
Citation: Zhang, Q.; Dong, H.;

Zhao, J. Channel Estimation for

High-Speed Railway Wireless

Communications: A Generative

Adversarial Network Approach.

Electronics 2023, 12, 1752.

https://doi.org/10.3390/

electronics12071752

Academic Editor: Martin Reisslein

Received: 11 February 2023

Revised: 28 March 2023

Accepted: 31 March 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Channel Estimation for High-Speed Railway Wireless
Communications: A Generative Adversarial Network Approach
Qingmiao Zhang 1 , Hanzhi Dong 1 and Junhui Zhao 1,2,*

1 School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
2 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: junhuizhao@hotmail.com

Abstract: In high-speed railways, the wireless channel and network topology change rapidly due
to the high-speed movement of trains and the constant change of the location of communication
equipment. The topology is affected by channel noise, making accurate channel estimation more
difficult. Therefore, the way to obtain accurate channel state information (CSI) is the greatest
challenge. In this paper, a two-stage channel-estimation method based on generative adversarial
networks (cGAN) is proposed for MIMO-OFDM systems in high-mobility scenarios. The complex
channel matrix is treated as an image, and the cGAN is trained against it to generate a more realistic
channel image. In addition, the noise2noise (N2N) algorithm is used to denoise the pilot signal
received by the base station to improve the estimation quality. Simulation experiments have shown
the proposed N2N-cGAN algorithm has better robustness. In particular, the N2N-cGAN algorithm
can be adapted to the case of fewer pilot sequences.

Keywords: channel estimation; massive MIMO; high-speed railway; noise2noise; conditional
generative adversarial networks

1. Introduction

The high-speed railway (HSR) has gradually become one of the most preferred ways
for people to travel, because of its convenience, flexibility, and high speed. To better meet
passengers’ expectations of a high-quality experience and safe train operation control,
the performance demand of communication systems is increasing [1]. The development
of creative communication network designs is essential for the rail transit sector. In the
typical scenario of fifth-generation mobile communication technology (5G) [2], the HSR
scenario targets its high data rate, low delay, and low energy consumption. Under the 5G
communication system [3], HSR is designed to provide data transfer rates of 150 Mbps
when a mobile speed of up to 500 km/h or higher.

However, HSR scenarios are typical scenarios with continuous wide-area coverage
and high mobility [4], so the characteristics of wireless channels are quite different from
those in conventional scenarios. For example, due to the fast mobility and complex ter-
rain [5,6], there are Doppler effects in the information transmission process, rapid changes
in small-scale fading, and short coherence times. The channel is fast time-varying. These
special characteristics make the design of the transmission algorithm of the system more
challenging [7]. In particular, the high-precision channel estimation is more difficult. There-
fore, the research of channel estimation in HSR scenarios is an important and challenging
technical field [8].

Moreover, massive multiple-input multiple-output (MIMO) [9,10] systems are widely
recognized as the foundational elements of 5G technology [11]. Deploying large-scale an-
tenna arrays at base stations (BS) can greatly improve network capacity and user experience.
However, the massive MIMO itself is a technical problem for channel estimation, because it
will increase computational complexity. Therefore, the way by which to design a channel
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estimation algorithm with low computational complexity and simultaneously fit its own
architectural features is an issue for a 5G HSR communication system. Traditional channel
estimation algorithms cannot effectively solve the above problems.

Generally, traditional channel estimation includes blind channel-estimation meth-
ods [12] and pilot-assisted channel-estimation methods [13]. For blind channel-estimation
methods to count the correlation properties of the channel, a great deal of data is needed,
which will lead to slow convergence and high complexity of the algorithm [14]. In high-
mobility environments, blind channel-estimation methods are generally considered in-
feasible. The reason is that blind channel-estimation methods need to keep the channel
characteristics constant in the analysis, while in a high-mobility environment, such as HSR
scenarios, the channel will change rapidly in a short time. The pilot-assisted estimation
methods need to add auxiliary data to the transmitter, so it will occupy the sending re-
sources of the transmitter. The pilot-assisted estimation methods are usually performed
by using algorithms such as least square (LS) [15] and linear minimum mean square
error (LMMSE) to estimate the CSI in the frequency domain at the pilot frequency sym-
bols [16–18]. The channel frequency response (CFR), however, is often assumed by these
approaches to fluctuate linearly. High-speed movement of the terminals will introduce
a Doppler effect in HSR scenarios, which causes the CFR to change rapidly. At the same
time, the Doppler effect will seriously affect the effectiveness of the estimation algorithm
and lead to the degradation of the estimation performance. Therefore, in order to ensure
extreme user experience (100 Mbit/s) and safe train operation control for the 5G HSR
communication systems, channel-estimation technology that adapts to fast time-varying
channels and massive MIMO systems should be paid more attention.

