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Abstract: As human actions can be characterized by the trajectories of skeleton joints, skeleton-based
action recognition techniques have gained increasing attention in the field of intelligent recognition
and behavior analysis. With the emergence of large datasets, graph convolutional network (GCN)
approaches have been widely applied for skeleton-based action recognition and have achieved
remarkable performances. In this paper, a novel GCN-based approach is proposed by introducing a
convolutional block attention module (CBAM)-based graph attention block to compute the semantic
correlations between any two vertices. By considering semantic correlations, our model can effectively
identify the most discriminative vertex connections associated with specific actions, even when the
two vertices are physically unconnected. Experimental results demonstrate that the proposed model
is effective and outperforms existing methods.

Keywords: action recognition; GCN; connection strength; graph attention block; CBAM

1. Introduction

As an important research problem in the field of intelligent recognition and behavior
analysis, human action recognition methods [1] have gained significant importance in
various fields, such as video surveillance, virtual reality, smart homes, three-dimensional
perceptions, and human–computer interactions [2–5]. These methods can be categorized
into two types: vision-based methods [6,7] and skeleton-based methods [8,9]. Vision-based
methods recognize human actions by extracting spatial or temporal contextual features
from image sequences or videos, while skeleton-based methods represent the human body
as a three-dimensional graph, and extract features from vertices and edges to recognize
actions. In comparison to vision-based data, such as RGB images and videos, 3D skeleton
data is less computationally expensive and more robust in complex background. Thus, this
paper focuses on exploring 3D skeleton-based methods for human action recognition.

The DL-based action recognition methods can be typically categorized into recurrent
neural network (RNN)-based methods [10,11], convolutional neural network (CNN)-based
methods [12–14] and graph convolutional neural network (GCN)-based methods [15–21].
Among these methods, GCN-based methods have gained much attention due to the natural
graph structure of human skeletal data. Inspired by the spatial–temporal graph convolutional
network (ST-GCN) introduced by Yan et al. [15], several GCN-based methods have been pro-
posed to model the implicit relationships between skeletal data and the corresponding actions,
thereby eliminating the need to design handcrafted part assignments or traversal rules.

In the field of action recognition, the information of each action is often concentrated
on one or several vertices, and relies on the connections between them. Graph convolutions
are commonly used to capture features from these joints and connections, and the adjacency
matrix is used to determine the value of each connection, based on the physical connection
conditions between the two vertices. However, in certain actions, two vertices may not
be physically connected, but still be semantically correlated. For example, when someone
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claps their hands, the vertices in the two hands are semantically correlated but physically
unconnected. If the correlations between two vertices are simplified as physical connections,
the flexibility and generalization abilities of recognition methods are inevitably limited.
Thus, it is crucial to consider both physical and semantic connections when designing
action recognition methods.

Unlike physical connections, that can be categorized as binary cases (i.e., connected
and unconnected), the semantic correlation between two vertices is more complex. Firstly,
the semantic correlation value should match the connection strength, making it continuous
in the value space. Secondly, the semantic correlation is often independent of physi-
cal connections, and, thus their calculation cannot rely on the graph structure as priors.
Attention mechanism can effectively highlight important features during the learning
process. Therefore, we propose a novel approach to extensively incorporate semantic
correlations in the graph convolutional calculation process, which introduces a novel
two-stream graph attention convolutional network (2s-GATCN). The main contributions are
as follows:

• We propose a graph attention convolutional network (GATCN) to adaptively learn the
topology of the graph. By combining physical, semantic, and temporal features of the
graph, our approach is able to learn and fuse features in a powerful and flexible manner.

• We present a novel approach for estimating semantic correlations by designing a graph
attention block (GAB), which can highlight the most discriminative vertex connec-
tions relating to the corresponding actions. The GAB incorporates a data embedding
method, to obtain a multi-channel semantic correlation strength tensor, and a CBAM-
based attention module, to obtain the semantic correlation strength matrix, By consid-
ering the semantic connections between vertices, the action recognition accuracy is
significantly improved.

• Extensive experiments on NTU-RGB+D 60 and Kinetics-Skeleton datasets demonstrate
that the proposed network obtains superior performance compared to state-of-the-art
methods.

