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Abstract: As chatbots become more popular, multi-intent spoken language understanding (SLU) has
received unprecedented attention. Multi-intent SLU, which primarily comprises the two subtasks of
multiple intent detection (ID) and slot filling (SF), has the potential for widespread implementation.
The two primary issues with the current approaches are as follows: (1) They cannot solve the problem
of slot nesting; (2) The performance and inference rate of the model are not high enough. To address
these issues, we suggest a multi-intent joint model based on global pointers to handle nested and
non-nested slots. Firstly, we constructed a multi-dimensional type-slot label interaction network
(MTLN) for subsequent intent decoding to enhance the implicit correlation between intents and slots,
which allows for more adequate information about each other. Secondly, the global pointer network
(GP) was introduced, which not only deals with nested and non-nested slots and slot incoherence but
also has a faster inference rate and better performance than the baseline model. On two multi-intent
datasets, the proposed model achieves state-of-the-art results on MixATIS with 1.6% improvement of
intent Acc, 0.1% improvement of slot F1 values, 3.1% improvement of sentence Acc values, and 1.2%,
1.1% and 4.5% performance improvements on MixSNIPS, respectively. Meanwhile, the inference rate
is also improved.

Keywords: multiple intent detection; slot filling; MTLN; nested and non-nested; GP

1. Introduction

Intent detection (ID) and slot filling (SF) are two important parts of SLU [1,2], which
are designed to recognize intents and capture semantic features for task-oriented dialogue
systems such as Bixby, Siri, and Jovi. ID is a classification task, the purpose of which is to
identify the intention of a user’s dialogue. SF is the process of converting user’s intentions
into clear instructions to complement the information, which can be regarded as a sequence
labeling task. We abandoned the BIO labeling form and directly used the slot type while
annotating each slot at the first and last index positions of the text (e.g., B-entity_name→
entity_name and I-entity_name → entity_name). As shown in Figure 1, the sentence “add
the keep your receipt ep to my digster reggae playlist and then play some dj qbert” related to
playing music and adding playlists is given, which contains multiple slots (entity_name,
playlist_owner, playlist, artist) and two intents: PlayMusic and AddToPlaylist.

Early work focused on ID and SF modeling separately. As researchers constantly
explored and analyzed, it was found that the independent modeling approach did not
consider the correlation between the two subtasks, which results in a lack of semantics.
Recently, researchers have gradually discovered that these two subtasks are closely re-
lated, and a slew of joint models [3–12] have proposed combining single ID and SF in
the multi-tasking framework to capitalize on the information complementarity between
intent and slot modules and solve a lack of semantics. Zhang and Wang [3] proposed
a bidirectional gated recurrent unit (BiGRU) joint model based on conditional random
field (CRF). In this model, BiGRU extracts the semantic features of the corpus, CRF de-
codes the slot information, and a maximum pooling layer acquires the global features of
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the sentence for intent classification. With the wide application of attention mechanisms,
a self-attention-based bidirectional recurrent neural network (BiRNN) joint model that
captures the contextual information from around the current token was proposed by Liu
and Lane [4]. Nevertheless, it simply combines the loss function of ID and SF without
considering the information interaction between the two modules. For this consideration,
Goo et al. [5] presented a slot-gating mechanism, which uses decoding intent to accomplish
the SF task and achieves good performance. Wang et al. [6] suggested a BiRNN semantic
frame parsing model, which uses BiRNN to decode intent and slot tasks, respectively, and
share the hidden state information of each time step between two decoders. Niu et al. [7]
continued to explore the information interaction between the two modules and proposed
a bidirectional correlation model. Qin et al. [8] presented a model of stack propagation
framework. In this model, the intent is decoded first, then the decoded intent information
combines with the output value of the encoder for SF, and the slot is decoded finally. With
the pre-training model performing well in all kinds of NLP tasks, Chen et al. [9] presented a
BERT-based joint model that directly uses the classifier (CLS) to decode the intent and uses
the token sequence to decode the slot and performs better. A typed abstraction method and
a type iteration mechanism were introduced by Pang et al. [10] to achieve bidirectional en-
coding and reduce the interference of noisy information. In order to improve the multi-task
model, He et al. [11] integrated an external knowledge base and constructed a loss-weight
self-learning strategy. In consideration of the speed of model inference, Wu et al. [12]
proposed a non-regressive joint model that improves the accuracy of model prediction by a
two-pass mechanism. Meanwhile, the model’s inference speed has been greatly improved.

add the keep your receipt ep to my 

digster reggae playlist and then play 

some dj qbert

PlayMusic AddToPlaylist

Input

Slots

Intents

receipt …add the keep your

entity

_name

entity

_name

entity

_name

Figure 1. Illustration of a previous example of a joint modeling extracting multi-intent and slots.