The development of deep learning (DL) technology has led to satisfactory results in
the field of communication [19]. It has shown excellent performace in signal detection [20],
channel coding [21], signal classification [22], and CSI feedback [23]. Some researchers
also apply DL to channel estimation. One type is the direct use of neural networks to
learn the various characteristics of the channel and then estimate the complete CSI from
the pilot sequence signal. In [24], the approaches for massive MIMO systems forecast
channels much more accurately than conventional channel-estimation algorithms. In [25],
a deep neural network-based online estimation method is adopted for dual selective fading
channels. A channel-estimation method based on DL in the high mobile environment
is proposed and the maximum pooling network is used to reduce the dimension of the
parameters in [26]. In [27,28], a neural network channel-estimation optimizer based on
the MIMO-OFDM system to optimize the LS algorithm was proposed. The other type is
to treat the CSI as an image and use image-processing techniques to recover the channel.
In [29], the idea of treating the channel matrix as a two-dimensional (2D) natural image
and combining it with image-reconstruction techniques for channel estimation is proposed
for the first time. In [30], a wideband channel-estimation method based on a generation
countermeasure network (GAN) is proposed. Furthermore, it is noted that the estimator
based on GAN can lower the necessary pilot’s requirement without noticeably raising the
error and necessary signal-to-noise-ratio (SNR). In [31], conditional GAN (cGAN) is used
as channel estimation, where the generator estimates the channel from the pilot signal
received by the BS. Although the aforementioned research uses deep learning to address
channel-estimation issues in a variety of communication systems, it does not adequately
account for the effects of rapidly changing surroundings on large MIMO systems [32].

Additionally, it is worth noting that environmental noise is a critical factor that can
significantly impact the quality of channel estimation. Therefore, for denoising channel
estimation algorithms, the pilot signals at the receivers before estimation can also improve
the estimation quality [33]. Due to the convolutional neural network (CNN)’s strong
performance in image-recognition and processing tasks, more and more studies have
applied CNN-based image denoising algorithms to design channel-estimation methods.
In this kind of research, the receiver’s channel matrix and pilot matrix are frequently seen
as images. More specifically, an image can be represented by a complex number of real
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and imaginary parts, respectively. In [34], supervised learning is utilized in denoising
CNN (DnCNN), which involves learning the residual noise from noisy channels. Then, to
get residual noise, the channel generated from the rough estimate is fed into the trained
DnCNN. Finally, the rough estimation channel is subtracted from the residual noise to
obtain more accurate estimation results. Similar to how it was used to analyze the rough
estimates of the channel to get a more precise estimation, DnCNN is also employed as the
denoising network in [35].

To enhance the channel estimation accuracy in the high-speed railway (HSR) environ-
ment of massive MIMO systems, we propose a N2N-cGAN channel-estimation algorithm
that combines the WINNER II D2a channel model [36] with image-denoising technology.
In N2N-cGAN, both the denoising network and the generator network adopt the U-Net
network structure, which can effectively capture and utilize the spatial dependencies in the
input data to better meet the requirements of channel-estimation tasks. The discriminator
uses a CNN and a patch architecture to distinguish between the input real channel infor-
mation and the generated channel information. Specifically, we consider a predenoising
channel estimation strategy for channel estimation. The channel-estimation process has
two stages. In the first stage, the pilot signal is treated as an image, and a novel image
denoising method, N2N [37] is proposed. Unlike traditional denoising methods, N2N does
not require an accurate noise model or a clean reference image. It achieves high-quality
denoising by learning the general ability to remove noise from multiple noise samples
during training, with strong robustness and versatility. In the second stage, we use cGAN
to estimate the channel. Compared with other traditional methods, this cGAN-based
channel-estimation method can better utilize the characteristics and structure of channel
estimation data, thereby improving estimation accuracy. Due to the parallel nature of these
two stages, the training speed can be significantly accelerated. The contributions of this
paper can be summarized as follows.

• The N2N algorithm does not need a noiseless signal as a training target. Moreover,
the outcomes are more manageable because it is end-to-end training. Therefore, in
order to reduce the error of channel estimation, the received pilot signal is denoised
by using the N2N method before channel estimation.

• The cGAN structure’s GAN loss improves the neural network’s optimization [38],
thereby enabling our channel-estimation method to perform well even in low
SNR conditions.

• Numerous simulation results demonstrate how our proposed algorithm may suc-
cessfully lower the channel estimate error and improve system performance in HSR
circumstances, even with very short pilot sequence sequences.

The rest of this paper is organized as follows: Section 2 presents system and channel
model. Section 3 presents the proposed N2N-cGAN-based channel-estimation algorithm.
Simulation results are provided in Section 4, and conclusions are shown in Section 5.

2. System and Channel Models
2.1. System Model

The typical wireless communication systems on HSR are shown in Figure 1. The BSs
are situated alongside the railway, covering the communication within a community. The
relay station (RS) is installed at the top of the carriage to communicate with BS and the user
equipment on the train. Here, we design the wireless communication that RS sends data
symbols to BS and consider a MIMO-OFDM system with NT transmitting antennae and NR
receiving antennae. Suppose there are N subcarriers and T OFDM symbols in a subframe.
Data symbols encounter reflection, refraction, and diffraction caused by scatterers during
transmission. However, there are strong line of sight (LOS) components in space.
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Figure 1. Massive MIMO system model on high-speed railway.