The reminder of this paper is organized as follows: Section 2 discusses related work,
Section 3 introduces the background, Section 4 presents the proposed 2s-GATCN frame-
work, Section 5 presents experimental results, and Section 6 concludes the paper.

2. Related Work
2.1. Graph Covolutional Networks for Skeleton-Based Action Recognition

In recent years, GCN-based methods have been introduced to skeleton-based ac-
tion recognition tasks by extending the convolutional operation from images to graphs,
producing promising results in accurate action recognition from skeletal data.

The pioneering work was proposed by Yan et al. [15]. They proposed the spatial-
temporal GCN (ST-GCN) to model the implicit relationships between action classes and
skeletal data by proposing spatial graph convolution and temporal graph convolution. For
spatial graph convolution, specific convolution kernels are designed, based on predefined
principles, and the GCN calculation process is combined with an adjacency matrix that
describes the graph’s topological structure. Li et al. [17] proposed the actional–structural
graph convolutional network (AS-GCN), which formulated generalized skeletal graphs
by combining actional and structural links to capture action-specific latent dependencies.
The actional links were obtained from an encoder–decoder structure, and the structural
links were indicated by a high-order polynomial of the adjacency matrix. Shi et al. [16]
introduced an adaptive learning method using a two-stream network (2s-AGCN) that
utilized first-order joint information and second-order bone information to learn connection
relationships. In 2s-AGCN, the adjacency matrix is extended with a learnable parameter
matrix and a data-dependent connection matrix. In other work, Shi et al. [18] represented
skeletal data as a directed acyclic graph (DAG), based on kinematic dependency, and
designed a directed graph neural network (DGNN) to extract features from joints, bones
and their relationships. Liu et al. [19] proposed a multi-scale aggregational scheme that
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could remove redundant dependencies between near and far neighborhood joints, and
proposed a unified spatial-temporal graph convolutional (G3D) operator that could directly
extract spatial and temporal features from skeleton sequences. Peng et al. [20] proposed
a neural searching-based approach that described implicit joint connections using a high-
level representation of the skeleton graph and a dynamic graph modeling mechanism. To
enrich the GCN search space, multiple dynamic graph substructures were provided, and
higher-order connections with the Chebyshev polynomial approximation were applied.
Chen et al. [21] proposed a channel-wise topology refinement graph convolutional network
(CTR-GCN), which dynamically models channel-wise typologies in a refinement approach.
The adjacency matrix was used as a shared topology for all channels, and the channel-
specific correlations were used as a non-shared topology for each channel. Zhao et al. [22]
introduced two progressive binary graph convolutional networks, in which the filters and
activations were binarized to decrease the parameters, which could improve the training
and inference speed. Zhang [23] proposed a spatial attentive and temporal dilated (SATD)
method, in which the spatial attention pooling module (SAP) is proposed to identify
important vertices and to remove unimportant vertices, and the temporal dilated graph
convolution module is used to expand the receptive field. Yang [24] designed a hybrid
network (HybridNet) , which integrated GCNs and CNNs to leverage their complementary
effects. In HybridNet, a GCN-based feature extracting module (GFEM) and a CNN-based
feature processing module (CFPM) were designed, respectively, and, then, a novel gluing
unit was proposed to support the elegant integration of the GFEM and the CFEM.

2.2. Attention Mechanisms in Skeleton-Based Action Recognition

The attention mechanism has become a widely applied technique in various fields,
including computer vision [25], video processing [26], and knowledge concept recommen-
dation [27]. For skeleton-based action recognition, the attention module is an essential com-
ponent that aims to identify and emphasize critical vertices, edges, or connections. Various
attention models have been proposed to enhance recognition performance. Zhang et al. [28]
introduced a regularized attention model that identified key vertices of each action by
considering spatial diversity and local continuity. Song et al. [8] proposed an end-to-end
spatial-temporal attention model, in which the spatial attention module aimed to assign
different importance to each vertex, and the temporal attention module aimed to allocate
different attention weights to each frame. Si et al. [29] proposed the AGC-LSTM network,
in which an attention mechanism was used to highlight the features of key vertices, which
could improve spatial-temporal expressions. Cho et al. [30] proposed three self-attention
networks to effectively capture deep correlations from action sequences, which could ad-
dress the issue of acquiring long-term information. Li et al. [31] incorporated a memory
attention network into the ’RNN + CNN’ network framework, which could effectively
extracts the temporal features.

