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Abstract: Non-recessed ohmic contact resistance (Rc) on ultrathin-barrier (UTB) AlGaN(<6 nm)/GaN
heterostructure was effectively reduced to a low value of 0.16 Ω·mm. The method called the ‘ohmic-
before-passivation’ process was adopted to eliminate the effects of fluorine plasma etching, in which
an alloyed Ti/Al/Ni/Au ohmic metal stack was formed prior to passivation. The recovery of 2-D
Electron Gas (2DEG) adjacent to the ohmic contact was enhanced by composite double-layer dielectric
with AlN/SiNx passivation. It is found that the separation between the recovered 2DEG and the
ohmic contacting edge can be remarkably reduced, contributing to a reduced transfer length (LT) and
low Rc, as compared to that of ohmic contact to the AlGaN(~20 nm)/GaN heterostructure with a
pre-ohmic recess process. Thermionic field emission is verified to be the dominant ohmic contact
mechanism by temperature-dependent current-voltage measurements. The low on-resistance of
3.9 Ω·mm and the maximum current density of 750 mA/mm with Vg = 3 V were achieved on the
devices with the optimized ohmic contact. The non-recessed ohmic contact with the ‘ohmic-before-
passivation’ process is a promising strategy to optimize the performance of low-voltage GaN-based
power devices.

Keywords: AlGaN/GaN heterostructure; non-recessed; ultrathin barrier (UTB); ohmic contact;
transfer length

1. Introduction

The GaN-based high electron mobility transistor (HEMT) has demonstrated excellent
performance in power conversion and radio frequency (RF) power amplification, owing to
its high breakdown electric field, electron-saturation velocity, and especially high density
of polarization-induced 2-D electron gas (2DEG) [1–3]. Researchers have been sparing no
effort to reduce the ohmic contact resistance (Rc) of the HEMT, as it is essential to achieve a
high-saturation current, low on-resistance for power devices, and high frequency as well as
high efficiency for RF devices [4–7]. Among the many arts to reduce Rc, such as n+-GaN
regrowth [8–11], Si ion implantation [12–14], pre-ohmic recess are commonly adopted to
form lower Rc for AlGaN/GaN HEMTs with conventional barrier thickness (named as
CB-AlGaN/GaN HEMTs in the following discussion) as the tunneling distance between the
ohmic metal and 2DEG channel can be effectively reduced [15–17]. However, recess etching
of the AlGaN barrier, from a starting thickness of 15~30 nm down to several nanometers,
is challenging for most etching equipment. Schemes of non-recessed ohmic contacts, as a
result, are highly attractive for CB-AlGaN/GaN HEMTs.

The ultrathin-barrier (UTB) AlGaN/GaN heterostructure, by virtue of its naturally
depleted 2DEG channel, has been developed for the fabrication of normally-OFF, high-
threshold voltage uniformity AlGaN/GaN HEMTs [4,18]. It is also a promising technology
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platform for non-recessed ohmic contact. Even though ‘ohmic-before-passivation’ with
SiNx passivation using PECVD is usually a conventional process for CB-AlGaN/GaN
heterostructure. However, in previous experiments, the ‘passivation-before-ohmic’ process
with LPCVD-SINx passivation is often adopted to recover 2DEG for UTB-AlGaN/GaN
HEMTs before the development of charge-polarized AlN passivation [4,16,19–21]. In such
a ‘passivation-before-ohmic’ process, the LPCVD-SiNx passivation in the ohmic region
should be removed by fluorine-based plasmas first, which would result in negatively
charged F− ions in the contacting edge [17]. For this reason, the Rc was difficult to reduce
to below 0.5 Ω·mm in previous experiments [4,16,19–22].

In this work, with the development of charge-polarized AlN passivation for 2DEG
recovery, the ‘ohmic-before-passivation’ process was attempted to get rid of the influence
of F− ions on ohmic contact with UTB-AlGaN/GaN heterostructure associated with the
‘passivation-before-ohmic’ process. AlN/SiNx stacked passivation is grown after high-
temperature ohmic annealing to avoid metal overflowing at the edge of the dielectric stack.
A significant reduction of Rc to 0.16 Ω·mm is realized. Temperature-dependent current
voltage and microstructural characterizations revealed a remarkably reduced transfer
length (LT) as well as metal-to-2DEG tunneling distance owing to different metal profiles,
as compared with the recessed ohmic contact to CB-AlGaN/GaN heterostructure. The
low on-resistance of 3.9 Ω·mm and the maximum current density of 750 mA/mm with
Vg = 3 V were achieved on the devices with the optimized ohmic contact. The non-
recessed ohmic contact with the ‘ohmic-before-passivation’ process is a promising method
to optimize the performance of UTB-AlGaN/GaN heterostructure for low-voltage GaN-
based power devices.