In Figure 1, c(0), c(1), . . . , c(L− 1) denotes the frequency selection channel, and L is
the number of the frequency selection channel. The formula for calculating the Doppler
frequency shift is

fd =
v
c

fc cos θ, (1)

where c represents the speed of light, c = 3× 108 m/s, θ is the angle of arrival of the LOS
component.

For example, high-speed trains can reach speeds of up to 360 km/h on conventional
routes. Assuming that the carrier frequency fc is 3.5 GHz, the maximum Doppler frequency
shift of the train antenna is

fd = fc ·
v
c
≈ 1167 Hz. (2)

According to the calculation formula of coherent time, we can get the coherent time
TS = 1/(4 fd) ≈ 0.214 ms. According to the current 5G-NR standard subcarrier spacing set
to 15 kHz, the duration of an OFDM symbol is 0.0667 ms. Coherent time TS is the duration
of more than one OFDM symbol. Therefore, we can assume that the multipath channel in
an OFDM symbol is time-invariant, but the channel changes in different symbols.

At the transmitter, the transmitting signal obtained after space–time coding and se-
rial/parallel conversion can be expressed as XNt , where XNt = [XNt(0), . . . , XNt(k), . . . , XNt

(N − 1)], XNt(k) represents the kth subcarrier of the OFDM symbol on the Ntth transmit-
ting antenna. Therefore, the OFDM symbols transmitted by all transmitting antennae can
be expressed as

X =
[
X1, . . . , XNt , . . . , XNT

]T. (3)

After performing IFFT on the data on each transmit antenna, the time domain-
modulated signal of the Ntth transmit antenna can be expressed as xNt , where

xNt = [xNt(0), . . . , xNt(k), . . . , xNt(N − 1)]T, (4)

and its matrix form can be expressed as

xNt = FHXNt . (5)

After further processing, the OFDM symbol on the Ntth transmit antenna passes
through the wireless fading channel. The signal, after being received by the Nrth antenna
at the receiver, can be expressed as

yNr (m) =
NT

∑
Nt=1

L−1

∑
i=0

hNr ,Nt(m, i)xNt(m− i) + nNr(m), (6)
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where hNr ,Nt(m, i) represents the channel impulse response of the Ntth transmitting antenna
and Nrth receiving antenna in the ith path. The channels remain unchanged within at
least one OFDM symbol, L represents the number of distinguishable paths, and nNr(m)
represents the additive white Gaussian noise (AWGN) of the Nrth receiving antenna. After
the time domain-received signal is transformed by FFT, the frequency domain received
signal YNr(k) can be obtained as

YNr(k) = FFT{yNr(m)} =
NT

∑
Nt=1

HNr,Nt(k)XNt(k) + NNr(k), (7)

where XNt(k) represents the transmission signal of the transmitting antenna Ntth on the
kth subcarrier, YNr(k) represents the reception signal of the receiving antenna Nrth on the
kth subcarrier, NNr(k) represents AWGN, and HNr,Nt(k) represents the channel frequency
domain response of the transmitting antenna Ntth and the receiving antenna Nrth on the
kth subcarrier. Therefore, all received signals can be expressed as

Y = HX + N, (8)

where Y =
[
Y1, . . . , YNR

]T, Yn = [Yn(0), . . . , Yn(N − 1)]T represents the received signal
of the nth receiving antenna, N =

[
N1, . . . , NNR

]T, and N is the corresponding AWGN
matrix. H represents the frequency domain channel matrix, which can be expressed as

H =


H11 H12 · · · H1NT
H21 H22 · · · H2NT

...
...

. . .
...

HNR1 HNR2 · · · HNR NT

. (9)

2.2. High-Speed Railway Channel Model

High-speed railway channels and conventional public mobile communication channels
are distinct from one another [39]. The Doppler shift has a significant impact on mobile
channels, particularly in high-speed scenarios. For the HSR wireless channel model, the
WINNER II D2a channel model is a suitable choice, where the cluster is used as the basic
unit, and each cluster contains 20 reflectors. The rays formed by the signal passing through
the reflectors form a clustering signal, The number of clusters varies from 8 to 24 according
to the scene, as shown in Figure 2. The nth cluster’s latency τ

′
n obtained from [36] is

determined by
τ
′
n = −rτστ ln(Xn), (10)

where the cluster’s delay coefficient is rτ , and the delay spread’s root mean square (RMS)
is expressed as στ , a random integer from the common normal distribution is Xn. In the
WINNER II D2a scenario, rτ and στ have values of 3.8 ns and 40 ns, respectively. After
setting τ

