
Citation: Vujasinović, J.; Savić, G.;

Prokin, M. Model-Driven Developed

Terminal for Remote Control of

Charging Station for Electric Vehicles

Powered by Renewable Energy.

Electronics 2023, 12, 1769. https://

doi.org/10.3390/electronics12081769

Academic Editor: Jahangir Hossain

Received: 14 February 2023

Revised: 30 March 2023

Accepted: 4 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Model-Driven Developed Terminal for Remote Control of
Charging Station for Electric Vehicles Powered by
Renewable Energy
Jovan Vujasinović *, Goran Savić and Milan Prokin

School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
* Correspondence: jovan.vujasinovic@vfholding.rs

Abstract: A terminal for remote control of charging stations for electric vehicles (EV) powered by
renewable energy has been presented in this paper. This terminal enables remote control of EV
chargers, smart batteries, smart electricity meters, fiscal cash registers (FCR), as well as remote
control of renewable energy sources and other devices within the station. This terminal also makes
charging stations more accessible to electric vehicles users, to electricity distribution companies, to
electricity suppliers, to tax administrations, and finally to users and owners of charging stations.
Therefore, communication and control with all these devices and systems is integrated in one device.
Realization of hardware and software of such a terminal has also been described in this paper. The
net result of development and commercialization of terminals would encourage an increase in the
use of electric vehicles powered by energy from renewable sources, which would cause a decrease in
the level of air pollution and all negative effects it causes in the future. Different categories of this
device are considered. Moreover, although it is a device with embedded software, a very advanced
method was used, that is, a model-driven development method, which enables fast and more efficient
development and maintenance of the device. The results of the application of this method to the
terminal for remote control of fiscal cash registers are provided. They were compared with the
results of the development of the terminal for remote control of smart meters without applying this
method. A simulation of the development of the terminal for remote control of the station is also
provided. The presented method can be used in the future for faster and better-quality development
of embedded software.

Keywords: electric vehicles chargers; model-driven development; remote control; renewable
energy sources

1. Introduction

Production and use of electric vehicles are constantly being increased. The benefits of
that trend in terms of air pollution reduction can be fully achieved only if electric vehicles
are powered by energy obtained from renewable sources. Further development of the
infrastructure for EV charging becomes more and more important, especially in terms of
increasing the number of charging stations for electric vehicles powered by renewable
energy sources [1].

Charging stations for electric vehicles powered by renewable energy are being inte-
grated into one larger system, which increases their accessibility to electric vehicles users,
electricity distribution companies, suppliers, and tax administrations, as well as to the
owners and users of the EV charging stations. Such integration increases the efficiency
of using the electricity distribution network and saves time and money. One of the most
important features of such a system is remote control of the station for EV charging. Remote
control enables the control of the mentioned devices from one center. For example, the
control of all smart meters from one center allows the distribution operator to manage the
power grid on the consumption side, which became a necessity due to the emergence of

Electronics 2023, 12, 1769. https://doi.org/10.3390/electronics12081769 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081769
https://doi.org/10.3390/electronics12081769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12081769
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081769?type=check_update&version=1

Electronics 2023, 12, 1769 2 of 24

many small- and medium-sized sources of electricity, as well as electric vehicles. Control of
all smart batteries from one center allows the supplier to optimize electricity trading and
achieve higher returns. The control of all fiscal cash registers from one center enables the
tax administration to easily and quickly monitor the collected tax and reduce tax evasion.
Control of all EV chargers from one center allows electric vehicle owners to have timely
information on the optimal place for them to charge their vehicles. In addition to this,
remote control allows station owners to manage it in real time wherever they are. The
key device in this system is a terminal for remote control of charging stations for electric
vehicles powered by renewable energy. The realization of this terminal is presented in
this paper.

Technical requirements for this terminal are to enable remote reading all registers,
remote setting all the parameters, and starting all possible actions in EV chargers, smart
batteries, smart meters, and fiscal cash registers by electric vehicles users, electricity distri-
bution operators, suppliers, and tax administration, as well as for the owners and users
of the EV charging stations. For smart meters, there are the registers of active energy and
reactive energy, the billing profile, the maximum demand and the quality of electricity,
event logs, etc., the parameters of tariff policies, power limitation, etc., and actions of
connecting or disconnecting consumers, etc. For smart batteries, there are registers of
capacity status, billing profile, etc., parameters of operating mode (charging/discharging),
permission (permission/prohibition of charging), energy price, etc., actions of charging
battery from the grid, discharging battery to the grid, charging battery from the renewables,
and transferring energy from the renewables to the grid. For EV chargers, there are registers
of total consumed energy, daily consumed energy, billing profile, etc., the parameters of
limiting the maximum consumption during the day, energy price, operating mode (charg-
ing/discharging), and permission (permission/prohibition of charging), etc. For fiscal cash
registers, there are registers of turnovers, resets, etc., and parameters of tax rates, articles,
prices, and cashiers, etc. In addition to this, advanced terminal functionality is an automatic
mode of operation where the terminal makes decisions about what to do with the battery,
charger, and renewable sources of energy depending on the variable inputs (current energy
price, current energy consumption, current energy production, etc.).

The system’s end-to-end security architecture must offer an ICT foundation for data
protection and functionality across all communication network segments, from EV chargers,
smart batteries, smart meters, and fiscal cash registers to electric vehicles users, electricity
distribution operators, suppliers, and tax administration, as well as to the owners and users
of the EV charging stations. Although there are many particulars to system implementation,
the implementation of security infrastructure is very similar to that of other highly secure
ICT infrastructures (such as banking, insurance, government, etc.), and it is necessary to
use industry standard and tested security elements and solutions. On the basis of radio
frequency technologies, terminals create a mesh network. Before being provided access
to the information infrastructure, each terminal that joins the mesh network must first
prove its identity. Extensible Authentication Protocol (EAP), RADIUS, and IEEE 802.1x are
just a few examples of open protocols that can be used to their fullest potential for strong
node authentication. Link-layer encryption must be used in the mesh architecture. The
terminals must implement an application security layer that, at a minimum, meets suite #0
of the DLMS COSEM standard (AES GCM 128). A cryptographic key management system
is required for terminals that contain cryptographic keys for authentication, encryption,
integrity, or other cryptographic operations. This system must offer sufficient key diversity
and appropriate protection for cryptographic materials.

Recently, we have witnessed the phenomenon that many households practically
become charging stations for electric vehicles powered by renewable energy. This happens
for two reasons. The first reason is that, in addition to switching to electric cars, owners
install chargers in their homes. Another reason is that more and more households are
becoming prosumers, that is, both buyers and producers of electricity at the same time.
Every consumer can install solar panels or wind generators at home in order not only to

Electronics 2023, 12, 1769 3 of 24

produce and use the produced electricity for their own needs but also, in the case of surplus,
to have the right to enter the market, sell the electricity, and receive compensation for it.
This enables the consumer to reduce his costs and increase his income by his own initiative.
Consumers also have the possibility to join together or establish local energy communities,
which would bring together more consumers and thus, at the same time, meet their own
needs for electricity and be more competitive in the market when selling excess production.
Aggregators are market participants who combine consumption or production electricity
from several prosumers and trade it on the market.

The popularity of electric cars has been rising over time. In some countries, the number
of electric vehicles has been rising year over year. However, the market for electric vehicles
in some other countries is still very nascent, as evidenced by the lack of infrastructure for
vehicle charging or the insignificant demand for such services in locations where such
infrastructure has already been established, not to mention the meager sales of electric
vehicles [2]. Therefore, the development of infrastructure and services for vehicle charging
and integration of renewable energy sources into the system is of great importance for
further development of the electric vehicles industry.

Fuel cells play a significant role in the drive application of automobiles due to their
benefits of high efficiency, high power density at low temperature, quick startup, and zero
pollution [3]. The fuel cell is a cutting-edge energy device with a wide range of uses. The
fuel cell vehicle stands out among them for its benefits to the environment, zero pollution,
and great efficiency.

Due to an increase in the number of electric cars, the prices of materials necessary for
the production of batteries has been increased several times in recent years. That is the
reason why recycling batteries is becoming increasingly important and very popular since
not every cell in a used battery has already met the requirements for its end of life and can
still be used for subsequent purposes.

This paper has the following structure. The related work is presented in Section 2. In
Section 3, the architecture of the system for remote control of charging stations for electric
vehicles powered by renewable energy has been described. Section 4 contains a description
of subsystems of the terminal for remote control of the charging station for electric vehicles.
Hardware of the terminal for remote control of the charging station for electric vehicles has
been described in Section 5. Different variants of terminal hardware implementation are
presented in Section 6. Section 7 contains a description of the software of the terminal for
remote control of EV charging stations. In Section 8, drivers for the terminal have been
described, while the subprograms for executing the processes are disclosed in Section 9.
The discussion and results are presented in Section 10, and conclusions have been provided
in Section 11.

2. Related Work

Papers dealing with individual subsystems can be found. Thus, papers [4,5] show the
analysis of terminal hardware and software for the system for remote control of meters,
while papers [6,7] show the analysis of hardware and software for the system for remote
control of fiscal cash registers, while papers [8–13] provide an analysis of a system for
remote control of EV chargers. Paper [14] provides an overview of works dealing with
systems and terminals for remote control of charging stations for electric vehicles powered
by solar power plants. Reference [15] shows a system for remote control of smart batteries.

One can find works that deal with model-driven development, that is, object-oriented
way of programming embedded software, although they are not common. Further, the
application in practice is still not common due to less control of the programmer over the
speed of execution and the amount of program and working memory required for the
operation of the software obtained in this way, which is very important for embedded soft-
ware. Paper [16] provides a model for object-oriented programming that is applied in the
automotive industry. Paper [17] discusses the trend that embedded software development
is shifting from manual programming to model-driven development (MDD) and why it

Electronics 2023, 12, 1769 4 of 24

is important to assure the quality of embedded software. Work [18] elaborates verifying
protocol conformance using software model checking for the model-driven development
of embedded systems.

Compared to the abbreviated version [19], this paper is much more detailed (i.e., con-
tains a general definition of the model, i.e., the process) and provides an overall overview of
the hardware and software and in particular adds a detailed explanation of the procedures
for executing the process using model-driven development, that is, the object-oriented
way programming.

There are many recent papers demonstrating high scientific interest in solving the
aforementioned problems, just to name a few. A voltage balancer can be adopted to sup-
press the unbalanced current for each node of the neutral line, leading to its unbalanced
voltage in a bipolar DC distribution network, caused by the unbalanced load resistance,
line resistance, and renewable energy source [20]. Using the internal converter of a doubly
fed induction generator (DFIG)-based wind turbine to provide voltage support auxiliary
service is an effective scheme to suppress the voltage fluctuation at the point of common
coupling (PCC) [21]. A local energy community with different types of prosumers is op-
timized (household, commercial, and industrial), and each of them is equipped with a
photovoltaic panel and a battery system [22]. The financial and economic benefits related to
EV management in Vehicle-to-Building (V2B), Vehicle-to-Home (V2H), and Vehicle-to-Grid
(V2G) technologies are presented in [23]. Renewable energy sources and EV growth provide
new challenges for grid stabilization, requiring smart grid techniques to reconfigure and
compensate for load fluctuation and stabilize power losses and voltage fluctuation [24].
The growing penetration of electric vehicles can pose several challenges for power sys-
tems, especially distribution systems, due to the introduction of significant uncertain load,
which can be solved by clustering methods [25]. According to the randomness of pho-
tovoltaic power generation and EV charging, the dynamic response capability, power
support capability, effective convergence time, system stability, system failure rate, and
other characteristics of regional loads are comprehensively analyzed, and the grid energy
management model of EV charging network and distributed photovoltaic is proposed,
while, according to certain statistical characteristics, the distributed photovoltaic will be
concentrated, and EV charging will be prioritized to achieve nearby consumption [26]. The
ZED 2i depth sensor can be utilized in a robot-based automatic EV charging application for
further enhancement [27].

