and semantic parsing module are initialized with BART and the
target ranking module is initialized with BERT. “Shared embeddings” refers to the embedding weights being
shared between the logical template generation module and the semantic parsing module. “Back-search & rank”
denotes that only the slot-tied back-search algorithm and the ranking module are employed while the logical
template and logic form with slots are given.

Based on the results of the oracle setting, which is evaluated on the golden target, we
discover that the upper bounds for SP-Acc and NLI-Acc are 64.3 and 72.8, respectively. The
SP-NLG (with back-search) setting assumes that the logical template and the corresponding
logic form with slots are given, and only the slot-tied back-search algorithm and the target
ranking module are employed for SP-NLG. Comparison between these results with the
oracle results suggests that the slot-tied back-search algorithm is more than capable of
searching correct arguments (template slot values), which contributes greatly to the logical
fidelity of the final generated target. Target ranking is also an effective design to determine
the best arguments for the logical template in terms of surface-level fidelity.

Almost all metrics except SP-Acc dropped when sharing the embedding weights of the
logical template module with the semantic parser, which suggests that the logical template
module and the semantic parser should be considered as individual components. In fact,
this could be an advantage. As each module is replaceable, the model is not required to
be trained jointly. All modules can be trained offline separately and plugged in/out of
the framework.

We choose the best checkpoint of our model based on the BLEU-3 score. To achieve a
better result on SP-Acc or NLI-Acc, the evaluation strategy can be changed to select the
best checkpoint based on SP-Acc or NLI-Acc. As these metrics are model-based, which is
time-costly, we did not try these strategies. Another approach is to optimize the semantic
parser. The original work of Logic2Text annotated around 10,000 logic forms; while this
may be sufficient for their approach by considering the logic form as a given input, the
scale of annotated data is far from enough for fully training a semantic parser. To address
this problem, the following methods should be considered:

• Simplify the logic form grammar. The grammar of the logic form defined by Logic2Text
is complicated. For a fixed amount of annotated data, the model trained on simple
logic forms usually gains higher performance than the one trained on complex logic
forms. Guo et al. [53] compared the performance of semantic parsing models trained
on different types of logic forms denoting the same semantics.
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• Data augmentation. Data augmentation methods such as OVERNIGHT [44] should
be considered by changing slot positions or replacing them with different entities
from both the template and logic form to extend the scale of data for training. Data
augmentation methods could be limited as the diversity of logic frameworks is usu-
ally unchanged.

• Annotate more data. The most effective approach to boost model performance is
to annotate more data with high quality, though it can be time- and effort-costly,
especially for logic form annotation.

6. Conclusions

We propose SP-NLG, a semantic-parsing-guided natural language generation frame-
work. The framework ensures high logical fidelity of the generated target. Instead of
requiring the model to understand the logic, we transform the understanding problem
into a translation problem by “translating” a textual logical template into a logic form
with tied-slots. We further design a back-search algorithm: a offline program to search
arguments that correctly executes the logic form in real time. The arguments with the
highest ranking score are filled into the logical template slots to form the final generated
target. The framework leaves the “calculation” part for the computer program and the
“translation” part for the model, which makes the most of each component. Experiment
results show that SP-NLG is effective for generating high-logical-fidelity text.

The logical natural language generation task also faces a number of challenges. One
of the challenges is determining how to improve the quality of automatic metrics to assist
human judgment on logical fidelity. The NLI-based and SP-based metrics are model-based
metrics trained on a different dataset, which inevitably introduces errors. Another challenge
is allowing the model to truly understand the logic. The reasoning ability of SP-NLG mainly
relies on translating natural language text into logic forms and the back-search algorithm.
The model itself may not fully understand the logic. Therefore, further effort should be
made on this research topic.

For future work, we will focus on improving the semantic parser. Another problem is
that the arguments of the logic form are filled directly into the slots of the logical template,
which may require rephrasing for better fluency.
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