Currently, many attention modules are designed for non-GCN-based models, which
limits their abilities to estimate the connection properties based on graph structures. There-
fore, it is crucial to develop attention modules that can be used effectively with GCNs.
One such module is the graph attention module (GAT), proposed by Velickovic et al [32].
The GAT module estimated the connection weights of different vertices, which could be
used for inductive tasks. Yang et al. [33] proposed a pseudo graph convolutional network
with temporal- and channel-wise attention, from which mixed temporal- and channel-wise
attention was proposed to extract the different levels of importance of different frames and
channels. Heidari et al. [34] proposed a temporal attention-augmented GCN by introduc-
ing a temporal attention module (TAM) to extract the most informative skeletons in an
action sequence.
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3. Background
3.1. Graph-Based Skeleton Sequence Representation

A skeleton sequence can be denoted as X ∈ Rd×T×N , where d is the joint coordinate
dimension, T is the frame number, and N is the number of joints in a skeletal frame. By
utilizing the joint and joint connection information, there are two approaches that transform
X into a graph, denoted as G(V , E), where V represents the vertices, and E represents the
edges. For the joint graph, V represents a set of all the body joints, and E represents a set
of all the bones calculated by the first-order spatial difference of the body joints. On the
other hand, for the bone graph, the bones are set as the vertices, and the joints are set as the
edges. The research task of this paper was to recognize specific human actions from the
joint and bone graphs by applying the graph convolutions.

3.2. Spatial and Temporal Graph Convolutions

The spatial and temporal graph convolution operations were introduced by [15], which
performed different convolutions on spatial and temporal dimensions based on the input
feature with joint or bone information. In the spatial dimension, the graph convolution
operation is expressed as:

fout = ∑
vt

j∈Bi

1
Zt

ij
fin(vt

j) ·ω(lt
i (v

t
j)), (1)

where fin ∈ RCin×T×N is the input feature map, and Cin is the input feature channel
dimension. fout ∈ RCout×T×N is the output feature map, and Cout is the output feature
channel dimension. i is the target vertex index, j is the 1-distance neighbor vertex index of
the target vertex i, and t is the frame index. Bi represents the sampling area of the graph
convolution for vt

i , which enumerates the vertices vt
j. The value ω(·) is the convolutional

weight coefficient, lt
i (·) is a mapping function that assigns convolutional weight coefficients

to each involved vertex, and Zt
i (·) is a normalization function that balances the contribution

of the involved vertices.
It is difficult to directly utilize Equation (1) to extract spatial features from the graph.

To better accommodate the graph topology, Equation (1) is typically transformed to Equa-
tion (2) according to [35].

fout =
Kv

∑
k

Wk fin Ak, (2)

where Kv is the spatial kernel size and set to 3, W(·) is the weight coefficient of a 1× 1
convolutional layer, and A ∈ RN×N is an adjacency matrix that denotes the physical
connections between the vertices. To perform the graph convolutions, fin is first reshaped
into a matrix with a size of CinT×N, and, after processing through the graph convolutional
layers, the output feature is reshaped back to a tensor with size of Cout × T × N.

To perform graph convolutions along the temporal dimension, Kt × 1 convolutions are
applied, which is similar to the temporal convolution operations in video data processing.
Here, Kt refers to the kernel size of the convolution operation along the temporal dimension.

4. Methodology
4.1. Overall Network

To fully utilize the graph feature, the proposed network adopts a 2-stream network
framework that consists of joint and bone layers. The joint and bone layers are both
structured as the proposed GATCN, as shown in Figure 1. Each layer produces a human
action prediction score, and the two scores are summed to obtain the final prediction score.
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Figure 1. The Overall network of GATCN, which takes joints as example input.