3. System Architecture

In Figure 1, the block diagram of the architecture of the system for remote control of
a charging station for electric vehicles powered by renewable energy [19] is shown. The
terminal for remote control of charging station for electric vehicles powered by renewable
energy is the main component of the system. By Internet of Things (IoT) network, it is
connected with renewable energy sources, smart battery, EV chargers, fiscal cash registers,
smart electricity meter, user gadgets, and other gadgets. This terminal is also connected
to the cloud via the internet. That fact enables many functionalities, such as monitoring,
processing, setting, and storage of data received from renewable energy sources, smart
battery for energy storage, EV chargers, smart meter, and fiscal cash registers. The access to
the mentioned data in the cloud is possible through several different control centers: EV
chargers control center, supplier control center, electricity distribution company control
center, and tax administration control center. The owners of electric vehicles receive all
information about EV chargers through the EV chargers control center, while the electricity
available in the system is traded through the supplier control center. The owners of EV
charging stations also have access to the data stored in the cloud. In order to process
these data, advanced algorithms have been used, which increases the efficiency of distri-
bution network use, as well as allows significant savings in the system and enables the
implementation of innovative smart energy services.

Electronics 2023, 12, 1769 5 of 24

Electronics 2023, 12, x FOR PEER REVIEW 5 of 24

distribution network use, as well as allows significant savings in the system and enables

the implementation of innovative smart energy services.

Cloud

EV chargers

FCR

Smart battery

Smart meter

EV chargers control

center
Supplier control center

Tax administration

control center
Owner

Distribution company

control center

IoT network

Renewable energy

sources

Other gadgets

User gadgets

Terminal for remote control of charging station for electric vehicles

powered by renewable energy

Charger

type: String

power: Int

voltage: Int

startCharging()

stopCharging()

SmartCharger

rfid: Bool

pos: Bool

api: Bool

startCharging(amount: Int)

stopCharging(period: Time)

Figure 1. Block schematic of the design of the system for remote control of charging station for elec-

tric vehicles powered by renewable energy. Figure 1. Block schematic of the design of the system for remote control of charging station for electric
vehicles powered by renewable energy.

4. Description of Subsystems

Four subsystems are included in the system for remote control of renewable energy
sources powered station for electric vehicles (Evs) charging: a subsystem for remote control
of EV chargers, a subsystem for remote control of smart batteries, a subsystem for remote
control of smart meters, and an optional subsystem for remote control of fiscal cash registers.

Electronics 2023, 12, 1769 6 of 24

4.1. The Subsystem for Remote Control of EV Chargers

EV chargers, a terminal for remote control of EV chargers, and an EV chargers control
center make up the three main parts of the subsystem for remote control of EV chargers [14].
In Figure 2, this subsystem is depicted. Energy from smart batteries is used to power
electric vehicles. On the other hand, smart batteries receive their energy from renewable
sources or, if necessary, the electricity distribution network.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 24

4. Description of Subsystems

Four subsystems are included in the system for remote control of renewable energy

sources powered station for electric vehicles (Evs) charging: a subsystem for remote con-

trol of EV chargers, a subsystem for remote control of smart batteries, a subsystem for

remote control of smart meters, and an optional subsystem for remote control of fiscal

cash registers.

4.1. The Subsystem for Remote Control of EV Chargers

EV chargers, a terminal for remote control of EV chargers, and an EV chargers control

center make up the three main parts of the subsystem for remote control of EV chargers

[14]. In Figure 2, this subsystem is depicted. Energy from smart batteries is used to power

electric vehicles. On the other hand, smart batteries receive their energy from renewable

sources or, if necessary, the electricity distribution network.

Figure 2. The subsystem for remote control of EV chargers.

The terminal for remote control of EV chargers has access to information from the

chargers, such as power availability, charging programs, and prices. These data are trans-

mitted over the internet to the EV chargers control center, where they are then made ac-

cessible to end users. The pricing of power at EV charging stations is managed by this

subsystem using software algorithms based on the stations’ locations and the amount of

energy that is available. With this strategy, it is possible to lower the price of electricity at

stations with more power available (to encourage customers to charge their electric vehi-

cles at these stations), while the price of electricity may be raised at stations with less

power available (so that customers would be discouraged from supplying their electrical

vehicles with electricity at these stations). The owner of the charging station, if it is a sep-

arate subsystem or artificial intelligence technologies operating in a unified terminal with

access to all devices (EV chargers, smart batteries, smart meters, and fiscal cash registers),

appropriate control centers, information systems, and software platforms, decides on

price adjustments.

4.2. The Subsystem for Remote Control of Smart Batteries

Smart batteries for energy storage, terminals for remote control of smart batteries,

and a supplier control center make up the three major elements of the subsystem for re-

mote control of smart batteries [15]. In Figure 3, this subsystem is depicted. The smart

battery consists of an inverter and a battery. Smart battery management involves

Figure 2. The subsystem for remote control of EV chargers.

The terminal for remote control of EV chargers has access to information from the
chargers, such as power availability, charging programs, and prices. These data are trans-
mitted over the internet to the EV chargers control center, where they are then made
accessible to end users. The pricing of power at EV charging stations is managed by this
subsystem using software algorithms based on the stations’ locations and the amount of
energy that is available. With this strategy, it is possible to lower the price of electricity
at stations with more power available (to encourage customers to charge their electric
vehicles at these stations), while the price of electricity may be raised at stations with less
power available (so that customers would be discouraged from supplying their electrical
vehicles with electricity at these stations). The owner of the charging station, if it is a
separate subsystem or artificial intelligence technologies operating in a unified terminal
with access to all devices (EV chargers, smart batteries, smart meters, and fiscal cash regis-
ters), appropriate control centers, information systems, and software platforms, decides on
price adjustments.

4.2. The Subsystem for Remote Control of Smart Batteries

Smart batteries for energy storage, terminals for remote control of smart batteries, and
a supplier control center make up the three major elements of the subsystem for remote
control of smart batteries [15]. In Figure 3, this subsystem is depicted. The smart battery
consists of an inverter and a battery. Smart battery management involves optimizing
the operation of the inverter and the associated batteries [28]. Smart batteries for storing
electricity obtain energy from the electrical distribution network or from renewable sources.
The supplier control center receives information about the smart batteries’ available energy
from the terminal for remote control of smart batteries. This enables owners of EV charging

Electronics 2023, 12, 1769 7 of 24

stations who are experiencing a temporary energy shortfall to purchase energy (obtained
from renewable sources) from producers who are experiencing a temporary energy surplus.
Similar to this, proprietors of charging stations for electric vehicles who currently have an
excess of accessible energy can sell that energy to consumers who currently have a shortfall
of available energy. Due to increased renewable energy production at a given time, this
also enables owners of EV charging stations to purchase excess energy at reasonable prices
and store it in smart batteries for energy storage, where it can later be sold at higher prices
when there is an energy shortage in the system (due to reduced production of energy from
renewable sources at a particular time). After purchasing electricity derived from renewable
sources, the terminal for remote control of smart batteries is in charge of managing the
smart battery charging process.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 24

optimizing the operation of the inverter and the associated batteries [28]. Smart batteries

for storing electricity obtain energy from the electrical distribution network or from re-

newable sources. The supplier control center receives information about the smart batter-

ies’ available energy from the terminal for remote control of smart batteries. This enables

owners of EV charging stations who are experiencing a temporary energy shortfall to pur-

chase energy (obtained from renewable sources) from producers who are experiencing a

temporary energy surplus. Similar to this, proprietors of charging stations for electric ve-

hicles who currently have an excess of accessible energy can sell that energy to consumers

who currently have a shortfall of available energy. Due to increased renewable energy

production at a given time, this also enables owners of EV charging stations to purchase

excess energy at reasonable prices and store it in smart batteries for energy storage, where

it can later be sold at higher prices when there is an energy shortage in the system (due to

reduced production of energy from renewable sources at a particular time). After purchas-

ing electricity derived from renewable sources, the terminal for remote control of smart

batteries is in charge of managing the smart battery charging process.

Cloud

Terminal for remote

control of smart storage

battery

Electricity distribution

network

Electric vehicle

charger

Facility

with electrical devices

(consumer part)

Storage

battery

Smart electricity

meter

Renewable energy

sources

Electricity trading

platform

Power

inverter

Smart storage battery

Figure 3. The subsystem for remote control of smart batteries.

Considering that there are batteries in the electric vehicles themselves, the use of

those batteries (V2G concept) in vehicles has recently been considered a great deal. Since

that concept depends significantly on the availability of the vehicles, in this work, a special

independent battery—smart battery—is provided for the sake of reliability. However, cer-

tainly, a detailed analysis of whether and in which case vehicle batteries would be suffi-

cient can be the subject of further work.

Figure 3. The subsystem for remote control of smart batteries.

Considering that there are batteries in the electric vehicles themselves, the use of those
batteries (V2G concept) in vehicles has recently been considered a great deal. Since that
concept depends significantly on the availability of the vehicles, in this work, a special
independent battery—smart battery—is provided for the sake of reliability. However,
certainly, a detailed analysis of whether and in which case vehicle batteries would be
sufficient can be the subject of further work.

Electronics 2023, 12, 1769 8 of 24

4.3. The Subsystem for Remote Control of Smart Meters

Smart meters, a remote control terminal for smart meters, and the distribution com-
pany control center make up the three basic parts of the subsystem for remote control of
smart meters [4].

In Figure 4, this subsystem is depicted. There are numerous features in smart me-
ters. Smart meters measure active energy and reactive energy, they register the average
maximum power within a predefined period, they measure the quality of electricity, and
show the appropriate data on the display. Smart meters also offer flexible tariff policies
and maintain metering integrity. Smart meters can limit the amount of consumed power,
record event logs, and connect or disconnect consumers from the power grid remotely.
They can also record profiles of the corresponding measured quantities. In order to gather
data from meters, configure meters, set settings, and manage consumption, smart meters
and the terminal for remote control of smart meters communicate with each other. On the
other hand, the terminal for remote control of smart meters interacts with the electricity
distribution company control center. This control center gathers data, manages smart
meter settings, and generates reports, in addition to carrying out the administration of
components of the subsystem for remote control of smart meters.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 24

4.3. The Subsystem for Remote Control of Smart Meters

Smart meters, a remote control terminal for smart meters, and the distribution com-

pany control center make up the three basic parts of the subsystem for remote control of

smart meters [4].

In Figure 4, this subsystem is depicted. There are numerous features in smart meters.

Smart meters measure active energy and reactive energy, they register the average maxi-

mum power within a predefined period, they measure the quality of electricity, and show

the appropriate data on the display. Smart meters also offer flexible tariff policies and

maintain metering integrity. Smart meters can limit the amount of consumed power, rec-

ord event logs, and connect or disconnect consumers from the power grid remotely. They

can also record profiles of the corresponding measured quantities. In order to gather data

from meters, configure meters, set settings, and manage consumption, smart meters and

the terminal for remote control of smart meters communicate with each other. On the

other hand, the terminal for remote control of smart meters interacts with the electricity

distribution company control center. This control center gathers data, manages smart me-

ter settings, and generates reports, in addition to carrying out the administration of com-

ponents of the subsystem for remote control of smart meters.