Some research [13–21] has jointly modeled ID and SF on other datasets as well, and
obtained good results. For example, Sun et al. [17] developed an iterative gating mechanism
based on the interplay between intent and slot modules. Zhang et al. [19] proposed a joint
and domain adaptive method based on Roberta and LSTM, which decodes the intent and
slot information by calculating the distribution of attention between each token and the
intent vector and between each token and the slot vector.

In a real-world dialogue system, the user’s utterance usually contains multiple intents and
corresponding semantic information, but the previous model is not suitable for multi-intent
tasks. To solve this problem, Gangadharaiah and Narayanaswamy [22] made the first attempt
to combine multi-intent and slot filling for modeling, and the model achieved good results.
A self-distillation approach to complement the information of the intent module and the slot
module was proposed in [23]. Qin et al. [24,25] constructed a graph interaction network to
guide slot filling by GAT [26], which achieved better and faster results.
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Although the existing multi-intent SLU joint models have made good progress, we
find that they still have some problems:

(1) The above model either does not have high enough performance or the inference rate
is not fast enough;

(2) The above model did not adequately consider the implied correlation between inten-
tions and slots by filtering the information;

(3) At this stage, all the above models model slot filling as a non-nested task, so none of
them can solve the slot nesting problem.

We provide a novel framework called MTLN-GP for combining multiple intent detec-
tion and SF to address the mentioned problems. Specifically, inspired by Jianlin Su [27], we
constructed a multi-dimensional type-slot label interaction network (MTLN), which, with
intention decoding, considers the implicit correlation between intents and slots to facilitate
information interaction. At the same time, we used the global pointer network (GP) to
solve the problem of nested slots and inconsistent slots. The proposed model delivers a
state-of-the-art (SOTA) performance on a variety of indicators, according to experimental
results on two public datasets.

Our major contributions are as follows:

1. As far as we know, we have made the first attempt to explore a joint multiple ID and
SF method with a global pointer, which can solve not only the nested and non-nested
slots problem, but also the slot incoherence problem;

2. By constructing a multi-dimensional type-slot label interaction network, which can
enhance the implicit association between intents and slots, to ensure the integrity of
intent–slot information;

3. Our proposed new architecture achieves SOAT on multiple metrics on both public
datasets, while having faster inference rates than other baseline models. While doing
so, we carried out more in-depth ablation tests to examine the effects of various com-
ponents on overall performance and serve as a guide for future model development.

2. Related Work
2.1. Intent Detection

ID is viewed as a classification task, which is a sub-field of text classification. Be-
fore the boom of deep learning, the first text classification method relied on hand-made
feature spaces (such as one-hot representation) [28]. Nevertheless, with the continuous
development of neural networks, various networks have been widely used in classifica-
tion tasks. For instance, long short-term memory (LSTM) networks [29], CNN [30,31],
GAT [26], BERT [32] and a robustly optimized BERT pre-training approach (Roberta) [33],
etc. As the field of research develops, there are currently many techniques for pre-training
word embedding, such as Glove [34] and Word2Vec [35], which are particularly trained
on a large corpus to create unlabeled language and serve as a lexicon for various mod-
els. Kim et al. [36] employed enriched word vectors as the word embedding input of
bi-directional LSTM for ID. Srivastava et al. [37] presented a hierarchical BERT architecture
to detect the intention of utterances, which achieved good results.

2.2. Slot Filling

Sequence tagging is regarded as a method of SF decoding. CRF based on statistical
methods has achieved great success in sequence labeling [38]. Deep learning has gained
popularity recently. In particular, RNN and its variants show excellent performance on
slot filling tasks and are superior to traditional machine learning methods. For instance,
Wu et al. [39] proposed a slot-based language model with multi-modal interaction which
obtained good results. Simminnet et al. [40] developed an architecture based on an at-
tention mechanism and LSTM, where LSTM is applied to decoding slots, in light of the
widespread use of attention mechanisms in NLP tasks. With the deepening of research,
traditional machine learning approaches, such as CRF combined with neural networks,
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may achieve better results. These statistical methods can be used as the decoding layer
in various sequence labeling models. Saha et al. [41] introduced a model based on LSTM
and CRF, which achieved a good performance on the ATIS (Airline Travel Information
System) dataset.