The GATCN can be divided into two sub-blocks: the feature extraction and fusion
block, and the action prediction block. The input to the network is the vertex set V ∈
Rd×T×N , which is first preprocessed using a batch normalization (BN) layer to normalize the
data. Then, the normalized data Vn is fed into cascaded basic graph attention convolutional
blocks (basic-GACBs) to extract discriminative graph features. Taking 3D joints as example
input, the feature extraction and fusion process can be expressed as:{

f1 = HG(Vn)
Cout
Cin=3

fi+1 = HG( fi)
Cout
Cin

,
(3)

where fi is the feature map extracted by the ith GACB, HG is the GACB operation, and Cin
and Cout are the input and output feature dimensions of the Basic-GACB,

Finally, the extracted feature is fed into the action prediction block to predict the action
class, which consists of a fully connected (FC) layer, a global averaging pooling (GAP) layer
and a softmax layer. The FC layer maps the features to the desired output size. The result
is then fed to the GAP layer to reduce the spatial dimension of the features and compute
the mean value of each feature map. Finally, the softmax layer is applied to obtain the
predicted probability distribution over the action classes.

4.2. GACB

The primary block of the feature extraction and fusion block is Basic-GACB, as shown
in Figure 2. Each GACB consists of two cascaded sub-blocks: a spatial feature extraction
block and a temporal feature extraction block.

Figure 2. Basic-GACB.

The spatial feature extraction block of the Basic-GACB aims to extract spatial features
by computing the adjacency matrix representing vertex connection strength. It consists of
a spatial graph convolutional layer (sGCN), a BN layer, and a rectified linear unit (ReLU)
layer. The calculation process of sGCN is illustrated in Figure 3. The adjacency matrix
considers physical and semantic connection correlations and is divided into three parts: the
physical connection matrix A, the semantic connection strength matrix T, and the learnable
bias matrix B. Thus, the sGCN can be expressed as follows:



Electronics 2023, 12, 1711 6 of 13

fout =
Kv

∑
k

Wk fin(Ak + Tk + Bk), (4)

Figure 3. The calculation process of sGCN.

For the adjacency matrix, the physical connection matrix A is the same as that in
Equation (2), which is predefined, based on the graph structure. It outputs 1 when the
vertices are physically connected, and 0 otherwise. The semantic connection strength matrix
T is obtained by applying the proposed graph attentional block (GAB) (as described in
Section 4.3). This enables the model to identify the most discriminative vertex connections
related to the corresponding actions. As the connection strength value of any two vertex is
calculated and falls between 0 and 1, T can highlight the high-corrected semantic connec-
tions even when the two vertices are physically unconnected. The learnable bias matrix B is
randomly initialized and learned during training. The value B also indicates the connection
strength between the vertices, but its value is fixed for all input data. Therefore, it can be
considered to demonstrate the overall connection property of the dataset.

The extracted spatial feature is then added to the input feature to formulate a global
residual connection. Note that the input feature is processed with a 1× 1 convolutional
layer to make the channel dimension Cout.

The temporal feature extraction block is cascaded after the spatial graph convolutional
block, and it consists of three layers: a temporal graph convolutional layer (tGCL), a BN
layer and an Relu layer. This block takes the output of the spatial feature extraction block
as input and applies temporal convolutions along the temporal frame dimension, resulting
in a spatial-temporal fused feature map.

Finally, the spatial-temporal fused feature is added to the input feature to formulate a
global residual connection. The input feature is also processed with a 1× 1 convolutional
layer to ensure the channel dimension is consistent with the spatial-temporal fused feature.

4.3. GAB

The GAB framework is designed to generate an attention matrix T ∈ RN×N that
indicates the connection strengths between pairs of vertices. As shown in Figure 4, GAB
consists of a feature embedding and fusion block, and a CBAM-based attention block.

For feature embedding and fusion, a 1× 1 convolutional layer is adopted to embed
the input feature into a tensor with a size of Ce × T× N, where Ce is the channel dimension
of the embedded feature. Then, the matrix M0 with a size of T × CeN is reshaped from the
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embedded feature. Furthermore, fin is fused with a 1× 1 convolutional layer along the
channel dimension to obtain an integrated feature M1 with a size of T × N.

Figure 4. The calculation process of GAB.

A multi-channel connection strength tensor can be obtained by performing multiplica-
tion between MT

0 and M1:
Tm = R(MT

0 M1), (5)

where Tm = {T1, T2, · · · , TCe} is the multi-channel connection strength tensor with a size
of Ce × N × N, m is the channel index and R(·) is the reshape operator. The element
Tm(ij) indicates the connection strength between the vertex vj and the vertex vj in the m-th
channel.