Figure 4. The subsystem for remote control of smart meters.

4.4. The Subsystem for Remote Control of Fiscal Cash Registers

Fiscal cash registers, terminals for remote management of fiscal cash registers, and

the tax administration control center make up the three main parts of the subsystem for

remote control of fiscal cash registers [6]. In Figure 5, this subsystem is depicted. Fiscal

cash registers have a keyboard that allows the cashier to enter commands and to monitor

the data on recorded transactions. Additionally, they have the ability to print the data on

Figure 4. The subsystem for remote control of smart meters.

4.4. The Subsystem for Remote Control of Fiscal Cash Registers

Fiscal cash registers, terminals for remote management of fiscal cash registers, and
the tax administration control center make up the three main parts of the subsystem for
remote control of fiscal cash registers [6]. In Figure 5, this subsystem is depicted. Fiscal cash
registers have a keyboard that allows the cashier to enter commands and to monitor the
data on recorded transactions. Additionally, they have the ability to print the data on the

Electronics 2023, 12, 1769 9 of 24

fiscal account and save the data in operational memory and fiscal memory. The data on the
realized recorded turnover and the realized refunded turnover can be grouped, summed
up, and presented by tax rates, articles, and cashiers in fiscal cash registers. They can also
use the appropriate input–output port to download all relevant data in electronic form.
They also meet the essential security requirements. The terminal for remote control of fiscal
cash registers enables fiscal cash register remote reading, management, and programming
with information on article structures and pricing. Additionally, it downloads information
from the fiscal cash registers and creates the necessary reports, which are subsequently
sent to the tax administration control center. The terminal for remote control of fiscal
cash registers sends reports on transactions at tax rates for a certain period, information
on resets, and tax rate parameters to the tax administration control center. To ensure tax
collection, the tax administration is in charge of keeping track of every transaction through
its control center.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 24

the fiscal account and save the data in operational memory and fiscal memory. The data

on the realized recorded turnover and the realized refunded turnover can be grouped,

summed up, and presented by tax rates, articles, and cashiers in fiscal cash registers. They

can also use the appropriate input–output port to download all relevant data in electronic

form. They also meet the essential security requirements. The terminal for remote control

of fiscal cash registers enables fiscal cash register remote reading, management, and pro-

gramming with information on article structures and pricing. Additionally, it downloads

information from the fiscal cash registers and creates the necessary reports, which are sub-

sequently sent to the tax administration control center. The terminal for remote control of

fiscal cash registers sends reports on transactions at tax rates for a certain period, infor-

mation on resets, and tax rate parameters to the tax administration control center. To en-

sure tax collection, the tax administration is in charge of keeping track of every transaction

through its control center.

Figure 5. The subsystem for remote control of fiscal cash registers.

5. Hardware of the Terminal

The earliest terminal realizations for reading fiscal cash registers and printers are

shown in [6]. The Ref. [7] feature advanced fiscal cash registers with integrated terminals

with and without additional services. Electric car charger terminals for wireless control are

displayed in [8].

Figure 6 displays a block schematic of the hardware for the terminal for remote con-

trol of the station for charging electric vehicles that is powered by renewable energy

sources [19]. A microcontroller (μC) serves as the terminal’s primary component and man-

ages all operations. A microcontroller reset circuit must be included in the terminal hard-

ware in order for the device to operate reliably. This circuit enables the microcontroller to

start up correctly after being powered on. For connecting to a personal computer for in-

circuit programming and debugging purposes, this type of device often requires an ap-

propriate connector that can only be accessed by opening the device enclosure. Addition-

ally, if the microcontroller lacks a dedicated port for this use, additional connectors are

required, to which the serial port of the microcontroller will be connected either to the

proper terminal port (in this case, the cloud port) or to the connector previously

Figure 5. The subsystem for remote control of fiscal cash registers.

5. Hardware of the Terminal

The earliest terminal realizations for reading fiscal cash registers and printers are
shown in [6]. The Ref. [7] feature advanced fiscal cash registers with integrated terminals
with and without additional services. Electric car charger terminals for wireless control are
displayed in [8].

Figure 6 displays a block schematic of the hardware for the terminal for remote
control of the station for charging electric vehicles that is powered by renewable energy
sources [19]. A microcontroller (µC) serves as the terminal’s primary component and
manages all operations. A microcontroller reset circuit must be included in the terminal
hardware in order for the device to operate reliably. This circuit enables the microcontroller

Electronics 2023, 12, 1769 10 of 24

to start up correctly after being powered on. For connecting to a personal computer
for in-circuit programming and debugging purposes, this type of device often requires
an appropriate connector that can only be accessed by opening the device enclosure.
Additionally, if the microcontroller lacks a dedicated port for this use, additional connectors
are required, to which the serial port of the microcontroller will be connected either to the
proper terminal port (in this case, the cloud port) or to the connector previously mentioned
in order to program the microcontroller by setting the appropriate jumpers. The first
position is used when the terminal is in regular operation, while the second position is
used to program and debug the terminal when it is being produced and serviced. The
proper voltage regulators, together with supporting capacitors and resistors, are included
in the power regulator. The input voltage is adjusted by these voltage regulators to all
necessary voltage levels, which are then used to power every component of the terminal.
In the event that the terminal is supplied by AC voltage, the power regulator additionally
includes a corresponding rectifier of the AC voltage to DC voltage. Regardless of power
disruptions, the real-time clock (RTC) offers correct time information. This integrated
circuit ought to include a battery backup because of this. Non-volatile memory is used to
hold the parameters required for the microcontroller software to function properly. These
parameters must be saved permanently so that the terminal can continue to function even
in the event of a power interruption. These purposes can involve use of EEPROM or
FRAM memory. The terminal needs to store these data somewhere in the interim since data
exchange with the IoT infrastructure and data exchange with the cloud occur at different
times. It is anticipated that the internal operational memory of the microcontroller will
not be large enough to store all these data because of its size. This is among the causes for
the necessity of using more operating memory (SRAM) in the terminal hardware. Data in
this memory should be maintained regardless of potential external power failures, which
is another consideration. SRAM memory with battery backup of the power supply was
previously employed (using the proper circuit with diodes or switches). FRAM memory is
now employed for these applications.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 24

mentioned in order to program the microcontroller by setting the appropriate jumpers.

The first position is used when the terminal is in regular operation, while the second po-

sition is used to program and debug the terminal when it is being produced and serviced.

The proper voltage regulators, together with supporting capacitors and resistors, are in-

cluded in the power regulator. The input voltage is adjusted by these voltage regulators

to all necessary voltage levels, which are then used to power every component of the ter-

minal. In the event that the terminal is supplied by AC voltage, the power regulator addi-

tionally includes a corresponding rectifier of the AC voltage to DC voltage. Regardless of

power disruptions, the real-time clock (RTC) offers correct time information. This inte-

grated circuit ought to include a battery backup because of this. Non-volatile memory is

used to hold the parameters required for the microcontroller software to function

properly. These parameters must be saved permanently so that the terminal can continue

to function even in the event of a power interruption. These purposes can involve use of

EEPROM or FRAM memory. The terminal needs to store these data somewhere in the

interim since data exchange with the IoT infrastructure and data exchange with the cloud

occur at different times. It is anticipated that the internal operational memory of the mi-

crocontroller will not be large enough to store all these data because of its size. This is

among the causes for the necessity of using more operating memory (SRAM) in the ter-

minal hardware. Data in this memory should be maintained regardless of potential exter-

nal power failures, which is another consideration. SRAM memory with battery backup

of the power supply was previously employed (using the proper circuit with diodes or

switches). FRAM memory is now employed for these applications.

uC

Port for cloud
Permanent

memory

SRAM

RTCPort for IoT

Power regulator

Keyboard or/and a

few keys

Display or/and a

few LEDs

Terminal for remote control of charging station for electric vehicles

powered by renewable energy

Figure 6. Block schematic of the hardware for the terminal.

A minimum of two ports are available on the terminal, one of which is used to com-

municate with the cloud and the other to the IoT network infrastructure [29]. As a result,

a microcontroller should have at least two serial ports. Eventually, a microcontroller with

only one serial port may be used, and the other serial port may be implemented using a

separate integrated circuit. The microcontroller should have five serial ports in order to

build a more advanced terminal. For serial connection with the suitable

5G/4G/3G/GPRS/GSM modem and the ETHERNET port, there would be two serial ports

used for the cloud. If the microcontroller already has an internal implementation of an

ETHERNET port, it is possible to realize directly; otherwise, it can be realized indirectly

by using the serial port of the microcontroller and an external integrated circuit. The mi-

crocontroller’s remaining three serial ports would be used to communicate with the IoT

Figure 6. Block schematic of the hardware for the terminal.

Electronics 2023, 12, 1769 11 of 24

A minimum of two ports are available on the terminal, one of which is used to com-
municate with the cloud and the other to the IoT network infrastructure [29]. As a result, a
microcontroller should have at least two serial ports. Eventually, a microcontroller with
only one serial port may be used, and the other serial port may be implemented using a sep-
arate integrated circuit. The microcontroller should have five serial ports in order to build
a more advanced terminal. For serial connection with the suitable 5G/4G/3G/GPRS/GSM
modem and the ETHERNET port, there would be two serial ports used for the cloud. If
the microcontroller already has an internal implementation of an ETHERNET port, it is
possible to realize directly; otherwise, it can be realized indirectly by using the serial port
of the microcontroller and an external integrated circuit. The microcontroller’s remaining
three serial ports would be used to communicate with the IoT network infrastructure:
one would be used to wire the station’s devices, another to wirelessly connect those same
devices, and the third would be used to wirelessly connect the station’s customers (the port
for local access is primarily for electric vehicle owners who use the station to charge their
vehicles, but it can also be used by a repairman and station owners/operators). The wired
connection of the devices within the station should be completed using an RS485 port,
directly if the microcontroller already has one internal port built in or indirectly through the
use of an extra integrated circuit. Zigbee or LoRa can be used to wirelessly connect station
components, whereas WIFI is the ideal option for wirelessly connecting station users. An
appropriate extra integrated circuit attached to the microcontroller’s serial port is required
to realize each of these interfaces.

It is typically necessary to provide a component for visual indication and a part
with keys on the terminal depending on the functional requirements. In general, these
two components provide direct communication between the operator or a repairman and
the terminal. The section involving the keys can typically be implemented by employ-
ing a few special keys or the suitable keyboard. The operator or a repairman can input
data or commands to the terminal or microcontroller through the component with the
keys. Light-emitting diodes with accompanying resistors and inverters (in the basic vari-
ation) or displays (in the more advanced variant) can be used to implement the portion
for visual indication. While the display is directly controlled by the microcontroller, the
light-emitting diodes (LEDs) can be controlled by the microcontroller or by some periph-
erals, such as a 5G/4G/3G/GPRS/GSM modem (where LEDs indicate the presence of a
5G/4G/3G/GPRS/GSM network). The microcontroller displays all relevant information
to the operator or a repairman using the component as a visual indicator.