′
n t’s minimum value to zero, they are sorted in ascending order

τn = sort
(

τ
′
n −min

(
τ
′
n

))
. (11)

In the WINNER II D2a scenario, the LOS route always exists, therefore we change the
value of τ

′′
n to

τ
′′
n =

τn
0.7705− 0.0433k + 0.0002k2 + 0.000017k3 , (12)

where k is the Rice factor in dB.
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Consequently, the WINNER II D2a channel model’s time-varying channel impulse
response may be expressed as

h
(

t, τ
′′
n

)
=

L

∑
n=1

ELn(t)ESn(t)δ
(

t− τ
′′
n

)
, (13)

where L represents the total number of clusters, while ELn(t) denotes the large-scale fading
coefficient, and ESn(t) denotes the small-scale fading coefficient. ELn(t) can be formulated
as follows,

ELn(t) = 10
P(t)−PL+Gn

10 , (14)

where P(t) is the power of the transmitted signal in dBm, PL is the value of path lose in
dB, Gn is a random variable in dB with zero mean log-normal distribution with standard
deviations. In the WINNER II D2a scenario, the PL model can be represented as

PL = 40log10(d) + 10.5− 18.5log10(hbshms) + 1.5log10

(
fc

5

)
, (15)

where d, hbs, hms, and fc denote the distance between the train and the base station, the heights
of the base station and user equipment (UE), and the operating frequency, respectively.

The small-scale fading coefficient ESn(t) is expressed by the following equation,

ESn(t) =
L

∑
n=1

Anejϕn ej2π fs(t)·t·cos(αn), (16)

where each cluster’s amplitude and starting phase are described by An and ϕn, respectively.
Each cluster’s incidence angle is αn, and the Doppler shift is fs(t).

We estimate the channel on the BS side through the pilot signal sent by the user.
Assuming that U users simultaneously send a pilot sequence of length Np to the BS, we
define Yc as the pilot signal at the receiver sequence without noise, which is defined as

Yc = ΦH, (17)

where Φ ∈ CU×Np is the pilot matrix, which is made up of pilot sequences transmitted
by U users. The case of Np < U is considered here, so it is impossible to ensure the
orthogonality of the pilot matrix row (i.e., whether the pilot sequence sent by the user is
pairwise orthogonal ). In addition, each user’s pilot sequences are chosen at random, using
simple design criteria. The received signal Y ∈ CM×Np at the BS is expressed as

Y = Yc + N, (18)

where N ∈ CM×Np is the noise matrix drawn from a sample of the Gaussian distribution.
The purpose of pilot-based channel estimation is to minimize the discrepancy between

the actual channel matrix H and the estimated channel matrix
∧
H. For simplicity, we will call

Yc the clean pilot sequence and Y the noisy pilot sequence. In addition, since our channel-
estimation method cannot deal with complex variables, in the subsequent description of
the algorithm, we transform the complex variables that appear in this section into images.
For example, Y ∈ CM×Np is transformed into an image of size M× NP × 2, where the real
and imaginary parts of Y correspond to the real and imaginary parts of the image channels,
respectively. Through this transformation, we can use CNN to process these data. The
details of the N2N-cGAN channel-estimation method are elaborated upon next.
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Figure 2. WINNER II D2a channel model.

3. Channel Estimation Based on N2N-cGAN

This section introduces a channel-estimation approach based on N2N-cGAN. First,
the main idea is briefly explained. The suggested N2N-cGAN algorithm’s framework is
then further detailed. Finally, a network architecture is proposed.

3.1. The Main Idea

The N2N-cGAN algorithm mainly includes two steps: first, the pilot picture that the
BS receives is denoised by using the N2N denoising algorithm. Then the pilot image after
denoising is used to estimate the channel image based on cGAN network.

3.1.1. N2N Denoising

The relationship between noise and image can be divided into three forms: a represents
high-quality image, b represents noisy image, and n represents noise. Image denoising aims
to eliminate the noise n from the noisy image b = a + n that degrades the image quality.
Traditional denoising algorithms usually train the CNN to model from noisy input image
b to clean output image a. However, the N2N method is distinct from most denoising
algorithms in this regard. The N2N algorithm simply needs clean images corresponding to
noisy images with independent noise to compose training data and then trains CNN to
learn how to map one noisy image to another. Obviously, N2N cannot completely learn the
mapping connection between noisy pictures because noise n and n′ are independent of one
another. However, the neural network trained on this impossible task can obtain the same
denoising effect as the neural network trained by the traditional denoising algorithm using
clean images. Therefore, in this case, a clean image is unable to be obtained. N2N only
needs a clean image corresponding to a noisy image with independent noise, the neural
network training can produce good denoising effects. The N2N denoising algorithm’s
optimization goal is

arg min
θ

∑
i

L
(

fθ(bi),
∧
b i

)
, (19)

where bi and
∧
b i are different noisy images, fθ(·) is a parameter θ mapping function, and

L(·) is the loss function.