CBAM [36] is utilized to identify the most discriminative vertex connections in both
the channel and spatial dimensions, as shown in Figure 5a. It consists of a channel attention
block (CAB) and a spatial attention block (SAB), as illustrated in Figure 5b,c, respectively.
The CAB aims to identify the most discriminative Tm along the channel dimension. First,
the input feature is average-pooled and max-pooled in each Tm. Then, the resulting features
are respectively fed to a multilayer perceptron (MLP) layer to obtain two attention feature
maps with a size of Ce × 1× 1. Finally, the two attention feature maps are summed and
passed through a sigmoid layer to obtain a channel attention matrix Ac. The SAB aims to
identify the most discriminative T(ij) along the spatial dimension. First, the input feature is
average-pooled and max-pooled in the channel dimension. Then, the resulting features are
concatenated and passed through a 7× 7 convolutional layer to obtain a spatial attention
matrix As with a size of 1× N × N. By multiplying Tm with Ac and As and fusing the
resulting channels with a 1× 1 convolutional layer, the semantic connection strength matrix
Tm

att can be obtained as follows:

Tm
att = H1×1(Am

s AcTm). (6)

where H1×1(·) is the 1× 1 convolution operation.
Finally, our GAB is designed as a multi-head mechanism to enhance the stability of

the training process. The attention matrix from each head is summed to obtain the final
attention matrix, which can be expressed as:

T =
1

nheads

nheads

∑
i=1

Ti
att. (7)

where T is the final semantic connection strength matrix, Ti
attdenotes the attention matrix

calculated with ith head, and nhead is the number of heads.
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Figure 5. (a) The convolutional block attention module (CBAM). (b) The channel attention block.
(c) The spatial attention block.

5. Experiments

In this section, we first introduce the datasets and implementation details used in
our experiments. We then conduct an ablation study to evaluate the effectiveness of our
proposed network. Finally, we compare our method with several state-of-the-art methods.

5.1. Datasets and Implementing Details

We used the NTU-RGB+D 60 and Kinetics-Skeleton datasets to train and test our
network. The NTU-RGB+D 60 dataset contains 56,880 motion samples with 3D skeletal
data and includes 60 action classes. It is divided into two benchmarks: Cross-view and
Cross-subject. The Kinetics-Skeleton dataset is comprised of approximately 500,000 video
clips covering 600 classes of human actions, with each class containing more than 600 video
clips.

The network was implemented using the Pytorch framework, with a batch size of 20,
and optimized by the stochastic gradient descent (SGD) optimizer, with an initial learning
rate of 0.01. The GATCN was composed of 9 Basic-GACBs, each with an output feature
dimension of 64, 64, 64, 64, 128, 128, 128, 256 and 256. To prevent over-fitting, L2 regular-
ization with a parameter of 0.0005 and a dropout rate of 0.6 were employed. The training
process for the NTU-RGB+D 60 dataset was stopped after approximately 50 epochs, while
for the Kinetics-Skeleton dataset, the training process was stopped after approximately
65 epochs.

5.2. Ablation Study

In this subsection, the Cross-view benchmark of the NTU-RGB+D 60 dataset was
employed to identify the optimal hyperparameter within the network and to evaluate the
effectiveness of the proposed semantic connection strength matrix T.

5.2.1. Optimal Attention Heads Number Determination

The proposed GAB utilizes multi-head GAB to enhance the stability of the learning pro-
cess. In order to determine the optimal number of attention heads (nheads), we conducted
experiments on the joint GATCN by varying nheads from 1 to 6. The corresponding results
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are presented in Table 1, where the best and second best results are highlighted in bold
and underlined. Based on the results, we observed that the recognition accuracy was high-
est when nheads was set to 3. Considering both recognition accuracy and computational
efficiency, we recommend using nhead = 3 in GATCN.

Table 1. The validation accuracy comparisons of models using GAB with different numbers of heads.

nheads 1 2 3 4 5 6

accuracy(%) 94.43 94.45 94.61 94.53 94.55 94.60

5.2.2. Effectiveness Validation of the Matrix T

Two experiments were conducted to investigate the effectiveness of the proposed se-
mantic connection strength matrix T, the results of which are listed in Table 2. We first
deleted the matrix T to observe the performance. Based on the comparative results, the
accuracy decreased by 1.1% in the joint stream network (Js-GATCN) and 1.2% in the bone
stream network (Bs-GATCN). This is because the matrix T enables an effective description
of connection characteristics between any two vertices. By highlighting the most discrimina-
tive vertex connections, the network is able to extract semantically high-correlated features
more effectively.