2.3. Joint Model for Intent Detection and Slot Filling

In earlier studies, ID and SF were modeled as independent tasks. When these two
highly related tasks are modeled separately, each module can not obtain enough information
to complement itself, which ultimately leads to a poor effect on the whole process. Recently,
many joint models have been presented to solve these problems. Joint models [3–21] were
presented to consider the strong correlation between ID and SF with noteworthy success.
Although these models apply to single-intent systems, they do not perform satisfactorily in
multi-intent systems.

In a real-world dialogue system, the user’s utterance usually contains multiple inten-
tions and the corresponding semantic information. Joint models [22–25,42] were proposed
to solve the multi-intent detection problem. Gangadharaiah and Naratanaswamy [22]
proposed a multi-task framework for multi-intent detection and SF, which combines the
loss functions of two modules without any inter-module information guidance between
the two modules. Furthermore, graph neural networks (GNN) have also been employed
for a variety of NLP tasks [24,25]. By constructing an interaction graph between tokens
and different intentions, Qin et al. [24] presented an adaptive graph-interactive frame-
work (AGIF) that models the strong correlation between slots and intents and achieves
a further improved performance. However, they employed regression mode to decode
the slots, resulting in a slower inference rate. In consideration of the inference speed,
Qin et al. [25] explored a non-autoregressive framework that combines two local percep-
tion layers and a slot–intent interaction layer to build an intent–slot graph interaction
network and achieved faster and better results on two multi-intent datasets. Although they
implemented a cross-slot dependency modeling with an interaction graph, it still suffered
from slot incoherence. Chen et al. [23] proposed a self-distilling architecture. The algorithm
flow is as follows: firstly, pre-decode the slots; then, use the pre-decoded slot information
to guide the decoding intent; next, use the decoded intent information to instruct the slot
decoding; finally, use the decoded slot information as a soft label for the pre-decoded slots
to form an optimization loop. An explicit slot–intent classifier was introduced to learn the
many-to-one mapping between slots and intents to leverage the annotated data and capture
the interaction between slots and intents, achieving a good performance [42]. However, the
above two approaches cannot solve the problem of slot inconsistency.

The previous model ignored the slot nesting problem and treats them all as non-nested
slots, which not only cannot tackle the problem of slot nesting but also has a poor performance
and inference rate. Our approach is quite different from the previous methods. The proposed
method not only solves the problem of slot incoherence caused by greedy decoding but also
solves the problem of the slow inference rate of sequence annotation in regression mode, and is
also able to solve the issue of slot nesting. It is the first work to discover, capture, and implement
joint multi-intent detection and slot filling using global pointers.

3. Approach

In this section, we demonstrate the MTLN-GP model for the SLU task, as shown in
Figure 2, which enables joint optimization of multi-intent detection and slot filling. We
first define the span-based slot filling task. Then,we present the technical details of the
proposed method.

3.1. Problem Definition

Extracting slots and intents from a given text is the goal of multiple ID and SF jobs.
Intuitively, when given a sentence containing multiple intents and slots, the goal is to maxi-
mize the identification of intent and slot information. Let U = {ucls, u0, u1, · · · , ut−2, usep}
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be the possible spans in the sentence where t− 2 is the utterance length. The span s is
represented as u[a : b], where a and b are the head and tail indexes, respectively. Meanwhile,
we decoded the intent by multi-label classification. Finding every slot s ∈ S and every
intent i ∈ I which correspond to the set of slots and the set of intents, respectively, is the
aim of multiple ID and SF.

Slots Decode

Head-1 toloc.city_name

[CLS]

dallas

on

july

twenty

[SEP]

Head-2:  flight_stop

…

Head-n: depart_date.month_name 

Input sequences U [CLS] dallas on july [SEP]twenty

BERT Encoder

clse dallase
one julye twentye sepe

clsp

Global Pointer Network
Intent 

Decoder

clsy dallasy
ony julyy twentyy sepy

flight airfare

Intents Decode

Figure 2. The architecture of MTLN-GP for joint multiple ID and SF consists mainly of BERT encoder,
global pointer network, and intent decoder. The number “1” in red indicates that the slot tail pointer
or slot type has been predicted.