3.1.2. cGAN Network

The conventional GAN is an adversarial learning framework used to train a generative
model, which involves a generator G(·) and a discriminator D(·). To create extremely
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realistic pictures, the G(·) is trained to produce samples that are similar to real data, while
the D(·) is trained to differentiate between the real and generated samples. The G(·) is
updated based on the feedback from the D(·), and the discriminator is updated based on the
difference between real and generated data. However, the G(·) is trained to map random
noise to the real data distribution, which can introduce instability and randomness in the
generated samples. Therefore, cGAN was proposed. In order to establish the mapping
between conditional input and real data, it introduced a conditional variable y. Specifically,
in order to direct the data creation process, cGAN incorporates condition variable y in
the modeling of the G(·) and the D(·). In G(·), the input to the generator is formed by
combining the noise variable z with the conditional information y. In the D(·), the input is
the combination of real data x and conditional information y or the generated data G(z, y)
output by the generator. D(·) estimates the probability that its input G(z, y) is a real one,
given the dataset. A definition of the cGAN’s objective function is

min
G

max
D

V(D, G) = Ex∼pdata [log D(x, y)] +Ez∼pz [log(1− D(G(z, y)))]. (20)

It is possible to produce data based on the new inputs of z and y after the trained D(·)
is acquired.

3.2. N2N-cGAN-Based Channel Estimation

According to Figure 3, the N2N-cGAN channel-estimation process consists of two
stages. Stage I sees the denoising device apply the N2N algorithm (i.e., training only using
the noisy pilot image.). Since our training dataset contains a portion of the real channel,
we can construct a clean pilot signal at the receiver side by using Equation (16). In each
round of training for the denoising device, we randomly select a clean pilot image from the
training dataset, after which the clean pilot picture is separately sampled, and two AWGNs
of equal size are then added. Different signal-to-noise ratios (SNRs) might contribute to the
noise power, which can be added to the pilot image to form two noisy pilot images Y and
Y
′
. In the actual scenarios, the pilot signal can also be sent many times in a coherent time.

The pilot signals received by the BS can be regarded as multiple independent noisy versions
from the same clean pilot. With two noisy images, Y is input to the denoiser to obtain
Dnθ(Y), where Dnθ(·) denotes the denoiser with parameter θ. In the training process, we
have employed the L2 loss function, which is expressed as

L2∼N2N = E
[∥∥∥Y

′ − Dnθ(Y)
∥∥∥2
]

. (21)

In the N2N algorithm, a CNN trained with an L2 loss function can learn the map-
ping relationship from a noisy image to a noise-free image and reconstruct a clear image.
Specifically, L2 loss measures the difference between the CNN output and the target, and
the process of minimizing L2 loss is essentially minimizing the difference. From a formu-
laic point of view, the L2 loss function has a square term, which can effectively penalize
the difference between the CNN output and the target, thus helping to remove noise.
Compared with L1 loss, L2 loss is smoother and continuous, so it can better deal with
image-denoising problems. Using L2 loss function in N2N algorithm can help CNN learn
to minimize pixel-level differences between images and realize image denoising and clear
image reconstruction.

Finally, the denoiser is trained by using the Adam algorithm [40]. When the training
is completed, the denoising device is employed to process the noisy pilot image in the test
dataset, which outputs the corresponding denoising results.
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Figure 3. Diagram of N2N-cGAN channel estimation.

In stage II, we use cGAN for estimation. The G(·) generates the estimating channel by
using the Yc, while D(·) distinguishes between the real channel and the one generated by
the G(·). During each training iteration, a Yc is randomly selected from the training dataset
to serve as the input to G(·). The output of G(·) with parameters Φ, denoted as GΦ(Yc),
is then obtained. Then, the discriminator Dω(·) with the input parameters of channel H
and GΦ(Yc) generating Yc as ω is generated, and the discriminator’s output is used to
determine whether the input channel image is genuine or produced by the generator. After
training is finished, the generator takes the denoised pilot from stage I and produces the
estimation results for the relevant channel. Finally, the two components of the cGAN’s
objective function are as follows,

min
Φ

max
ω

LGAN(GΦ, Dω) + L2∼cGAN , (22)

where cGAN objective function is a minimax game problem with conditional probability. It
can be expressed as

LGAN(GΦ, Dω) =

E[log Dω(H)] +E[log(1− Dω(GΦ(Yc)))].
(23)

When using L2 loss, the resulting picture is represented as follows to ensure that it
matches the original image in pixels:

L2∼cGAN = E
[
‖H − GΦ(Yc)‖2

]
. (24)

The procedure of the proposed N2N-cGAN channel-estimation algorithm is summa-
rized in Algorithm 1.

In this paper, during training, stages I and stages II can be trained separately in parallel.
During deployment, the received pilot signal at the BS is input to the denoiser, and the
output of the denoiser is then fed to the generator, which generates an estimated channel
image. Finally, the estimated channel is obtained by converting the channel image to
complex values.