2. Device Structure and Fabrication

UTB- and CB-AlGaN/GaN heterostructures used in this work were grown by metal-
organic chemical vapor deposition (MOCVD) on Si substrates. They consist of a thick GaN
buffer layer, a GaN channel layer of around 50 nm, and a UTB or CB AlN/Al0.25Ga0.75N/
GaN (cap) barrier layer. The prescribed thicknesses of the GaN cap, Al0.25Ga0.75N layer,
and AlN interface enhancement layer for UTB and CB are about 1, 4, 1 nm, and 1, 20, 1 nm,
respectively. Low-power Cl2/BCl3 hybrid plasmas were used for the pre-ohmic recess
of the CB-AlGaN/GaN heterostructure before ohmic mentalization. Afterward, both the
recessed CB-AlGaN/GaN and un-recessed UTB-AlGaN/GaN heterostructures were then
wet-treated in a diluted HCl, and a Ti/Al/Ni/Au metal stack was evaporated to serve
as the ohmic contacts. The ohmic metal system has four layers. The first layer, Ti, is a
refractory metal; the main purpose is to react with AlGaN to generate low-resistance nitride
such as TiN. The second layer is a low melting point of Al; the purpose is to accelerate the
reaction of Ti with AlGaN. The third layer of Ni needs to be a good barrier layer, which
can prevent the first and second layers of metal and the fourth layer of metal diffusion of
each other. Au, as the fourth layer of metal, mainly plays a role in preventing oxidation.
After lift-off, both samples were subjected to an annealing process at 810 ◦C for 50 s in a
N2 atmosphere. Although the melting point of Al and Au is low, the downward diffusion
of Au can be prevented due to the presence of a barrier layer, and the low melting point
of Al can accelerate the formation of low-resistance TiN. However, the low melting point
is possible to improve the surface roughness. This annealing condition is an empirical
condition that has been experimentally explored, which comprehensively considers the
effects of annealing on the degree of reaction and surface roughness of low-resistance
nitrides. A passivation stack of the AlN/SiNx (4/40 nm) layer, with the first 4-nm AlN
layer grown by plasma-enhanced atomic layer deposition (PEALD) and the 40-nm SiNx
layer by PECVD, was grown to recover 2DEG in the UTB sample. Schematic diagrams of the
structure of both ohmic contacts made using the above process are shown in Figure 1. The
2DEG density in the PEALD-AlN/PECVD-SiNx passivated UTB sample, as determined by
mercury-probe capacitance-voltage measurements, was 8.55 × 1012 cm−2, which was lower
than a value of 1.10 × 1013 cm−2 in the CB sample without the passivation. High-energy
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Ar+ ion implantation was then used to isolate the device. Finally, Ni/Au was evaporated
to serve as a gate.
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Figure 1. Schematic diagrams of the structure of the ohmic contact on (a) UTB−AlGaN/GaN
heterostructure and (b) CB−AlGaN/GaN heterostructure.

3. Results and Discussion

The Rc and sheet resistance (Rsh) for the PEALD-AlN/PECVD-SiNx passivated UTB-
and unpassivated CB-AlGaN/GaN heterostructure were determined using the circular
transmission line method (CTLM). The four-probe approach was adopted to eliminate the
parasitic resistance of probes. It is interesting to note that ohmic contact only formed after
the passivation for the UTB-AlGaN/GaN heterostructure. It is probably due to the recovery
of 2DEG at the ohmic contacting edge so that the tunneling probability between ohmic
metal and the 2DEG channel can be significantly enhanced. For ohmic contacts, the effective
electron conduction is concentrated at the source-drain edge due to the current crowding
effect, which has also been reported in previous studies [17]. Figure 2a,b show the current-
voltage (I-V) characteristics of ohmic contacts to the two heterostructures. Good linear
behavior is observed for all designed spacings, ranging from 8 to 36 µm. The evolution of
measured resistance with the contacting spacings is shown in Figure 2c,d for both samples.
Note that the spacing variations caused by their process difference are all considered in
extractions of Rc and Rsh.