3.2. BERT Encoder

To match BERT’s input, we prepended [CLS] and appended [SEP]. Since the words
of the text sequence may not exist in the dictionary of the pre-training model, the text
sequence needed to be processed.

The workflow of the pre-training model was as follows: First of all, we utilized
PieceTokenizer to divide the word of the text sequence into pieces, where t is the utterance
length. Next, for the input sequence U, it was input into the BERT pre-training model to
capture the semantic components of the text to obtain E ∈ Rt×d and pcls ∈ Rd, where d and
pcls are the hidden state dimension and the sentence-level semantic representation of the
BERT output, respectively. Finally, we restored the sequence to the original sequence by
simply applying a concatenation operation over piece representations.

U = {ucls, u0, u1, · · · , ut−2, usep} (1)

E = BERT (U) = {ecls, e0, e1, · · · , et−2, esep}. (2)

3.3. Multi-Dimensional Type-Slot Label Interaction Network

As shown in Figure 3 , we built a multi-dimensional type-slot label interaction net-
work N ∈ Rn×t×t to facilitate the implicit association of intents and slots, where n and t
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represent the total number of slot categories and the length represented by the BERT output,
respectively. The dataset has n different slot types, so different n dimensions matrices need
to be constructed. If the corresponding dimension has slots, [CLS] can be marked as “1”,
and the span tail with slots in the green area can be labeled as “1”, otherwise it is marked
as “0”. The lower triangle of the matrix is marked in gray, indicating that the masking
operation is performed in that part. Specifically, we decoded all the green fields of the
multi-dimensional type-slot label interaction network for identifying the presence of slots
and the gray fields for masking operations. The presence of marker “1” in the green area
allows decoding of the slots with the coordinates of the marker to the main diagonal span,
which can solve the slot incongruity problem.

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
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Figure 3. Illustrations of multi-dimensional type-slot label interaction network. Each element
corresponds to a word pair. The gray, yellow, and green sections represent the lower triangle mask,
type pointer, and slot tail pointer, respectively. The red number “1” indicates the type pointer or slot
tail pointer at the corresponding position.

Specifically, the feature representation E of the BERT output was fed into the global pointer
network [27], and the decoding vectors qi,α and ki,α are shown in Equations (3) and (4). Since
the traditional attention mechanism is not sensitive to the span slot and position information, it
cannot capture the position information of the input sequence. Therefore, it was necessary to
include rotational position embedding [43] in the decoding layer. The process of scoring the
position of the i-th row and j-th column in each slot type matrix by adding a rotated position
embedding, as shown in Equation (5), preserved the remote decay property and can be applied
to linear attention, which satisfies Rj−i = RiRj.

qi,α = Wq,αei + bq,α (3)

ki,α = Wk,αei + bk,α (4)

sα(i, j) = (Riqi,α)
T(Rjk j,α) = qT

i,αRj−ik j,α, (5)

where i and α denote the position of the i-th word in the sentence and the α-th slot type in
the slot category, respectively, where t and R are the length of the sentence and the relative
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position embedding, respectively. sα(i, j) represents the word attention score of the i-th row
and the j-th column in the α-th slot type matrix.

We fed the BERT output semantic representation E = {ecls, e0, e1, · · · , et−2, esep} into
the global pointer network [27] output Y ∈ Rn×t×t, combined with our constructed multi-
dimensional type-slot label interaction network and intention decoder bootstrap model
to realize the implicit connection of intentions and slots, which can enhance the semantic
association of intentions–slots, ensure the integrity of intention and slot information, and
solve the slot nesting problem.

3.4. Intent Decoding

As shown in Figure 2, we took the probability value of the yellow position of each
head, namely OI ∈ Rn. We employed pcls and OI to jointly decode the intent, which helped
the implicit association of intent and slot to obtain fuller information about each other.

X = elu (W I
y [OI || pcls] + bI

y) (6)

Y I = sigmoid (W I
o X + bI

o) (7)

I =
{

Ii | Y I > pI
}

, (8)

where Ii represents the i-th intent in the set of intent labels. W I
y , W I

o , bI
y and bI

o are all
trainable parameters for the intent decoder in this scenario. || indicates the aggregation
operation, where sigmoid and elu are both activation functions. pI is the hyperparameters
optimized by the validation set, and we set it to 0.55. Equation (8) represents the set of
intentions with a probability greater than pI .