6. Variants of Terminal Hardware Implementation

Depending on the target price and how sophisticated the functional needs are, different
terminal hardware implementation options may be available. For the mentioned EV
charging stations and households, there is a clear need for a device (terminal) that would
combine these features. However, compared to industrial or commercial EV charging
stations, households have distinct requirements and capabilities; thus, we suggest the three
terminal classes of light, standard, and extended. For household use is intended the light
class—for domestic charging stations. The light terminal should make it simple to configure,
manage, and keep an eye on the right home gadgets. First and foremost, one or two EV
chargers are anticipated to be connected to the light terminal, along with smart meters and
smart electrical devices (smart water heaters, air conditioners, etc.) whose management
can achieve economic management of electricity consumption in order to reduce costs, as
well as the inclusion of users in the concept of a smart city (aspect of energy efficiency in
the concept of a smart city) through communication with the smart city infrastructure. A
renewable energy source, such as solar panels on the roof of the house [28], should also be
able to be connected to the light terminal. The extended class is meant to meet the demands
of industrial charging stations for electric vehicles with vast capacity, while the standard
class is designed to meet the needs of commercial charging stations for electric vehicles
that are the most basic. The extended class differs from the standard class only in that it

Electronics 2023, 12, 1769 12 of 24

supports a far greater number of chargers and handles noticeably more data. Otherwise,
it is substantially the same. It is used in huge parking lots where many of the parking
places have chargers in them. These parking lots will be found in future large shopping
centers, auto manufacturers, etc. For commercial and industrial charging stations, it is to
be expected that the solar panels on the roof are not enough to power them. Whether wind,
biomass or fuel cell, or some other renewable source can be used depends on the location of
the stations and must be determined for each one individually. This analysis can certainly
be the subject of further work.

In view of the best price–performance ratio, it is obvious that the light terminal can be
realized with the smallest budget, whereas the extended terminal can be realized with the
highest budget. A corresponding 8051 microcontroller with two serial ports (or perhaps
one serial port and an additional integrated circuit for implementation of another serial
port), EEPROM memory, SRAM memory with battery backup, a few buttons, and a few
LEDs could, therefore, be used to implement the light terminal. The standard terminal can
be implemented using an ARM microprocessor with five serial ports, FRAM memory, a
corresponding keyboard, and a corresponding display. An industrial single-board computer
with five serial connections, a great deal of memory, and ports for a keyboard and a screen
can be used to develop the extended terminal.

Low price is very important for light terminals, while, for standard and extended
terminals, it is not such a significant factor. The proposed hardware configuration for the
light terminal already ensures the lowest possible price. However, what additionally affects
the price reduction and what must, therefore, be considered is interoperability. Therefore,
it is important that standardized communication protocols are used throughout the system
as this also significantly reduces the price. This was also shown by the experience from
the implementation of the smart metering system [30]. Even 20 years ago, many cost
benefit analyses showed the technical and economic justification of installing this system in
households as well. In the meantime, many distributions have started this process of mass
replacement of smart meters. Therefore, there is already interest and economic justification
for the installation of terminals for remote control of smart meters. Electric distribution
companies, as well as suppliers, are interested in expanding the functionality of such a
terminal to remote control of smart batteries and EV chargers. Since such an extension
of the functionality of the terminal does not significantly affect its price, the economic
justification of its application in practice is clear.

7. Software of the Terminal

Structured programming is typically used to develop software that is run by the
terminal’s microcontroller. The main program’s algorithm must be defined, followed by
the algorithms for each subprogram and the description of the memory layout for data
storage, in order for the software to be implemented. The specifics of these algorithms rely
on the terminal’s technical requirements.

A series of subprograms, depicted in Figure 7, are executed at the start of the main
program in order to start the terminal. Afterwards, the program goes into an infinite
loop, where it checks the appropriate flags and calls the execution of the corresponding
subprograms whenever the flags are activated (set). These programs can be divided into
three categories: subprograms for time-dependent tasks, subprograms for processing
messages that have been received, and subprograms for executing the processes. The
microcontroller’s built-in watchdog timer receives the strobe signal while the infinite loop
is being performed. This guarantees that, in the event that the microcontroller software is
blocked, the watchdog timer will reset the microcontroller. If necessary, the main program’s
execution is halted so that the proper interrupt subprograms can be run. At least, there are
serial interrupt subprograms and timer interrupt subprograms.

Electronics 2023, 12, 1769 13 of 24Electronics 2023, 12, x FOR PEER REVIEW 13 of 24

oneMinuteElapsed

messageReceived

processExecution

Main program

Subprograms for

starting the terminal

Send strobe signal to

watchdog timer

Execution of time-

dependent tasks

Processing of the

received message

Executing the process

Yes

Yes

Yes

No

No

No

Figure 7. Main program.

The Initialization of global variables, Configuration of other components, Configura-

tion of the microcontroller, and Recovering from a power outage subprograms are all in-

cluded in the group of subprograms for starting the terminal. All the important microcon-

troller registers that determine timer operation permission, timer operation mode, timer

trigger frequency, UART operation permission, UART operation mode, interrupt permis-

sion, interrupt priorities, etc., are configured by the subprogram Configuration of the mi-

crocontroller. All global variables are given their initial values during the subprogram In-

itialization of global variables. This is required because, after the microcontroller is pow-

ered on, these variables, which are stored in the SRAM of the device, have some arbitrary

values. All other terminal components, save the microcontroller, are configured by the

subprogram Configuration of other components. Setting the display and/or LEDs, config-

uring the ports, reading the real-time clock, and initializing the 5G/4G/3G/GPRS/GSM mo-

dem by turning on the flag activatedModemInitialization are all included in this. Modem

initialization is followed by the initialization of key variables for modem operation

(proper setting of the state and status variables, initialization of additional control varia-

bles, initialization of the first state’s control variables, etc.), as well as the start of the pro-

cess’ first state’s activity. The subprogram Recovery from a power outage assures that the

terminal will continue to operate after the power is restored and that the global variables

will be read from a non-volatile (permanent) memory.

The subprogram Execution of time-dependent tasks is at least one of the members of

the group of subprograms for time-dependent tasks. After setting the flag one-

MinuteElapsed, the main program calls this subprogram. The time is read in that function,

and the required tasks are begun at the right times to be executed. Each time the appro-

priate time interval has passed, the flag oneMinuteElapsed is enabled in the interrupt sub-

program of the relevant timer. A set of actions conducted in response to an event is repre-

sented by the subprograms used to execute the processes. The process transitions through

various states as it is being executed. The process of making decisions in demand side

management [31] and the process of controlling electric car chargers optimally to reduce

network load [8], employing various tactics [9–13] depending on the tariff, are examples

of more complex processes.

Figure 7. Main program.

The Initialization of global variables, Configuration of other components, Configu-
ration of the microcontroller, and Recovering from a power outage subprograms are all
included in the group of subprograms for starting the terminal. All the important mi-
crocontroller registers that determine timer operation permission, timer operation mode,
timer trigger frequency, UART operation permission, UART operation mode, interrupt
permission, interrupt priorities, etc., are configured by the subprogram Configuration of the
microcontroller. All global variables are given their initial values during the subprogram Ini-
tialization of global variables. This is required because, after the microcontroller is powered
on, these variables, which are stored in the SRAM of the device, have some arbitrary values.
All other terminal components, save the microcontroller, are configured by the subprogram
Configuration of other components. Setting the display and/or LEDs, configuring the ports,
reading the real-time clock, and initializing the 5G/4G/3G/GPRS/GSM modem by turning
on the flag activatedModemInitialization are all included in this. Modem initialization is
followed by the initialization of key variables for modem operation (proper setting of the
state and status variables, initialization of additional control variables, initialization of the
first state’s control variables, etc.), as well as the start of the process’ first state’s activity.
The subprogram Recovery from a power outage assures that the terminal will continue
to operate after the power is restored and that the global variables will be read from a
non-volatile (permanent) memory.

The subprogram Execution of time-dependent tasks is at least one of the members of
the group of subprograms for time-dependent tasks. After setting the flag oneMinuteE-
lapsed, the main program calls this subprogram. The time is read in that function, and the
required tasks are begun at the right times to be executed. Each time the appropriate time
interval has passed, the flag oneMinuteElapsed is enabled in the interrupt subprogram of
the relevant timer. A set of actions conducted in response to an event is represented by
the subprograms used to execute the processes. The process transitions through various
states as it is being executed. The process of making decisions in demand side manage-
ment [31] and the process of controlling electric car chargers optimally to reduce network
load [8], employing various tactics [9–13] depending on the tariff, are examples of more
complex processes.

Electronics 2023, 12, 1769 14 of 24

The security of IoT devices [32] and terminals [33] presents a unique set of issues that
must be addressed. These issues are based on numerous strategic and tactical suggestions
as well as best practices in successful and secure implementations [34,35].

8. Drivers

The light terminal also requires the relevant drivers to be implemented in order for
the software described in the previous section to operate correctly. There are two viable
approaches to implementing the conventional terminal: using the aforementioned drivers
or a bespoke operating system (FreeRTOS). Operating systems such as Linux or Windows
are used to run the extended terminal.

The following interrupt subprograms, the serial interrupt subprogram and the timer
interrupt subprogram, are the key drivers. The timer interrupt subprogram is monitoring
the expiration of the one-minute period, controlling the keys and processing the appropriate
number of timers required for the operation of the entire microcontroller software. If extra
serial ports are built using external integrated circuits, serial communication (with IoT
network infrastructure, an owner, or a cloud) is carried out in this subprogram. The
appropriate time interval between the two interrupts is recorded in the timer registers
during each execution of this subprogram, ensuring that the right number of times per
second are called into this procedure. The oneMinuteElapsed flag is activated by the timer
interrupt subprogram each time a minute has passed.

To determine when a set amount of time has passed, a timer is used. The timer
interrupt subprogram processes the timer by decrementing its value and taking the required
action when it reaches zero. Figure 8 depicts this timer operation algorithm. Timers are
crucial in ensuring that the execution of microcontroller programs is not stopped while they
wait for a relevant event to occur in the external environment. The microcontroller is capable
of supporting multiple independent timer interrupts with various interrupt durations.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 24

The security of IoT devices [32] and terminals [33] presents a unique set of issues that

must be addressed. These issues are based on numerous strategic and tactical suggestions

as well as best practices in successful and secure implementations [34,35].

8. Drivers

The light terminal also requires the relevant drivers to be implemented in order for

the software described in the previous section to operate correctly. There are two viable

approaches to implementing the conventional terminal: using the aforementioned drivers

or a bespoke operating system (FreeRTOS). Operating systems such as Linux or Windows

are used to run the extended terminal.

The following interrupt subprograms, the serial interrupt subprogram and the timer

interrupt subprogram, are the key drivers. The timer interrupt subprogram is monitoring

the expiration of the one-minute period, controlling the keys and processing the appro-

priate number of timers required for the operation of the entire microcontroller software.

If extra serial ports are built using external integrated circuits, serial communication (with

IoT network infrastructure, an owner, or a cloud) is carried out in this subprogram. The

appropriate time interval between the two interrupts is recorded in the timer registers

during each execution of this subprogram, ensuring that the right number of times per

second are called into this procedure. The oneMinuteElapsed flag is activated by the timer

interrupt subprogram each time a minute has passed.

To determine when a set amount of time has passed, a timer is used. The timer inter-

rupt subprogram processes the timer by decrementing its value and taking the required

action when it reaches zero. Figure 8 depicts this timer operation algorithm. Timers are

crucial in ensuring that the execution of microcontroller programs is not stopped while

they wait for a relevant event to occur in the external environment. The microcontroller is

capable of supporting multiple independent timer interrupts with various interrupt du-

rations.

Timer activated

Timer value zero

Timer interrupt

subprogram

Write time interval

between two interrupts

Timer decrementing

Yes

Yes

No

No

Performing the action

or signaling the event

End

Figure 8. Timer interrupt subprogram. Figure 8. Timer interrupt subprogram.