3.3. Network Architecture

In N2N-cGAN algorithm, both the denoising network and the generative network
use the U-Net framework. U-Net is a CNN designed for semantic image segmentation.
The structure of U-Net can be divided into downsampling and upsampling. Both of them
use the encoder and decoder as well as the jump connection topology, which allows for
more precise segmentation on fewer training images. U-Net is symmetrical. The expansion
path on the right side of the network is symmetrical with the contraction path on the left



Electronics 2023, 12, 1752 10 of 18

to restore the size of the picture, while the contraction path on the left is used to capture
context information. The output feature map of the encoder corresponding layer is copied,
cut, and deconvoluted for feature fusion through jump connection, The output feature
mapping of the corresponding layer of the encoder is copied, cut, and deconvoluted, and
the feature fusion is carried out through the jump connection, and then the upsampling
operation is carried out. During the upsampling process, U-Net employs many feature
channels, which can improve the quality of the output and the accuracy of the segmentation.

Algorithm 1 N2N-cGAN-Based Channel Estimation

Require: Φ,H.

Ensure:
Λ
Y c.

1: for number of training iterations do
2: Construct sample of Yc (16)
3: Construct two samples of Y and Y

′
(17)

4: Obtain Dnθ(Y) with Y.
5: Update the Dnθ(·) by the loss function (20).
6: end for
7: Extract the trained Dnθ(·).

8: Get the clean pilot:
Λ
Yc = Dnθ(Y∗).

Require:
Λ
Y c.

Ensure:
Λ
H .

9: for number of training iterations do

10: Sample minibatch of data
Λ
Y c and data H.

11: Train GΦ and Dω alternately by (21) and (22) with
Λ
Y c and H.

12: end for
13: Obtain the trained generator network GΦ.
14: Get the channel estimation:H = GΦ(Y∗c ).

Figure 4a shows the architecture of the denoising network. The input image resolution
is M× Np. We first use a deconvolution to change the shape to adapt to the convolution
operation. The next encoder consists of four submodules, each of which contains a con-
volution layer, a batch normalization layer, and each submodule has a downsampling
layer realized by max-pooling as shown in Figure 4b. After this processing, the image
size becomes 2× 1× 512. The information flow enters the decoder on the right side. The
decoder also includes five submodules. Each submodule is composed of two convolution
layers and a dropout layer, and each submodule has an upper sampling layer realized by
deconvolution as shown in Figure 4c. The resolution is improved by upsampling operation.
Finally, the output image has the same resolution as the input image in the convolution
process. The jump connection connects the upsampling result with the output of the sub-
module of the encoder, whose connection part has the same resolution, and takes it as the
input of the next submodule in the decoder.

The discriminator network uses CNN. As shown in Figure 5b. Instead of acting as a
discriminator to discriminate true from false by mapping the input to a single scalar output,
the input is mapped to the receptive field via a patch discriminator [41], with each element
indicating whether the input block is true or not. The front-end part of the discriminator
consists of a convolutional layer, a LeakyReLU activation layer, and four encoder blocks.
Each convolutional layer consists of 512 4 × 4 sized filters. We use the full connected
layer in the last layer instead of the convolutional layer to obtain the receptive field. The
final output of the discriminator is then produced by averaging all the answers from the
receptive field.
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Skip Connectiongenerator(U-Net)

Y
c

H

(a)

Real

?

Fake

discriminator(patch)

H

(b)

Encoder

InstanceNorm
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UpSampling

Conv2D Concatenate

Conv2D

LeakyReLU

InstanceNorm

(c)

Figure 4. The structure of the proposed cGAN. (a) Framework of the generator. (b) Framework of the
discriminator. (c) Composition of the block.
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Figure 5. Denoising network architecture. (a) Framework of the denoising network. (b) Framework
of the encoder block. (c) Framework of the decoder block.

4. Numerical Results and Analysis

In this section, we use simulations to evaluate the performance of the N2N-cGAN
algorithm and compare it with other approaches. Reference [31] has demonstrated through
experiments that cGAN outperforms U-Net and CNN in terms of accuracy for channel
estimation directly from noisy pilots. The work also considers the case where the length of
the pilot sequence is smaller than the number of transmitting antennae, but the scenario
considered in this paper is more complex, making the comparison results more informative.
This paper mainly examines the performance of the N2N-cGAN and cGAN estimation
methods compared to traditional channel-estimation algorithms LS and MMSE from three
aspects. First, simulation parameters are set, and the standard for channel-estimation
performance is established. Then we compare the performance of the proposed algorithms
from different SNRs and different numbers of antennae deployed at the BS. Finally, we also
compare the computational costs of different algorithms.