3.5. Slot Decoding

As shown in Figure 2, we took all the probability values of the green area of each head,
namely OS ∈ Rn×(t−2)×(t−2). As shown in Equation (9), we compared it with the threshold
pS, and if there was a probability value more than the threshold pS, we decoded all the
slots by span.

S = {s[a:b] | OS > pS}, (9)

where a and b denote the indexes of the head and tail pointers after span decoding, respec-
tively. S represents the decoded the collection of slots, where pS is the hyperparameters
optimized by the validation set, and we set it to 0.

3.6. Joint Optimization

As mentioned above, we built a multi-dimensional type-slot label interaction network
that can employ slot filling as a binary classification task and whose loss function is a
multi-label classification cross-entropy [27]:

Lslot =
t

∑
i,j=1

n

∑
α=1

[log

1 + ∑
(i,j)∈Pα

e−sα(i,j)

+ log

1 + ∑
(i,j)∈Ω−Pα

esα(i,j)

] (10)

Ω = {(i, j) | 1 ≤ i ≤ j < t}, (11)

where n and t represent the total number of slot categories and the length represented by
the BERT output, respectively. As shown in Figure 3, where Ω is the set of positions for
all yellow and green regions under this sample, Ω contains P, which is the set of slot tail
pointers and types pointers, where i and j represent the start and tail indexes of a span, and
note that all i must be less than or equal to j in Equation (11).



Electronics 2023, 12, 1748 8 of 15

This study describes multiple ID as a multi-label classification task. Equation (12)
demonstrates that the loss function is a binary cross entropy.

Lintent , −
t

∑
i=1

m

∑
j=1

[y(j,I)
i log(ŷ(j,I)

i ) + (1− y(j,I)
i ) log(1− ŷ(j,I)

i )], (12)

where y and ŷ represent the golden intent label and the decoded sentence-level intent,
respectively. t and m represent the length of the BERT output and the number of intent
labels, respectively.

To jointly optimize multiple tasks, we combined the loss functions mentioned above,
and the following is the final loss function for jointly optimizing multiple intent detection
and slot filling tasks:

Ltotal_loss = αLslot + βLintent, (13)

where α and β are the hyperparameters optimized by the validation set. α and β are both set to 1.

4. Experimental and Analysis
4.1. Datasets

We evaluated the proposed approach with two multi-intent datasets—MixATIS and
MixSNIPS. Table 1 demonstrates the statistical information of the two datasets.

Table 1. Statistics of two public datasets.

Datasets MixATIS MixSNIPS

Training 13,162 39,776
Validation 759 2198

testing 828 2199
Intent 18 7
Slot 78 39

Vocabulary size 827 9632

The MixATIS dataset [22,44] is a multi-intent dataset that includes audio recordings
of individuals booking flights. It mainly contains the query of verbal information such as
airline name, flight departure, airport code, etc. MixATIS includes 13,162 utterances for
training, 756 for validation, and 828 for testing.

The MixSNIPS dataset [12,45] is a multi-intent dataset acquired from the Snips personal
voice assistant. It mainly includes information such as querying the weather, playing movie
music, movie reviews, searching for creative works and events, etc. MixSNIPS includes
39,776 utterances for training, 2198 for validation, and 2199 for testing.

4.2. Evaluation Metrics

We employed and extended an assessment measure [24] to assess our model. The
F1-score and accuracy were applied for ID and SF tasks. Meanwhile, sentence accuracy
refers to the percentage of utterances in the corpus whose slots and intentions are both
correctly predicted [46], and it represents the total performance of the two tasks.

4.3. Experimental Settings

The experiment was conducted on a Linux server with NVIDIA GeForce RTX 3090,
Python 3.7, and Tensorflow 2.4 framework [47]. All our models were based on BERT, which
had 12 layers of transformer blocks, 768 hidden states and 12 self-attentive headers. The
number of parameters of BERT-base is 110 million. The batch size of the MixATIS and
MixSNIPS datasets is 24. The input dimension of the global pointer network is 128. The
overall parameters of the model on the MixATIS and MixSNIPS datasets were 124 million
and 117 million, respectively. The Adam optimizer with an initial learning rate of 5 × 10−5

was applied to optimize the parameters. We selected the model that performed best on the
validation set to evaluate the test set in all experiments.
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To enhance the robustness of the model, the FGM [48] algorithm was used for adversarial
training in the word embedding layer, which further enhanced the robustness of the model.