Table 2. Effectiveness validation of the matrix T.

Method Accuracy(%) Method Accuracy(%)

Js-GATCN (A + B) 93.5 Bs-GATCN (A + B) 93.3

Js-GATCN
(A + B + C)

93.8 Bs-GATCN(A + B + C) 93.5

Js-GATCN
(A + B + T) 94.6 Bs-GATCN(A + B + T) 94.5

Then, we replaced the proposed T with C, which was proposed in 2s-AGCN [16] and
was calculated using the normalized embedded Gaussian function. Based on the results,
we observed a decrease in accuracy by 0.8% in the joint stream network and by 1.0% in the
bone stream network. The comparative result demonstrated that the proposed T is more
effective in describing the connection strength between the vertices, as the introduction of
the CBAM module.

5.3. Comparison With State-of-the-Art Methods

In this subsection, we compared the proposed method with several state-of-the-art
skeleton-based action recognition methods on the NTU-RGB+D 60 and Kinetics-Skeleton
datasets. Table 3 presents the comparison results on the NTU-RGB+D 60 dataset with
the evaluation metric of top-1 classification accuracy. The results show that our method
achieved the best score in both the Cross-subject and Cross-view benchmarks. Table 4
shows the comparison results on the Kinetics-Skeleton dataset, where we evaluated the
model based on its top-1 and top-5 classification accuracy metrics. Our method achieved
the best score in both metrics, demonstrating its effectiveness on a large dataset. Overall,
the comparative results on these two datasets demonstrate the superiority of our method
over the state-of-the-art approaches.
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Table 3. Comparisons of the validation accuracy with state-of-the-art methods on NTU-RGB+D
60 dataset.

Methods Year Cross-Subject Cross-View

HBRNN [10] 2015 50.1 82.8
ST-LSTM [37] 2016 69.2 77.7

Two-Stream 3DCNN [38] 2017 66.8 72.6
TCN [39] 2017 74.3 83.1

ST-GCN [15] 2018 81.5 88.3
AS-GCN [17] 2018 86.8 94.2
RA-GCN [40] 2019 85.9 93.5
2s-AGCN [16] 2019 88.5 95.1

AGC-LSTM [29] 2019 89.2 95.0
SGN [41] 2020 89.0 94.5

PL-GCN [42] 2020 89.2 90.5
SAGN [43] 2021 89.2 94.2

ED-GCN [44] 2022 88.7 95.2
GAT [45] 2022 89.0 95.2
Zhu [46] 2022 89.6 94.9

Js-GATCN - 87.9 94.6
Bs-GATCN - 87.4 94.5
2s-GATCN - 89.6 95.9

Table 4. Comparisons of the validation accuracy with state-of-the-art methods on Kinetics-
Skeleton dataset.

Method Year Top-1(%) Top-5(%)

TCN [39] 2017 20.3 40.0
ST-GCN [15] 2018 30.7 52.8
AS-GCN [17] 2018 34.8 56.5
2s-AGCN [16] 2019 36.1 58.7

GAT [45] 2022 36.1 58.9
Zhu [46] 2022 34.0 57.5

Js-GATCN - 34.1 57.2
Bs-GATCN - 34.7 56.6
2s-GATCN - 36.7 59.8

6. Conclusions

In this paper, we propose a novel two-stream graph attentional convolutional network
(2s-GATCN) to improve the performance of skeleton-based human action recognition.
The main contribution of our approach is the introduction of a graph attention block
(GAB), which consists of an improved data embedding block and a CBAM-based attention
block. The GAB generates a semantic connection strength matrix to identify the most
discriminative vertex connections related to specific human actions, which allows for
efficient extraction of features with high correlations in semantic space. We evaluated our
model on the NTU-RGB+D 60 and Kinetics-Skeleton datasets and showed competitive
performance compared to state-of-the-art methods. However, our method mainly focuses
on optimizing the feature extraction and fusion process in the spatial domain. In the
future, we plan to address the problem of dealing with semantic correlations among
temporal frames.
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