Upon linear fitting, the Rc and Rsh for the UTB samples are determined to be 0.16 Ω·mm
and 299.57 Ω/sq; while for the CB heterostructure, they are 0.53 Ω·mm and 276.44 Ω/sq,
respectively. The lower Rsh of the CB sample is owing to its higher density of 2DEG outside
the ohmic contact area than that of the UTB ones. Nevertheless, the Rc of the UTB sample
is remarkably lower than that of the CB ones. The ohmic contact mechanism is further
analyzed by plotting the change of specific contact resistivity ($c) with temperature, as
shown in Figure 3a. For both UTB and CB heterostructures, the extracted $c decreases with
temperature, which can be well-simulated by thermionic field emission (TFE) [23]. It is
consistent with the ohmic contact mechanism reported on the AlGaN/GaN heterostruc-
ture [24], n-type GaN [25], and p-type GaN [26]. Two crucial parameters, ΦB and ND, can
be acquired with the TFE model fitting shown below [17],

$c =
1

qA∗
k2

B√
π(ΦB + En)E00

cosh
(

E00

kBT
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·

√
coth(
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, (1)

where
E0 = E00·coth(

E00

kBT
), (2)

and

E00 =
qh
4π

√
ND

m∗ε
, (3)

where A* = 4πm*k2
B/h3 is the effective Richardson constant, m* is the effective mass

of 2DEG, ε is the dielectric constant of AlGaN, ND is the electron carrier concentration,
and ΦB is the height of the Schottky barrier between AlGaN and the ohmic metals, and
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En is the energy difference between the conduction-band edge and Fermi level at the
AlGaN/GaN interface.
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(b) CB−AlGaN/GaN heterostructure. Evolution of ohmic resistances with ohmic-contact spacing in
samples with (c) UTB−AlGaN/GaN heterostructure and (d) CB−AlGaN/GaN heterostructure.

The TFE fitting produces a ΦB of 0.45 eV and an ND of 1.59 × 1019 cm−3 for the CB
heterostructure, as opposed to values of 0.61 eV and 1.10 × 1020 cm–3 obtained in the
UTB ones. Similar orders of magnitude of ND (~1019 cm−3) and ΦB (0.5 eV) have also
been reported in ohmic contacts to CB-AlGaN/GaN heterostructure [23]. The lower ΦB
in the CB sample, as compared with that of the un-recessed UTB ones, may result from
the recess-enhanced interface reaction between Ti and AlGaN to promote the formation
of low-resistance nitride TiN. On the contrary, thanks to the recess-free characteristic of
the UTB-AlGaN/GaN heterostructure, a relatively intact AlGaN barrier was reserved,
contributing to a higher ND than that of the CB sample. Usually, the current does not
flow through the entire ohmic metal, and most of the current is collected at the edge of the
ohmic metal because the potential at the edge of the electrode is the highest, which is called
the current edge effect. As the distance increases, the potential decreases exponentially.
Therefore, LT is defined as the length through which current flows when the current or
voltage drops to 1/e of the edge of the contact area. LT reflects the transmission path of
current and is also very important for subsequent studies. Its expression can be expressed
as below:

LT =

√
$c

Rch
, (4)

The transfer length (LT) of ohmic contacts was also plotted in Figure 3b with the
temperature. A remarkable reduction of LT is observed in the UTB heterostructure as
compared to that of the CB ones, which suggests a more concentrated current path at the
ohmic-contacting edge. The mechanism for the faster drop of LT at below 75 ◦C, as for the
UTB sample, need further investigation.
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CB−AlGaN/GaN heterostructure, respectively.

Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS)
mapping were adopted to analyze the profile and element diffusion between ohmic metal
and the AlGaN/GaN heterostructure for the two types of samples (Figure 4). For the
UTB heterostructure, there is a slight and uniform reaction between the metal stack and
the AlGaN barrier (Figure 4a) [26], in contrast to the more severe interface reaction in
the CB ones shown in Figure 4b. In the ohmic contact region, the barrier thickness of the
UTB structure is 6 nm, and that of the CB is 3.6 nm. In our previous experiments, we
also made ohmic contact on the same UTB-AlGaN/GaN heterostructure without etching
with the “passivation-before-ohmic”process, the Rc of which is 1.57 Ω·mm [17]. Therefore,
compared to the slight difference in barrier layer thickness, the influence of the “ohmic-
before-passivation” process on ohmic contact is more obvious. Owing to their process
difference, different metal/2DEG angles are clearly observed in the UTB and CB samples.
The CB sample features a quite gentle slope angle of 156.43◦, which prolongs the distance
between the contact corner and the metal edge (Figure 4b), where the AlGaN barrier is not
recessed, and higher 2DEG density remains, while for the UTB ones, the different contacting
shape effectively reduces the contacting distance and thus a higher tunneling probability.
It is such a difference that makes the reduced LT as well as $c in the UTB-AlGaN/GaN
heterostructure with the ‘ohmic-before-passivation’ process.

EDS mapping and line scan results shown in Figure 4 clearly reveal Ti, Al, and
Au diffusion to AlGaN, Ga, and N diffusion into Ti. It has been reported that a high
concentration of N vacancy in i-AlGaN is helpful for ohmic-contact formation. For UTB
ohmic contact, there is more Al enrichment at the edge of the ohmic metal stack, potentially
forming AlN, resulting in significantly higher ΦB compared to CB ones. On the other hand,
the AlN at the edge of the metal stack is helpful in enhancing the density of 2DEG and
contributing to a higher ND. Additionally, since Au did not spread to the interface between
AlGaN and GaN without connection with 2DEG, the ohmic-contact mechanism is TFE.

To make it clear, the different physical mechanism of ohmic contacts between UTB-
and CB-AlGaN/GaN heterostructure is illustrated in Figure 5. Due to the large recess
angle, there is a non-fully depletion area below the edge of the ohmic-contact area in the
CB-AlGaN/GaN heterostructure shown in Figure 5d, where the density of 2DEG is less
than that outside the contact area, resulting in a higher contact resistivity in AlGaN/GaN
HEMTs, while as shown in Figure 5c, the density of 2DEG at the edge of the ohmic-contact
area is abrupt for the recess-free ohmic contact on the UTB-AlGaN/GaN heterostructure,
contributing to the enhanced ND and lower Rc. The effect of barrier layer thickness on
2DEG concentration has been described in detail in our previous study [20].
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Figure 6a shows the output characteristics of the device with LGS = LGD = 1 µm based
on UTB-AlGaN/GaN heterostructure with PEALD-AlN/PECVD-SiNx passivation. The
maximum current density is about 750 mA/mm with Vg = 3 V. The RON extracted is also
low, with a value of about 3.9 Ω·mm. The threshold voltage of the device is about −23 V
due to the thick dielectric, which can be optimized by etching the dielectric below the gate.
To prove that the well-optimized ohmic contact minimizes the device-specific RON, the gate
transmission line method (GTLM) is adopted to extract the proportion of each part that
makes up RON. Figure 6 shows the LG from 4 to 46 µm dependence of RON. The resistance
of channel (Rch) and access region (Rac) is extracted to be 2.3 Ω·mm and 1.28 Ω·mm. It
can be seen from Figure 7 that the optimized Rc accounts for a small percentage of RON.
Therefore, it can be shown that optimizing the ohmic-contact resistance has a great effect
on the improvement of device performance.
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4. Conclusions

In summary, the ohmic-contact resistance to UTB-AlGaN/GaN heterostructure was effec-
tively reduced via an ‘ohmic-before-passivation’ process, in which an alloyed Ti/Al/Ni/Au
ohmic metal was formed prior to PEALD-AlN/PECVD-SiNx passivation used for recovery
of 2DEG adjacent to the ohmic contact. The separation between the recovered 2DEG and the
ohmic-contacting edge was remarkably reduced via the developed process, contributing to
a reduced transfer length and low Rc of 0.16 Ω·mm, as compared to that of ohmic contact
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to the CB-AlGaN/GaN heterostructure with pre-ohmic recess. The low on-resistance of
3.9 Ω·mm and the the maximum current density of 750 mA/mm with Vg = 3 V were
achieved on the devices with the optimized ohmic contact. The non-recessed ohmic con-
tact with the ‘ohmic-before-passivation’ process is a promising method to optimize the
performance for the fabrication of low-voltage GaN-based power devices
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