4.4. Baselines

The following are some typical baselines:
Attention BiRNN: A self-attention-based BiRNN joint model was presented by Liu

and Lane [4], in which the intention is predicted by the weighted sum of hidden states.
Slot-Gated Atten: Goo et al. [5] presented a slot-gated mechanism that directly takes

into account the relationship between SF and ID.
Bi-Model: Wang et al. [6] introduced a bidirectional model, which uses BiRNN to

decode intent and slot tasks, respectively, and share the hidden state information of each
time step between two decoders.

SF-ID Network: Niu et al. [7] presented an SF-ID architecture, which provides a direct
connection between intent and slot, allowing them to promote one another.

Stack-Propagation: Qin et al. [8] introduced a stack-propagation architecture that
guides the SF task by combining the decoding intent with the encoding information.

Joint Multiple ID-SF: To assist slot decoding, Gangadharaiah and Narayanaswamy [22]
developed a slot-gated model with attention that incorporates slot context vector and intent
context vector as slot gating.

AGIF: Qin et al. [24] created an adaptive intent–slot graph interaction network based
on GNN for SF that uses decoded intent and token sequence as nodes.

GL-GIN: To address the issue of slot inconsistency and realize the interaction between
intents and slots, Qin et al. [25] suggested a fast and accurate non-autoregressive model
based on GAT that contains a global–local graph interaction network. The model has
looked excellent, with the rate of inference increasing.

Joint BERT: Chen et al. [9] developed a BERT-based joint model that uses CLS to
decode the intent and the token sequence to decode the slot directly. This model achieves a
good performance on multiple indicators.

SDJN+BERT: Chen et al. [23] proposed a self-distillation architecture that gives intent
and slot information to each other to achieve cyclic optimization and implements self-
distillation by treating the decoded slots as soft labels for the pre-decoded slots.

4.5. Main Results

We reproduced a baseline model on two multi-intent datasets to examine the effec-
tiveness of our proposed approach. For the JointBERT [9] model, the original author did
not release their code, so we reproduced it. In the JointBERT model, we employed binary
cross-entropy loss and changed the intent decoder, replacing softmax as sigmoid.

The results of 10 times validation on the baseline model and our model were subjected
to statistical significance testing using the Student’s t-test with a significance level of 0.05.
Our novel method achieves SOTA performance on multiple metrics on MixATIS and
MixSNIPS datasets, as shown in Table 2. The current best results on the MixATIS dataset
were 88.3%, 78.0%, and 46.3% for slot F1, intent Acc, and sentence Acc, respectively. On
the MixSNIPS dataset, the best results for slot F1, intention Acc, and sentence Acc were
95.6%, 96.7%, and 79.8%, respectively. From the results, we observe that: (1) For slot F1, the
proposed model is 0.1% and 1.1% higher than the current optimal baseline GL-GIN [25]
and Joint BERT [9] model, respectively. This is because the global pointer model can solve
the problem of slot incoherence more effectively. (2) For intent Acc, the proposed model is
1.6% and 1.2% higher than the current optimal baseline SDJN+BERT [23] model. This is
due to the fact that the constructed multi-dimensional type-slot label interaction network
can provide more rich semantic information for intent decoding. (3) For sentence accuracy,
the proposed model is significantly higher than the current optimal results by 3.1% and
4.5%. This is because the constructed multi-dimensional type-slot label interaction network
enhances the implicit association of intentions and slots, allowing sufficient information on
each other to improve the overall performance of the model.
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Table 2. Results of joint training on the MixATIS and MixSNIPS datasets. The values with * and
bolded indicate that our framework has improved on all of its baselines (%).