The serial interrupt subprogram is in charge of receiving and delivering messages via
the UART microcontroller in serial communication. When one byte of the message has been

Electronics 2023, 12, 1769 15 of 24

received or delivered and the next byte of the message needs to be sent, the serial interrupt
subprogram is invoked. The serial interrupt service procedure also recognizes when a
message has finished being received. As previously mentioned, a GSM/GPRS modem
is connected serially to the microcontroller using its UART, and it is through this serial
connection that the microcontroller realizes three different types of communications: com-
munication with the modem itself, interaction with the cloud, and communication with the
service technician. The messages in these communications are, therefore, received and sent
by the serial interrupt service procedure. Through a serial connection to a connector (dis-
cussed in Section 5) using the microcontroller’s UART, a service technician can be reached
by the microcontroller. The AT protocol, or, more specifically, the AT commands, are used
by the microcontroller to connect with the modem. The 5G/4G/3G/GPRS/GSM data con-
nection already in place uses the cloud communication protocol to enable communication
between the microcontroller and the cloud. Either directly through a cable connection
via the connector or indirectly through a wireless connection via a modem within the
established 5G/4G/3G/GPRS/GSM data connection, the microcontroller communicates
with the repairman.

It is, therefore, important to include a variable for storage of information about the
current serial communication mode, i.e., the variable serialCommunicationMode, due to
the various packet structures used in serial communication. The AT COMMAND constant’s
standard value for this variable indicates that the AT protocol’s packet structure is being
followed by the present communication’s packet structure. The only time this variable de-
viates from its default value is when communicating with the cloud, which occurs from the
time a 5G/4G/3G/GPRS/GSM data connection is established to the time it is terminated,
at which point its value is equal to the CLOUD DATA constant. Figure 9 illustrates the
algorithm of the serial interrupt service function. The serial interrupt subprogram checks
the serialCommunicationMode variable and executes one of the following subprograms
based on its value: AT communication or cloud communication.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 24

The serial interrupt subprogram is in charge of receiving and delivering messages

via the UART microcontroller in serial communication. When one byte of the message has

been received or delivered and the next byte of the message needs to be sent, the serial

interrupt subprogram is invoked. The serial interrupt service procedure also recognizes

when a message has finished being received. As previously mentioned, a GSM/GPRS mo-

dem is connected serially to the microcontroller using its UART, and it is through this

serial connection that the microcontroller realizes three different types of communica-

tions: communication with the modem itself, interaction with the cloud, and communica-

tion with the service technician. The messages in these communications are, therefore,

received and sent by the serial interrupt service procedure. Through a serial connection to

a connector (discussed in Section 5) using the microcontroller’s UART, a service technician

can be reached by the microcontroller. The AT protocol, or, more specifically, the AT com-

mands, are used by the microcontroller to connect with the modem. The

5G/4G/3G/GPRS/GSM data connection already in place uses the cloud communication

protocol to enable communication between the microcontroller and the cloud. Either di-

rectly through a cable connection via the connector or indirectly through a wireless con-

nection via a modem within the established 5G/4G/3G/GPRS/GSM data connection, the

microcontroller communicates with the repairman.

It is, therefore, important to include a variable for storage of information about the

current serial communication mode, i.e., the variable serialCommunicationMode, due to

the various packet structures used in serial communication. The AT COMMAND con-

stant’s standard value for this variable indicates that the AT protocol’s packet structure is

being followed by the present communication’s packet structure. The only time this vari-

able deviates from its default value is when communicating with the cloud, which occurs

from the time a 5G/4G/3G/GPRS/GSM data connection is established to the time it is ter-

minated, at which point its value is equal to the CLOUD DATA constant. Figure 9 illus-

trates the algorithm of the serial interrupt service function. The serial interrupt subpro-

gram checks the serialCommunicationMode variable and executes one of the following

subprograms based on its value: AT communication or cloud communication.

serialCommunicationMode

Serial interrupt

subprogram

AT_COMMAND

AT communication Cloud communication

CLOUD_DATA

End

Figure 9. Serial interrupt subprogram.

9. The Subprograms for Executing the Processes

In order to more clearly explain the subprograms from this group, it is worth first

explaining the process execution mechanism itself. A process is a closed set of activities

undertaken in response to an event to generate an output. During execution, a process

goes through various states. Process state changes are conditioned by corresponding

events. In each state, appropriate action is taken.

The method of realization of the process is as follows. Each process is assigned: acti-

vation flag, state variable, status variable, startup subprogram, execution subprogram,

state subprogram, process control variables, and state control variables.

The process can be found in different states. Information about the state of the process

is stored in the corresponding state variable.

Figure 9. Serial interrupt subprogram.

9. The Subprograms for Executing the Processes

In order to more clearly explain the subprograms from this group, it is worth first
explaining the process execution mechanism itself. A process is a closed set of activities
undertaken in response to an event to generate an output. During execution, a process goes
through various states. Process state changes are conditioned by corresponding events. In
each state, appropriate action is taken.

The method of realization of the process is as follows. Each process is assigned:
activation flag, state variable, status variable, startup subprogram, execution subprogram,
state subprogram, process control variables, and state control variables.

The process can be found in different states. Information about the state of the process
is stored in the corresponding state variable.

Electronics 2023, 12, 1769 16 of 24

Corresponding events cause the state of the process to change. Information about
these events is stored in appropriate flags or variables.

The process is executed in several cycles. In one cycle of the process, the activity of the
state in which the process is at that moment is executed once.

In each state of the process, a corresponding activity is executed. The number of differ-
ent activities is equal to the number of different process states, so one activity corresponds
to each process state.

Repetition of the same activity occurs in the case of keeping the process in the corre-
sponding state for more than one cycle.

The process is executed within the appropriate execution subprogram, which is ex-
ecuted in the main program each time it passes through the infinite loop as long as the
activation flag is active.

One cycle of the process corresponds to one pass through the infinite loop of the
main program.

Depending on the value of the state variable, the execution subprogram calls the
corresponding state subprogram.

Within the status subprogram, the appropriate activity is executed, checking whether
the appropriate events have occurred and, depending on that, the process remaining in the
same state or the appropriate change in the process state.

Starting the process, that is, changing the state of the process from the state of inactivity
to the first state of execution, is completed by calling and executing the start subprogram.
As part of the startup subprogram, the corresponding activation flag is activated, the
state variable and status variable are set appropriately, other process control variables are
initialized, the control variables of the first state are initialized, and the activity of the first
state of the process is started.

Changing the state of the process from the current state to the next state is completed
by setting the state variable accordingly, initializing the control variables of the next state,
and starting the next state activity.

Stopping the process, that is, changing the state of the process from the current state
to the state of inactivity, is completed by deactivating the activation flag, setting the state
variable and the status variable accordingly, and, if necessary, setting the appropriate
parameters that affect the next start of the process, the start of other subprograms or
processes, etc. If necessary, stopping the process can be completed within a separate
subprogram, i.e., within the stop subprogram.

Putting the process into the waiting state, i.e., changing the process state from the
current state of execution to the state of waiting, is completed by deactivating the activation
flag, setting the state variable accordingly, and, if necessary, starting the detection of appro-
priate events that will return the process from the state of waiting to the state of execution.

The status of the process, that is, the information whether the process has successfully
generated a result, is stored in the corresponding status variable. In the same variable,
information about the reason for the failure of the process is stored in case of unsuccessful
completion of the process.

This description of the process is a model-driven development, i.e., a model for object-
oriented programming. The advantage of this way of programming is that it enables much
faster and better-quality development and maintenance of software. On the other hand,
the disadvantage is that the programmer has less control over the speed of execution and
the amount of program and working memory required for the operation of the resulting
software. This can be limiting for embedded software applications. However, in the
following text, we will describe how the process model thus obtained is translated into
program code in such a way as to achieve all the advantages and neutralize the mentioned
disadvantages on the example of complex subprograms.

In the further text of this chapter, a detailed explanation of one of the more complex
subprograms from this group follows, that is, the subprogram of creating a complete daily
(Z) report. The explanation is provided for the fiscal cash register CR401 manufactured by

Electronics 2023, 12, 1769 17 of 24

Intracom, and the same can be applied to other fiscal cash registers. The purpose of the
CreateCompleteZReport subprogram is to execute the process of creating a complete Z
report. Figure 10 shows a state diagram of the complete Z report workflow.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24

(Z) report. The explanation is provided for the fiscal cash register CR401 manufactured by

Intracom, and the same can be applied to other fiscal cash registers. The purpose of the

CreateCompleteZReport subprogram is to execute the process of creating a complete Z

report. Figure 10 shows a state diagram of the complete Z report workflow.

READING OF PLU
STRUCTURES

INACTIVITY

READING OF
OPERATOR
STATISTICS

EXECUTION
OF Z

REPORT

READING OF Z
REPORT

Item not read for
the third time

RequestZReport command
received from Tax

Administration Server

Short press on keyboard

Item #i read, i ϵ [0,9998]

Item #9999 read

Item not read for the first
time or for the second time

Operator not read for the first
time or for the second time

Operator not read
for the third time

Operator #i read, i ϵ [1,14]

Operator #15
read

Time not read

Z report execution
period elapsed

Time read

Z report not read for the first
time or for the second time

Z report read and
Z report executed

Z report not executed for
the third time or Z report
not read for the third time

Z report not executed for
the first time or Z report

not executed for the
second time

Figure 10. A state diagram of the complete Z report workflow.

The result of the process, that is, the purpose of the process of creating a complete Z

report, is to prepare a daily turnover report by items, a daily turnover report by operators

(cashiers), and a daily report for sending to the PO server, that is, to ensure the reading of

data from the fiscal cash register, the formatting of such read data into reports, and the

placement of such generated reports into the terminal’s memory. The PO server is the

taxpayer’s server, which allows a taxpayer to monitor all relevant data and possibly adjust

the parameters available to that taxpayer.

The process can be found in five states. The names of the states are determined in

accordance with the procedure that is carried out in that state in the fiscal cash register.

The following is an overview of the status and corresponding activities, events, and status

changes.

State of inactivity. The process is initially in this state. From this state, the process can

move to the state of reading the PLU (Price Look-Up) structure of the article if a key acti-

vation of less than 5 s occurs or a RequestZReport command is received from the PO

server.

Reading of PLU article structures state. The purpose of this state is to prepare a daily

turnover report by item to be sent to the PO server. Therefore, the activity of the process

in this state is reading the PLU structure of items from the fiscal register, formatting the

thus obtained data, and placing it in the memory of the terminal in the data block se-

riesKZReports in the PLUReport field. In the regular execution of the process, this activity

is executed 10,000 times because the fiscal cash register CR401 manufactured by Intracom

has the ability to work with 10,000 items. The process remains in the same state as long as

the PLU structure of the item with sequence number from the set of numbers 0 to 9998

happens to be read. When the PLU structure of the item with sequence number 9999 hap-

pens to be read, the process goes into the state of reading of operator statistics. The process

remains in the same state until it happens that some PLU structure is not read in the first

Figure 10. A state diagram of the complete Z report workflow.

The result of the process, that is, the purpose of the process of creating a complete Z
report, is to prepare a daily turnover report by items, a daily turnover report by operators
(cashiers), and a daily report for sending to the PO server, that is, to ensure the reading
of data from the fiscal cash register, the formatting of such read data into reports, and the
placement of such generated reports into the terminal’s memory. The PO server is the
taxpayer’s server, which allows a taxpayer to monitor all relevant data and possibly adjust
the parameters available to that taxpayer.