4.1. Simulation Dataset

In our study, simulation data is produced by using the WINNER II D2a channel model.
It is a scenario model for mobile devices, its network coverage, antenna configuration, and
moving speed are all suitable for the HSR scenario described in this paper. Its channel
parameters ( RMS, path loss, etc.) are derived from the calculations in Section 2. Therefore,
this channel model will be used in this paper to complete the simulation under the high-
speed rail channel. The scene layout measured by WINNER II D2a includes the following.
The RS is atop the moving train, whereas the BS is 50 m from the rail, that is dRS = 50 m.
The link between the BS and the moving RS is basically considered to be LOS. The height
of the BS is hBS = 30 m. The height of the RS on the top of the train is hRS = 2.5 m. The
train speed is v = 360 km/h. Table 1 displays the other specific simulation parameters.
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Table 1. Simulation parameter.

Parameter Symbol Value

Number of subcarriers N 64
Carrier frequency 3.5 GHz
Number of multipaths L 5
Modulation QPSK
Channel model WINNER II D2a
The speed of the train V 360 km/h
Number of transmit antennae NT 64, 128, 192, 256
Number of receive antennae NR 32
Pilot length Np 4, 8, 16

According to these parameters, the channel vector between each user and the antenna

array are generated. The user sends the derivative symbols as
{

1
Np

e
j kπ

2Np , k = 0, 1, . . . , NP

}
,

These symbols are freely combined to form a sequence of U derivatives, which generate
the derivative matrix Φ of U × Np.

Through the channel model, the 10,000 real channel dataset is obtained. The z-score
standardized method was used to process the dataset. The mean value of the processed
dataset is 0 and the standard deviation is 1, which is more suitable for model training.
Then, to produce clean pilots, we combine the normalized actual channel data with the
Formula (16). The noise-containing pilots are obtained by adding independent Gaussian
white noise under a given SNR. Consequently, a clear pilot dataset and a noisy pilot dataset
are thus obtained. Finally, we reduce the three datasets’ complicated data into two-channel
picture data, and use the holdout method in the divided dataset. It is divided into a training
set and a test set according to the ratio of 4:1.

At the simulation stage, the Gaussian white noise under the SNR of −10 dB to 10 dB
is superposed by the clean signal to generate multiple noise-containing signals. Since the
noisy signals all come from the same clean signal, the initial training data of the denoising
model are freely combined by them. In the second stage, the cGAN takes the clean signal
as input directly, with the actual channel data serving as the training data for the generator
model. The two training stages can be conducted concurrently in this manner. The denoiser,
generator, and discriminator are employed with the Adam optimizer with learning rates of
1× 10−3, 2× 10−4, and 2× 10−4, respectively, to train the proposed N2N-cGAN model. As
a comparison of the end-to-end cGAN method, we use noisy pilot data as the generator
input, while real channel data serves as the generator learning object.

4.2. Evaluation Criteria

In the simulation, we quantify the variance between the estimated channel
∧
H and

the real channel H by using the normalized mean square error (NMSE) as the evaluation
standard. This is expressed as

NMSE = 10log10

E


∥∥∥∥H −

∧
H
∥∥∥∥2

‖H‖2


, (25)

where the matrix norm computation is shown by the symbol ‖·‖ and E obtains values of
expectation. To facilitate the observation of simulation results, we calculate 10log10{·} to
convert NMSE into dB form.

4.3. Performance Evaluation

First, Figure 6 shows the display of channel estimate results by using various method-
ologies. We visualize the estimated and real channels as graphics in pseudocolor images.
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(a) (b) (c) (d) (e)

Figure 6. Channel-estimation visualization using several algorithms. (a) Real channel. (b) LS
estimated channel. (c) MMSE estimated channel. (d) cGAN estimated channel. (e) N2N-cGAN
estimated channel.

The simulated data was generated with an SNR of 0 dB and a pilot sequence length of

8. The resulting estimated channel matrix
∧
H, and the real components of the actual channel

matrix H are presented as pseudocolor images. The color values correspond to the data
values in the channel matrix. As we can see from Figure 6a–e, the visual images obtained by
the LS estimation algorithm, MMSE estimation algorithm, and cGAN estimation algorithm
are very different from that of the real channel. However, the N2N-cGAN-generated
channel picture closely resembles the real channel. This indicates that the N2N-cGAN
method generates channel details well. That is, results from the N2N-cGAN channel
estimate can be more realistic.

Figure 7 illustrates the comparison of NMSE performance between N2N-cGAN and
cGAN algorithms, as well as conventional LS and MMSE algorithms, under different SNRs.