Model
MixATIS MixSNIPS

Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Attention BiRNN [4] 86.4 74.6 39.1 89.4 95.4 59.5
Slot-Gated [5] 87.7 63.9 35.3 87.9 94.6 55.4
Bi-Model [6] 83.9 70.3 34.4 90.7 95.6 63.4
SF-ID [7] 87.4 66.2 34.9 90.6 95.0 59.9
Stack-ropagation [8] 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF [22] 84.6 73.4 36.1 90.6 95.1 62.9
AGIF [24] 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN [25] 88.3 76.3 43.5 94.9 95.6 75.4
SDJN [23] 88.2 77.1 44.6 94.4 96.5 75.7
SDJN+BERT [23] 87.5 78.0 46.3 95.4 96.7 79.3
Joint BERT [9] 86.1 74.8 44.8 95.6 96.2 79.8

MTLN-GP (ours) 88.4 * 79.6 * 49.4 * 96.7 * 97.9 * 84.3 *

It can be seen that using the global pointer approach to decode the tail pointer of
slots can decode all slots, which can solve the issues of slot inconsistency in the decoding
of the BIO labeling approach and improve the performance of slot filling. The multi-
dimensional type-slot label interaction network can realize slot and slot type interaction,
provide slot information for downstream intent decoding, promote the implicit association
of intent and slot, and greatly improve the intent accuracy rate. Meanwhile, the accuracy of
the whole sentence is also improved significantly, which is attributed to the constructed
multi-dimensional type-slot label interaction network.

We attribute the above benefits to our approach to constructing the type-slot label
interaction network, which implicitly helps the model capture more explicit and high-
confidence correspondence between intent and slots to reduce the propagation of errors
and bring about significant improvements.

4.6. Analysis
4.6.1. Speedup

We followed the same setup as in [24] to compute the inference speedups. As shown
in Table 3, the MTLN-GP model has a significant increase in inference rate compared
to several typical baseline models. Compared with stack-propagation [8], joint multiple
ID-SF [22], and AGIF [24], the global pointer can avoid the inference delay caused by the
word-by-word decoding of the regression mode. Meanwhile, compared with GL-GIN [25],
the proposed method does not need to spend considerable time on building graph networks
and softmax computation.

The combination of Tables 2 and 3 shows that our model not only has a significant
speedup but also a good performance. Our model is valuable due to its time complexity
and performance.

Table 3. Speed comparison.

Model Decode Latency(s) Speedup

Stack-propagation [8] 34.5 1.4×
Joint Multiple ID-SF [22] 45.3 1.1×

AGIF [24] 48.5 1.0×
GL-GIN [25] 4.2 11.5×

Joint BERT [9] 2.3 21.1×

MTLN-GP 3.1 15.6×
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4.6.2. Ablation Experiments

The MTLN-GP model has improved a number of metrics on two benchmark datasets,
according to experimental findings. However, we need to know why the situation has
improved. In this section, we provide a detailed ablation analysis to investigate the
contribution of the sub-net to our model.

With the ablation that follows, we investigated the efficacy of MTLN. As shown in
Figure 3, we set the “1” in the yellow area under each slot type dimension to “0” and left the
others unchanged, namely MSLN-GP. Table 4 demonstrates that our technique is enhanced
in multiple metrics. This is because the yellow area of the proposed multidimensional
type-slot label interaction network integrates the information of each type of slot and can
facilitate intent decoding.

Table 4. On two multi-intent datasets, we conducted an ablation comparison of our proposed approach (%).

Model
MixATIS MixSNIPS

Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Joint BERT [9] 86.1 74.8 44.8 95.6 96.2 79.8
MSLN-GP 88.2 78.3 47.2 95.9 97.1 82.6
MTLN-GP w/o Joint 87.9 78.4 47.8 96.3 97.4 83.3
MTLN-GP by Max Pooling 88.2 79.3 48.9 96.7 97.6 84.1
MTLN-GP by Mean Pooling 88.1 79.4 49.1 96.6 97.6 83.9

MTLN-GP 88.4 79.6 49.4 96.7 97.9 84.3

Bolded indicates the best performance of the model.

Next, we directly employed the pcls output from BERT for decoding the intent instead
of combining the pcls with the global pointer network output information for decoding
the intent, namely MTLN-GP w/o Joint. As shown in Table 4, the performance of the
MTLN-GP model increases in all metrics compared to the MTLN-GP w/o Joint model,
which is due to the ability of the multidimensional type-slot label interaction network to
facilitate intent decoding and contribute to the implicit association between intent and slot,
enabling each other to obtain complementary information.

Finally, we evaluated the impact of the feature fusion method on the performance of the
global pointer output Y. The following two experiments were conducted for the acquisition
of OI in Equation (6): first, the 2-D Max pooling was applied to Y, namely MTLN-GP by
Max Pooling; second, the 2-D AVG pooling was applied to Y, namely MTLN-GP by Mean
Pooling. As can be seen from Table 4, our method outperforms both approaches. This is
because the [CLS] in the multi-dimensional type-slot label interaction network we designed
contains information processed for each slot type, while the pooling operation introduces
some noisy information.