The process can be found in five states. The names of the states are determined in
accordance with the procedure that is carried out in that state in the fiscal cash regis-
ter. The following is an overview of the status and corresponding activities, events, and
status changes.

State of inactivity. The process is initially in this state. From this state, the process
can move to the state of reading the PLU (Price Look-Up) structure of the article if a key
activation of less than 5 s occurs or a RequestZReport command is received from the
PO server.

Reading of PLU article structures state. The purpose of this state is to prepare a
daily turnover report by item to be sent to the PO server. Therefore, the activity of the
process in this state is reading the PLU structure of items from the fiscal register, formatting
the thus obtained data, and placing it in the memory of the terminal in the data block
seriesKZReports in the PLUReport field. In the regular execution of the process, this
activity is executed 10,000 times because the fiscal cash register CR401 manufactured by
Intracom has the ability to work with 10,000 items. The process remains in the same state
as long as the PLU structure of the item with sequence number from the set of numbers

Electronics 2023, 12, 1769 18 of 24

0 to 9998 happens to be read. When the PLU structure of the item with sequence number
9999 happens to be read, the process goes into the state of reading of operator statistics.
The process remains in the same state until it happens that some PLU structure is not read
in the first or second attempt. If it happens that some PLU structure is not read in the third
attempt, the process transitions into the inactive state and places the information about the
unsuccessful execution of the process because the fiscal cash register does not respond to
the command to read the PLU structure in the status variable of statusZReport.

Reading of operator statistics state. The purpose of this state is to prepare a daily
turnover report by cashiers. Therefore, the activity process in this state is the reading of the
operator’s statistical data (hereinafter referred to as the operator structure) from the fiscal
cash register, formatting the thus obtained data, and placing it in the terminal’s memory
in the data block seriesKZReports in the operatorReport field. In the regular execution
of the process, this activity is executed 15 times because the fiscal cash register CR401
manufactured by Intracom has the ability to work with 15 cashiers. The process remains
in the same state as long as the operator structure with the sequence number from the set
of numbers 1 to 14 happens to be read. When the operator structure with the sequence
number 15 happens to be read, the process transitions into the execution of Z report state.
The process remains in the same state until it happens that some operator structure is not
read in the first or second attempt. If it happens that some operator structure is not read
in the third attempt, the process transitions into an inactive state and places information
about the failed execution of the process because the fiscal cash register does not respond
to the command to read operator statistics in the status variable statusZReport.

Execution of Z report state. The purpose of this state is the creation of a daily report,
that is, the execution of the Z report in the fiscal cash register in the stipulated time period.
Therefore, the activity of the process in this state is the execution of the Z report in the fiscal
cash register, the detection of the event that the Z report execution procedure in the fiscal
cash register has been completed, and the initiation of the event detection procedure that
the scheduled time period for the execution of the Z report has expired. Detection of the
event that the Z report execution procedure in the fiscal cash register has been completed is
conducted by asking whether the fiscal cash register responds to the time reading command
(time reading was chosen as one of the simpler commands). Such detection is necessary for
the following reasons: the fiscal cash register does not respond to the command to execute
the Z report, the fiscal cash register does not respond to any command during the execution
of the Z report, and the time required by the fiscal cash register to execute the Z report
is not constant but depends on the number of items sold in that day and other factors.
Initiation of the event detection procedure that the scheduled time period for execution
of the Z report has expired is completed by activating the appropriate timer. In regular
process execution, this activity is executed once. The time reading is performed several
times, which depends on the ratio of the time required by the fiscal cash register to execute
the Z report and the time waiting for the response from the fiscal cash register. If the event
occurs that the time has not been read, the process remains in the same state. If the event
occurs that the time has been read (the event that the Z report execution procedure in
the fiscal cash register is completed) or that the scheduled time period for the Z report
execution has expired, the process switches to the reading of Z report state.

Reading of Z report state. The purpose of this state is to prepare a daily report for
sending to the PO server. Therefore, the activity of the process in this state is the reading of
the last Z data (hereinafter the last Z report) from the fiscal cash register, formatting the thus
obtained data, placing it in the memory of the terminal in the data block seriesKZReports in
the field descriptionZReport, and detecting the event that the Z report execution procedure
is successfully completed in the fiscal cash register. This detection is performed by checking
whether the number of the last Z report read from the fiscal cash register is different from
the number of the last Z report stored in the terminal. In regular process execution, this
activity is executed once. If events occur that the last Z report was read and that the Z
report was successfully executed, the process transitions into the inactive state and places

Electronics 2023, 12, 1769 19 of 24

the information about the successful execution of the process in the status variable status.
The process remains in the same state until it happens that the last Z report is not read
in the first or second attempt. If it happens that the last Z report is not read in the third
attempt, the process transitions into the inactive state and places the information about
the unsuccessful execution of the process because the fiscal cash register does not respond
to the command to read the last Z report in the status variable of statusZReport. If the
events occur that the last Z report was read and the Z report failed to execute on the first or
second attempt, the process enters the execution of Z report state. If it happens that the
last Z report was read and the Z report was executed unsuccessfully in the third attempt,
the process transitions into the inactive state and places the information about the failed
execution of the process because the fiscal cash register does not execute the Z report in the
status variable of statusZReport.

The flag of the activation of this process is the workCompleteZReport flag. The
execution subprogram of this process is the CreateCompleteZReport subprogram. The state
variable of this process is the status variable, that is, the same variable that is used to store
information about the busy status of communication with the fiscal cash register. The status
variable of this process is the variable statusZReport within the field descriptionZReport
of the pointed member of the block stringKZReport in the terminal memory. The process
startup subprogram is the InitializationWorkCompleteZReport subprogram.

The process is started by the InitializationRunCompleteZReport within the timer 0
interrupt subprogram or the ModemMessageProcessing subprogram or the PowerLossRe-
covery subprogram. The process is executed in the CreateCompleteZReport subprogram.

The CreateCompleteZReport subprogram is executed in the main program as long
as the workCompleteZReport flag is active. All the time during the process of creating
a complete Z report, information about the state of the process is stored in the status
variable. For all time during and after the process of creating a complete Z report, the status
information is stored in the variable statusZReport within the field descriptionZReport of
the pointed member of the block stringKZReport in the terminal memory.

Figure 11 shows the algorithm of the CreateCompleteZReport subprogram. The main
purpose of the CreateCompleteZReport subprogram is to ensure the execution of the
process of creating a complete Z report, that is, the execution of the corresponding activity,
that is, the corresponding state subprogram, depending on the state of the process.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24

status variable status. The process remains in the same state until it happens that the last

Z report is not read in the first or second attempt. If it happens that the last Z report is not

read in the third attempt, the process transitions into the inactive state and places the in-

formation about the unsuccessful execution of the process because the fiscal cash register

does not respond to the command to read the last Z report in the status variable of sta-

tusZReport. If the events occur that the last Z report was read and the Z report failed to

execute on the first or second attempt, the process enters the execution of Z report state. If

it happens that the last Z report was read and the Z report was executed unsuccessfully

in the third attempt, the process transitions into the inactive state and places the infor-

mation about the failed execution of the process because the fiscal cash register does not

execute the Z report in the status variable of statusZReport.

The flag of the activation of this process is the workCompleteZReport flag. The exe-

cution subprogram of this process is the CreateCompleteZReport subprogram. The state

variable of this process is the status variable, that is, the same variable that is used to store

information about the busy status of communication with the fiscal cash register. The sta-

tus variable of this process is the variable statusZReport within the field descriptionZRe-

port of the pointed member of the block stringKZReport in the terminal memory. The

process startup subprogram is the InitializationWorkCompleteZReport subprogram.

The process is started by the InitializationRunCompleteZReport within the timer 0

interrupt subprogram or the ModemMessageProcessing subprogram or the PowerLoss-

Recovery subprogram. The process is executed in the CreateCompleteZReport subpro-

gram.

The CreateCompleteZReport subprogram is executed in the main program as long

as the workCompleteZReport flag is active. All the time during the process of creating a

complete Z report, information about the state of the process is stored in the status varia-

ble. For all time during and after the process of creating a complete Z report, the status

information is stored in the variable statusZReport within the field descriptionZReport of

the pointed member of the block stringKZReport in the terminal memory.

Figure 11 shows the algorithm of the CreateCompleteZReport subprogram. The main

purpose of the CreateCompleteZReport subprogram is to ensure the execution of the pro-

cess of creating a complete Z report, that is, the execution of the corresponding activity,

that is, the corresponding state subprogram, depending on the state of the process.

CreateCompleteZReport

END

SWITCHstatus

status = INACTIVE

ReadingOfDaily

PLUReport

ReadingOfOperators

Statistics

ExecutionOfZReport

ReadingOfZReport

CREATE_Z_REPORT_READING_

OF_PLU_STRUCTURES

CREATE_Z_REPORT_READING_

OF_OPERATORS_STATISTICS

CREATE_Z_REPORT_EXECUTION_

OF_Z_REPORT

CREATE_Z_REPORT_READING_

OF_Z_REPORT

Figure 11. CreateCompletZReport subprogram algorithm. Figure 11. CreateCompletZReport subprogram algorithm.

Electronics 2023, 12, 1769 20 of 24

Therefore, at the beginning of the CreateCompleteZReport subprogram, the status
of the process is checked, that is, the status variable is checked. Depending on the state
of the process, the corresponding previously described activity is executed by calling and
executing the corresponding state subprogram.

If the process is in the state of reading of PLU structures, the ReadingOfDailyPLURe-
port subprogram is called. If the process is in the state of reading of operator statistics, the
ReadingOfOperatorStatistics subprogram is called. If the process is in execution of Z report
state, the ExecutionOfZReport subprogram is called. If the process is in the state of reading
of Z report, the subprogram ReadingOfZReport is called. If the process is not in any of the
mentioned five states, the variable status is set to the value of the constant INACTIVE.

10. Results and Discussion

Table 1 shows the results of applying the described model-driven development method
to the terminal for remote control of fiscal cash registers and a comparison with the results
of the development of a terminal for remote control of smart meters without applying
this method. The basic software of this terminal included the preparation of appropriate
reports and communication with the taxpayer’s server (PO Server), while, in the advanced
version, the software was upgraded to support the preparation of appropriate reports and
communication with the tax administration control center. We can see that it took 30 days
to develop the basic software of the terminal. The same period was required to upgrade
the software to the advanced variant, while the maintenance lasted about 60 days. During
the maintenance period, the release of 24 software versions occurred, which means that the
average response time in that period was 2.5 days, all in total for software correction (bug
correction or functionality refinement) and testing. Compared to the terminal for remote
control of smart electricity meters, which was developed without using the model-driven
development method, all the mentioned parameters were at least two times higher.

Table 1. The results of applying model-driven development method to the terminal for remote control
of fiscal cash registers and a comparison with the results of the development of a terminal for remote
control of smart meters without applying this method.

Activity
Terminal for FCR Terminal for Smart Meter

Duration Period Number of Versions Duration Period

Development of basic variant 30 days N/A >60 days
Development of advanced variant 30 days N/A >60 days

Maintenance 60 days 24 >120 days

Tables 2 and 3 show more details about all 24 software versions in the maintenance
period. Table 2 lists the duration and activity performed for each software version. Ac-
tivities performed during the maintenance period are bug fix, new feature adding, and
functionality improvement. The longest duration of the development of one version of the
software was 10 days, and the shortest was 1 day. Table 3 lists the total number of software
versions produced and the total time spent on each of the listed activities. Further, 45% of
the time was spent on improving functionalities, 35% of time was spent on fixing bugs,
and 20% of time was spent on adding new features. Therefore, the most time was spent on
functionality improvement, while the least time was spent on adding new features. This
shows that, no matter how much time is spent on the precise description of the product,
that is, defining the technical requirements as precisely as possible, some improvements
are always observed only after the realization of the product.