−10 −5 0 5 10
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−25

−20

−15

−10

−5
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SE
(d
B)
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MMSE
N2N-cGAN(Np=4)
N2N-cGAN(Np=8)
N2N-cGAN(Np=16)
cGAN(Np=4)
cGAN(Np=8)
cGAN(Np=16)

Figure 7. Comparison of the NMSE performance of N2N-cGAN and other algorithms at various
SNRs.
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It shows the MMSE values obtained by the four channel-estimation methods in the
process of SNR changing from −10 dB to 10 dB. N2N-cGAN and cGAN use pilot sequences
to estimate channels with lengths of 4, 8, and 16 respectively. The comparative analysis
of estimated errors between the N2N-cGAN and cGAN demonstrates that, irrespective of
the variation in SNR and pilot sequence length, the N2N-cGAN outperformed the cGAN
in terms of estimated error. Notably, the estimated error of N2N-cGAN is much smaller
than that of cGAN when the pilot length is 8 or 16 and the SNR is low. Additionally,
Figure 7 shows that when the duration of the pilot sequence reduces, the estimation errors
of both techniques increase, and the change in performance of N2N-cGAN is relatively
more obvious, and the performance of N2N-cGAN at the pilot sequence of the length of
4 is comparable to that of cGAN at a pilot sequence of length 16. N2N-cGAN is overall
better than cGAN. It is mainly because the first stage denoising network in N2N-cGAN
removes the noise from the noisy pilot as much as possible, which makes the second stage
channel estimation approximate for a noise-free estimation. In contrast, cGAN directly
uses noisy pilots to estimate the channel, which makes cGAN learn the change of noise.
However, the noise is independent and unpredictable, so the estimation error of cGAN will
be greater than that of N2N-cGAN, which is more obvious in the case of low SNR. Lastly,
Figure 7 demonstrates that the classic LS approach performs the worst. In the event of high
SNR, the performance of the MMSE method can outperform N2N-cGAN, but it is not even
superior to the cGAN estimation method at low SNR.

Next, We analyze the NMSE performance of LS, MMSE, cGAN, and N2N-cGAN in
different scenarios where the number of antennae deployed in the BS varies. The SNR is
0 dB in this simulation. The corresponding simulation results are presented in Figure 8.
It demonstrates that the N2N-cGAN estimation approach exhibits superior performance
compared to the cGAN approach, as the estimation error decreases with the increase of
the number of antennae. The size of the channel matrix will expand as the number of
BS antennae rises. The use of cGAN for estimation results in a complex estimated target,
which increases the learning difficulty and consequently leads to reduced performance. For
N2N-cGAN, the performance of the second stage is almost not affected due to the noise-free
estimation. The denoising of the first stage learns better denoising methods because of the
introduction of more noise information, so the performance of N2N-cGAN improves with
the increase of antenna numbers. Figure 8 illustrates that the performance of the MMSE
approach deteriorates as the number of antennae increases, while the estimation error of the
conventional LS method remains relatively constant. As the pilot sequence length increases
from 4 to 8, the performance improvement of N2N-cGAN is more significant, which can be
shown from the simulation. However, when the length is further increased from 8 to 16,
the performance gain of N2N-cGAN is less significant.

4.4. Complexity Analysis

Table 2 presents the results. The computational complexity of the four channel-
estimation algorithms, LS, MMSE, cGAN, and N2N-cGAN, are measured in terms of
the number of complex multiplications. In the table, Nr and Nt represent the number
of receiving and transmitting antennae respectively, and N represents the number of
subcarriers.

Among the channel-estimation algorithms, the LS algorithm exhibits the lowest com-
putational complexity. The MMSE has the highest computational complexity due to matrix
inversion. The N2N-cGAN algorithm exhibits low computational complexity, as it only
involves matrix multiplication and addition, and does not require matrix inversion opera-
tions. Online complexity is less difficult than traditional MMSE complexity. Additionally,
because the neural network may be constructed in parallel, the approach can shorten the
algorithm’s execution time. The complexity of the online implementation phase of the
algorithm is low, because the trained model can be used immediately for channel estimation
without large computational overhead.
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Figure 8. Different algorithms’ NMSE performances with the number of base station antennae.

Table 2. Computational complexity.

Algorithms Number of Multiplication Operations Complexity

LS Nr Nt N O(N)
MMSE Nt Nr(3N3 + N2) O(N3)
cGAN Nt Nr(3N2) O(N2)
N2N-cGAN Nt Nr(3N2 + N) O(N2)

5. Conclusions

This paper proposes a channel-estimation scheme based on N2N-cGAN for HSR
wireless communication system. Specifically, we propose a two-stage channel-estimation
algorithm based on N2N-cGAN. The pilot matrix is regarded as an image. The noise-
containing pilot image is denoised by the N2N denoising algorithm, which makes the
model suitable for scenarios with strong channel noise. Then the important features of
these images are learned by using the cGAN to realize the channel-estimation process.
The simulation results based on actual deployment scenarios show that the developed
solution can effectively improve the channel-estimation accuracy in high-speed mobile
environments, and the proposed solution can obtain lower estimation errors than other
methods. In addition, with the increase of pilot sequence length, the performance of
N2N-cGAN improves better.

Although our work can effectively improve the accuracy of channel estimation, it relies
heavily on the quality and quantity of training data. Therefore, the performance of the
proposed method may be affected by the variability of the wireless communication environ-
ment and the availability of training data. Future research can focus on developing more
effective training strategies or selecting appropriate training data, adjusting hyperparame-
ters, and optimizing network structures to improve model performance and generalization.
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