4.6.3. Single-Intent and Multi-Intent Analysis

In addition, we wanted to know the effect of single-intent and multi-intent samples
on the proposed model. The test set was divided into single-intent and multi-intent based
on the number of intentions in the utterances, and the experimental results are shown
in Figure 4. The samples of the MixATIS test set were 143 and 685 for single-intent and
multi-intent, respectively, with 450 and 1749 for the MixSNIPS test set, respectively. As can
be seen from the results: (1) The single-intent and multi-intent samples are essentially equal
in slot F1, which indicates that the proposed model addresses the slot incoherence problem
well with global pointers; (2) In terms of intent accuracy, MixATIS has a higher gap relative
to MixSNIPS in both samples, which may be caused by the unbalanced distribution of
intent labels in MixATIS, with only 17 intents in the training set and 18 intents in the test set.
Generally, the proposed model can nicely treat both single-intent and multi-intent samples;
(3) For sentence accuracy, single-intent samples work better than multi-intent samples.
Nevertheless, it is a predictable scenario because the single-intent task is relatively easier
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than the multi-intent task. In summary, the proposed method obtains a good performance
in both samples.
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Figure 4. Accuracy of single-intent and multi-intent comparison plots.

4.6.4. Error Analysis

The experimental findings demonstrate the MTLN-GP model’s high performance in
terms of inference rate and performance, reaching SOAT for a number of metrics on two
benchmark datasets. Nevertheless, the results are still relatively poor on some datasets. We
analyzed the reasons in the following respects:

1. The data set is limited and the distribution of categories is unbalanced. Some slot types
are not present in the training set, but appear frequently in the test set. Meanwhile,
out of vocabulary (OOV) appears in the test set;

2. The second reason is the annotation error. As shown in Table 5, the intent of the first
sample was manually marked as “aircraft”. Nevertheless, we note that the question
refers to the number of different aircraft types. By observation, the red word in the
second sample should be labeled “toloc.city_name”, but it was marked as “city_name”.
Meanwhile, the results predicted by the MTLN-GP model are generally consistent
with the actual observations;

3. Irrelevant information can mislead the prediction results. As shown in Table 5, the
proposed model is misled by the slot information and therefore outputs the wrong
intention. The actual content of the sentence is “what days of the week”.

Table 5. The golden label is also included in this example of three testing samples generated by our
method on the MixATIS dataset. ? Indicates that no slot exists at this position.

Model Golden Slots Golden Intent

Text at the charlotte airport how many different types of aircraft are there for us air
Golden ? ? city_name city_name ? ? ? ? ? ? ? ? ? airline_name airline_name atis_aircraft
MTLN-GP ? ? city_name city_name ? ? ? ? ? ? ? ? ? airline_name airline_name atis_quantity

Text list the distance in miles from boston airport to downtown boston
Golden ? ? ? ? ? ? fromloc.airport_name fromloc.airport_name ? ? city_name atis_distance
MTLN-GP ? ? ? ? ? ? fromloc.airport_name fromloc.airport_name ? ? toloc.city_name atis_distance

Text what days of the week do flights from san jose to nashville fly on
Golden ? ? ? ? ? ? ? ? fromloc.city_name fromloc.city_name ? toloc.city_name ? ? atis_day_name
MTLN-GP ? ? ? ? ? ? ? ? fromloc.city_name fromloc.city_name ? toloc.city_name ? ? atis_flight

Red font indicates data labeling errors or prediction errors.

5. Conclusions

In this article, a joint model for solving nested and non-nested slots based on global
pointers was proposed to address the problem that the existing models do not have high
enough performance and inference rates. By considering the implicit correlation between
intents and slots, a novel multi-dimensional type-slot labeling interaction network was
designed. At the same time, the introduction of the global pointer network can not only
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address the problem of inconsistent slots, but also handle both nested and non-nested slots,
which lays a certain foundation for solving nested slots subsequently. We are the first to
propose the use of pointer networks for this task, and its performance and inference rate
are guaranteed. Experiments on two public multi-intent datasets validate the effectiveness
of the algorithm.

As a further step, we will continue to study how to improve the accuracy of the model
and apply it to practical engineering.
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