Electronics 2023, 12, 1769 21 of 24

Table 2. The results of applying model-driven development method to the terminal for remote control
of fiscal cash registers during the maintenance period for each version of the software.

Terminal for FCR

Maintance Version Duration Period (Days) Activity

Version 1 1 Functionality improvement
Version 2 4 Bug fix
Version 3 7 Bug fix
Version 4 8 New feature adding
Version 5 1 Functionality improvement
Version 6 10 Functionality improvement
Version 7 2 New feature adding
Version 8 5 Functionality improvement
Version 9 2 Bug fix
Version 10 1 Functionality improvement
Version 11 1 Bug fix
Version 12 1 Functionality improvement
Version 13 2 Functionality improvement
Version 14 1 Bug fix
Version 15 3 Functionality improvement
Version 16 1 Functionality improvement
Version 17 1 Bug fix
Version 18 1 Bug fix
Version 19 1 New feature adding
Version 20 1 Bug fix
Version 21 3 Bug fix
Version 22 1 Functionality improvement
Version 23 1 New feature adding
Version 24 1 Functionality improvement

Table 3. The results of applying model-driven development method to the terminal for remote control
of fiscal cash registers in the maintenance period in total.

Terminal for FCR

Activity Software Versions Total Duration Period Total
Number Days Percentage

Functionality improvement 11 27 45%
Bug fix 9 21 35%

New feature adding 4 12 20%

These experimental results clearly confirm the importance of applying the model-
driven development method in software development. This example highlights the main
feature of this method, which is reflected in the fact that it significantly reduces the time
required for subsequent software changes.

Table 4 shows the simulation, that is, the prediction of the time required for the
development and maintenance of the terminal for remote control of renewable-energy-
powered EV charging station, using the model-driven development method. The initial
assumption is that the development and maintenance of each individual terminal from
the terminals for remote control of the smart battery, the smart meter, and the EV charger
do not require more time than the time spent on the development and maintenance of
the terminal for the remote control of fiscal cash registers. Furthermore, it was taken into
account that the terminal for remote control of the station combines the functionalities of
these four terminals. Based on this assumption and the stated fact, it was concluded that
the development of the terminal for remote control of the station will not take more time
than four times the time required for the development and maintenance of the terminal for
remote control of fiscal cash register.

Electronics 2023, 12, 1769 22 of 24

Table 4. The simulation of applying model-driven development method to the terminal for remote
control of the station.

Terminal for FCR Terminal for Station

Activity Duration Period (Days) Duration Period (Days)

Development of basic variant 30 days <120
Developmemt of advanced variant 30 <120
Maintance 60 <240

The contributions of this paper are:

Electronics 2023, 12, x FOR PEER REVIEW 22 of 24

the development of the terminal for remote control of the station will not take more time
than four times the time required for the development and maintenance of the terminal
for remote control of fiscal cash register.

Table 4. The simulation of applying model-driven development method to the terminal for remote
control of the station.

 Terminal for FCR Terminal for Station
Activity Duration Period (Days) Duration Period (Days)

Development of basic variant 30 days <120
Developmemt of advanced variant 30 <120
Maintance 60 <240

The contributions of this paper are:
 In comparison with other works, none of the previously mentioned approaches offer

such a system, that is, a terminal with unified control of chargers, renewable sources,
smart battery, smart meter, and fiscal cash register, as well as categorization of such
a terminal.

 Furthermore, in addition to the realization of the terminal hardware that enables
communication with all these devices, this paper also provides a design development
model, that is, a model for both structured and object-oriented implementation of
embedded software, which can be used for application in smart cities systems, smart
metering, smart home, smart grid, and smart energy management in general.

 This design development model provided excellent results in practice when applied
to terminals for remote control of fiscal cash registers, enabling at the same time much
faster and better software development and maintenance while maintaining a suffi-
cient level of control over execution speed and the amount of required working and
program memory.

11. Conclusions
This article has considered the design of a terminal for remote control of a station

powered by renewable energy sources for charging electric vehicles. After presenting the
architecture of the system for station remote control, a block diagram of the terminal hard-
ware was described. It was shown that the central part of that system should be one de-
vice—a terminal with unified control of chargers, smart meter and fiscal cash register,
smart battery, and renewable sources. This unique terminal can replace four separate ter-
minals, which separately provide remote control of the mentioned devices. It has been
determined that a microcontroller with the proper memory, communication ports, keys,
visual indications, a real-time clock, and a power adapter can serve as the basis for the
terminal hardware realization. There are three suggested hardware implementation alter-
natives, together with the necessary drivers. The operation of the terminal software is
based on initializing all necessary registers, variables, parts, and processes, followed by
running the program’s endless main loop, which executes all essential operations and is
sporadically stopped by interrupt subprograms. An overview of the complete terminal
software is provided. The implementation of very complex subprograms for process exe-
cution is also explained in detail. The model-driven development was used, which enables
the application of object-oriented programming. This is a very advanced method for em-
bedded software. Potential inconveniences or problems of this method could be a lack of
memory. From the other side, this method enables much faster and better-quality devel-
opment and maintenance of software while maintaining control over the speed of execu-
tion and consumption of program and working memory. The practical application of this
model during the implementation of terminals for remote control of fiscal cash registers
demonstrated satisfactory results. In further work, the development of a compiler that
would automatically generate program code based on the model can be considered.

In comparison with other works, none of the previously mentioned approaches
offer such a system, that is, a terminal with unified control of chargers, renewable
sources, smart battery, smart meter, and fiscal cash register, as well as categorization
of such a terminal.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 24

the development of the terminal for remote control of the station will not take more time
than four times the time required for the development and maintenance of the terminal
for remote control of fiscal cash register.

Table 4. The simulation of applying model-driven development method to the terminal for remote
control of the station.

 Terminal for FCR Terminal for Station
Activity Duration Period (Days) Duration Period (Days)

Development of basic variant 30 days <120
Developmemt of advanced variant 30 <120
Maintance 60 <240

The contributions of this paper are:
 In comparison with other works, none of the previously mentioned approaches offer

such a system, that is, a terminal with unified control of chargers, renewable sources,
smart battery, smart meter, and fiscal cash register, as well as categorization of such
a terminal.

 Furthermore, in addition to the realization of the terminal hardware that enables
communication with all these devices, this paper also provides a design development
model, that is, a model for both structured and object-oriented implementation of
embedded software, which can be used for application in smart cities systems, smart
metering, smart home, smart grid, and smart energy management in general.

 This design development model provided excellent results in practice when applied
to terminals for remote control of fiscal cash registers, enabling at the same time much
faster and better software development and maintenance while maintaining a suffi-
cient level of control over execution speed and the amount of required working and
program memory.

11. Conclusions
This article has considered the design of a terminal for remote control of a station

powered by renewable energy sources for charging electric vehicles. After presenting the
architecture of the system for station remote control, a block diagram of the terminal hard-
ware was described. It was shown that the central part of that system should be one de-
vice—a terminal with unified control of chargers, smart meter and fiscal cash register,
smart battery, and renewable sources. This unique terminal can replace four separate ter-
minals, which separately provide remote control of the mentioned devices. It has been
determined that a microcontroller with the proper memory, communication ports, keys,
visual indications, a real-time clock, and a power adapter can serve as the basis for the
terminal hardware realization. There are three suggested hardware implementation alter-
natives, together with the necessary drivers. The operation of the terminal software is
based on initializing all necessary registers, variables, parts, and processes, followed by
running the program’s endless main loop, which executes all essential operations and is
sporadically stopped by interrupt subprograms. An overview of the complete terminal
software is provided. The implementation of very complex subprograms for process exe-
cution is also explained in detail. The model-driven development was used, which enables
the application of object-oriented programming. This is a very advanced method for em-
bedded software. Potential inconveniences or problems of this method could be a lack of
memory. From the other side, this method enables much faster and better-quality devel-
opment and maintenance of software while maintaining control over the speed of execu-
tion and consumption of program and working memory. The practical application of this
model during the implementation of terminals for remote control of fiscal cash registers
demonstrated satisfactory results. In further work, the development of a compiler that
would automatically generate program code based on the model can be considered.

Furthermore, in addition to the realization of the terminal hardware that enables
communication with all these devices, this paper also provides a design development
model, that is, a model for both structured and object-oriented implementation of
embedded software, which can be used for application in smart cities systems, smart
metering, smart home, smart grid, and smart energy management in general.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 24

the development of the terminal for remote control of the station will not take more time
than four times the time required for the development and maintenance of the terminal
for remote control of fiscal cash register.

Table 4. The simulation of applying model-driven development method to the terminal for remote
control of the station.

 Terminal for FCR Terminal for Station
Activity Duration Period (Days) Duration Period (Days)

Development of basic variant 30 days <120
Developmemt of advanced variant 30 <120
Maintance 60 <240

The contributions of this paper are:
 In comparison with other works, none of the previously mentioned approaches offer

such a system, that is, a terminal with unified control of chargers, renewable sources,
smart battery, smart meter, and fiscal cash register, as well as categorization of such
a terminal.

 Furthermore, in addition to the realization of the terminal hardware that enables
communication with all these devices, this paper also provides a design development
model, that is, a model for both structured and object-oriented implementation of
embedded software, which can be used for application in smart cities systems, smart
metering, smart home, smart grid, and smart energy management in general.

 This design development model provided excellent results in practice when applied
to terminals for remote control of fiscal cash registers, enabling at the same time much
faster and better software development and maintenance while maintaining a suffi-
cient level of control over execution speed and the amount of required working and
program memory.

11. Conclusions
This article has considered the design of a terminal for remote control of a station

powered by renewable energy sources for charging electric vehicles. After presenting the
architecture of the system for station remote control, a block diagram of the terminal hard-
ware was described. It was shown that the central part of that system should be one de-
vice—a terminal with unified control of chargers, smart meter and fiscal cash register,
smart battery, and renewable sources. This unique terminal can replace four separate ter-
minals, which separately provide remote control of the mentioned devices. It has been
determined that a microcontroller with the proper memory, communication ports, keys,
visual indications, a real-time clock, and a power adapter can serve as the basis for the
terminal hardware realization. There are three suggested hardware implementation alter-
natives, together with the necessary drivers. The operation of the terminal software is
based on initializing all necessary registers, variables, parts, and processes, followed by
running the program’s endless main loop, which executes all essential operations and is
sporadically stopped by interrupt subprograms. An overview of the complete terminal
software is provided. The implementation of very complex subprograms for process exe-
cution is also explained in detail. The model-driven development was used, which enables
the application of object-oriented programming. This is a very advanced method for em-
bedded software. Potential inconveniences or problems of this method could be a lack of
memory. From the other side, this method enables much faster and better-quality devel-
opment and maintenance of software while maintaining control over the speed of execu-
tion and consumption of program and working memory. The practical application of this
model during the implementation of terminals for remote control of fiscal cash registers
demonstrated satisfactory results. In further work, the development of a compiler that
would automatically generate program code based on the model can be considered.

This design development model provided excellent results in practice when applied
to terminals for remote control of fiscal cash registers, enabling at the same time
much faster and better software development and maintenance while maintaining a
sufficient level of control over execution speed and the amount of required working
and program memory.

11. Conclusions

This article has considered the design of a terminal for remote control of a station
powered by renewable energy sources for charging electric vehicles. After presenting
the architecture of the system for station remote control, a block diagram of the terminal
hardware was described. It was shown that the central part of that system should be one
device—a terminal with unified control of chargers, smart meter and fiscal cash register,
smart battery, and renewable sources. This unique terminal can replace four separate
terminals, which separately provide remote control of the mentioned devices. It has
been determined that a microcontroller with the proper memory, communication ports,
keys, visual indications, a real-time clock, and a power adapter can serve as the basis for
the terminal hardware realization. There are three suggested hardware implementation
alternatives, together with the necessary drivers. The operation of the terminal software is
based on initializing all necessary registers, variables, parts, and processes, followed by
running the program’s endless main loop, which executes all essential operations and is
sporadically stopped by interrupt subprograms. An overview of the complete terminal
software is provided. The implementation of very complex subprograms for process
execution is also explained in detail. The model-driven development was used, which
enables the application of object-oriented programming. This is a very advanced method
for embedded software. Potential inconveniences or problems of this method could be a
lack of memory. From the other side, this method enables much faster and better-quality
development and maintenance of software while maintaining control over the speed of
execution and consumption of program and working memory. The practical application
of this model during the implementation of terminals for remote control of fiscal cash
registers demonstrated satisfactory results. In further work, the development of a compiler
that would automatically generate program code based on the model can be considered.
Moreover, the analysis of which renewable sources can be used at commercial and industrial
charging stations, as well as the analysis of whether only vehicle batteries can be used
instead of a special independent smart battery, can be further research directions.

Electronics 2023, 12, 1769 23 of 24

Author Contributions: Conceptualization, J.V., G.S. and M.P.; methodology, J.V., G.S. and M.P.;
software, J.V.; validation, J.V.; formal analysis, J.V., G.S. and M.P.; investigation, J.V., G.S. and
M.P.; resources, J.V., G.S. and M.P.; data curation, J.V.; writing—original draft preparation, J.V. and
G.S.; writing—review and editing, J.V., G.S. and M.P.; visualization, J.V.; supervision, M.P.; project
administration, J.V. and M.P.; funding acquisition, J.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arunkumar, P.; Vijith, K. IOT enabled smart charging stations for electric vehicle. Int. J. Pure Appl. Math. 2018, 119, 247–252.
2. Macioszek, E. Electric vehicles—Problems and issues. In Smart and Green Solutions for Transport Systems. TSTP 2019. Advances in

Intelligent Systems and Computing; Sierpiński, G., Ed.; Springer: Cham, Switzerland, 2019; Volume 1091. [CrossRef]
3. Huang, H.; Ding, H.; Hu, D.; Cheng, Z.; Qiu, C.; Shen, Y.; Su, X. Thermal Performance Optimization of Multiple Circuits Cooling

System for Fuel Cell Vehicle. Sustainability 2023, 15, 3132. [CrossRef]
4. Lapčević, V.; Manojlović, S.; Vujasinović, J.; Marjanović, S. Experimental results on the load management system and remote

meter reading system. In Proceedings of the XI International Electrotechnical and Computer Science Conference ERK 2002,
Portorož, Slovenia, 23–25 September 2002.

5. England, B.S.; Alouani, A.T. Multiple Loads-Single Smart Meter for Measurement and Control of Smart Grid. In Proceedings of
the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019.

6. Vujasinović, J. Terminal for Remote Reading and Management of Fiscal Cash Registers. Ph.D. Thesis, University of Belgrade,
School of Electrical Engineering, Belgrade, Serbia, 2013.

7. Prokin, M.; Prokin, D. Improved fiscal devices with additional services. In Proceedings of the 5th Mediterranean Conference on
Embedded Computing (MECO), Bar, Montenegro, 12–16 June 2016.

8. Prokin, M.; Stojković, J.; Čabarkapa, M.; Prokin, D. Optimal control of chargers for electric vehicles. In Proceedings of the 8th
Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2019.

9. Zhang, C.; Huang, Q.; Tian, J.; Chen, L.; Cao, Y.; Zhang, R. Smart grid facing the new challenge: The management of electric
vehicle charging loads. Energy Procedia 2012, 12, 98–103. [CrossRef]

10. Xu, G.; Bai, L. Heuristic methods for optimal electric vehicle charging scheduling in smart grid. Int. J. Autom. Logist. 2013, 1,
22–46. [CrossRef]

11. Crisostomi, E.; Shorten, R.; Stuedli, S.; Wirth, F. Electric and Plug-in Hybrid Vehicle Networks: Optimization and Control; CRC Press:
Boca Raton, FL, USA, 2018.

12. Tang, W.; Zhang, Y.J. Optimal Charging Control of Electric Vehicles in Smart Grids; Springer Briefs in Electrical and Computer
Engineering; Springer: Cham, Switzerland, 2017.

13. Rajakaruna, S.; Shahnia, F.; Ghosh, A. Plug in Electric Vehicles in Smart Grids—Charging Strategies; Power Systems; Springer:
Singapore, 2015.

14. Khan, S.; Ahmad, A.; Ahmad, F.; Shemami, M.S.; Alam, M.S.; Khateeb, S. A comprehensive review on solar powered electric
vehicle charging system. Smart Sci. 2017, 6, 54–79. [CrossRef]

15. Sonnen Batterie. Available online: https://sonnengroup.com/sonnenbatterie/ (accessed on 1 September 2020).
16. Konrad, S.; Cheng, B.H.C.; Campbell, L.A. Object Analysis Patterns for Embedded Systems. IEEE Trans. Softw. Eng. 2004, 30,

970–992. [CrossRef]
17. Liggesmeyer, P.; Trapp, M. Trends in Embedded Software Engineering. IEEE Softw. 2009, 26, 19–25. [CrossRef]
18. Moffett, Y.; Dingel, J.; Beaulieu, A. Verifying Protocol Conformance Using Software Model Checking for the Model-Driven

Development of Embedded Systems. IEEE Trans. Softw. Eng. 2013, 39, 1307–1325. [CrossRef]
19. Vujasinović, J.; Savić, G.; Prokin, M. Terminal for Remote Control of Renewable Energy Sources Powered Station for Electric

Vehicles Charging. In Proceedings of the 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
7–10 June 2021.

20. Guo, C.; Wang, Y.; Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi-Node
Bipolar DC Distribution Network. Electronics 2022, 11, 166. [CrossRef]

21. Song, Y.; Wang, Y.; Zeng, Q.; Liao, J.; Zheng, Z.; Chen, S.; Liao, Y. An Active Voltage Coordinate Control Strategy of DFIG-Based
Wind Farm with Hybrid Energy Storage System. Electronics 2021, 10, 3060. [CrossRef]

22. Faia, R.; Soares, J.; Vale, Z.; Corchado, J.M. An Optimization Model for Energy Community Costs Minimization Considering a
Local Electricity Market between Prosumers and Electric Vehicles. Electronics 2021, 10, 129. [CrossRef]

23. Barreto, R.; Faria, P.; Vale, Z. Electric Mobility: An Overview of the Main Aspects Related to the Smart Grid. Electronics 2022,
11, 1311. [CrossRef]

http://doi.org/10.1007/978-3-030-35543-2_14
http://doi.org/10.3390/su15043132
http://doi.org/10.1016/j.egypro.2011.10.014
http://doi.org/10.1504/IJAL.2013.057449
http://doi.org/10.1080/23080477.2017.1419054
https://sonnengroup.com/sonnenbatterie/
http://doi.org/10.1109/TSE.2004.102
http://doi.org/10.1109/MS.2009.80
http://doi.org/10.1109/TSE.2013.14
http://doi.org/10.3390/electronics11010166
http://doi.org/10.3390/electronics10243060
http://doi.org/10.3390/electronics10020129
http://doi.org/10.3390/electronics11091311

Electronics 2023, 12, 1769 24 of 24

24. Nagi, F.; Azwin, A.; Boopalan, N.; Ramasamy, A.K.; Marsadek, M.; Ahmed, S.K. Comparison of Grid Reactive Voltage Regulation
with Reconfiguration Network for Electric Vehicle Penetration. Electronics 2022, 11, 3221. [CrossRef]

25. Nazari, M.; Hussain, A.; Musilek, P. Applications of Clustering Methods for Different Aspects of Electric Vehicles. Electronics
2023, 12, 790. [CrossRef]

26. He, Q.; Wu, M.; Sun, P.; Guo, J.; Chen, L.; Jiang, L.; Zhang, Z. Research on a Charging Mechanism of Electric Vehicles for
Photovoltaic Nearby Consumption Strategy. Electronics 2022, 11, 3407. [CrossRef]

27. Tadic, V. Study on Automatic Electric Vehicle Charging Socket Detection Using ZED 2i Depth Sensor. Electronics 2023, 12, 912.
[CrossRef]

28. Vujasinović, J.; Savić, G.; Despotovic, Z. Architecture and Sizing of System for Remote Control of Renewable Energy Sources
Powered Station for Electric Vehicles Charging. In Proceedings of the 7th IEEE International Energy Conference (ENERGYCON),
Riga, Latvia, 9–12 May 2022.

29. Vujasinović, J.; Savić, G.; Čiča, Z. Uvod̄enje IoT u stanicu za punjenje električnih vozila koja se napaja iz obnovljivih izvora
energije. In Proceedings of the 28th Telecommunication Forum TELFOR, Belgrade, Serbia, 24–25 November 2020.

30. Vujasinović, J.; Savić, G.; Batas Bjelic, I.; Rajakovic, N. Decreasing the Implementation Costs of Smart Metering Systems with
Interoperability. In Proceedings of the IEEE 2021 International Workshop on Metrology for Industry4.0 & IoT, Virtual Conference,
Trento, Italy, 7–9 June 2021.

31. Vujasinović, J.; Savić, G. Demand Side Management and Integration of a Renewable Sources Powered Station for Electric Vehicle
Charging into a Smart Grid. In Proceedings of the 15th International Conference on Applied and Theoretical Electricity ICATE,
Craiova, Romania, 27–29 May 2021.

32. Internet of Things Poses Opportunities for Cyber Crime; Federal Bureau of Investigation: Washington, DC, USA, 2015.
33. Prokin, M.; Prokin, D.; Nešković, A.; Nešković, N. Cybersecurity of improved fiscal devices. In Proceedings of the 7th

Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018.
34. Eisenach, J.A.; Barfield, C.; Glassman, J.K.; Loyola, M.; Tews, S. An American Strategy for Cyberspace—Advancing Freedom, Security

and Prosperity; American Enterprise Institute: Washington, DC, USA, 2016.
35. Pa, Y.M.; Suzuki, S.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Rossow, C. IoTPOT: A novel honeypot for revealing current IoT

threats. J. Inf. Process. 2016, 24, 522–533. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/electronics11193221
http://doi.org/10.3390/electronics12040790
http://doi.org/10.3390/electronics11203407
http://doi.org/10.3390/electronics12040912
http://doi.org/10.2197/ipsjjip.24.522

	Introduction
	Related Work
	System Architecture
	Description of Subsystems
	The Subsystem for Remote Control of EV Chargers
	The Subsystem for Remote Control of Smart Batteries
	The Subsystem for Remote Control of Smart Meters
	The Subsystem for Remote Control of Fiscal Cash Registers

	Hardware of the Terminal
	Variants of Terminal Hardware Implementation
	Software of the Terminal
	Drivers
	The Subprograms for Executing the Processes
	Results and Discussion
	Conclusions
	References

