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Abstract: Fine-grained image recognition, as a significant branch of computer vision, has become
prevalent in various applications in the real world. However, this image recognition is more chal-
lenging than general image recognition due to the highly localized and subtle differences in special
parts. Up to now, many classic models, including Bilinear Convolutional Neural Networks (Bilinear
CNNs), Destruction and Construction Learning (DCL), etc., have emerged to make corresponding
improvements. This paper focuses on optimizing the Navigator-Teacher-Scrutinizer Network (NTS-
Net). The structure of NTS-Net determines its strong ability to capture subtle information areas.
However, research finds that this advantage will lead to a bottleneck of the model’s learning ability.
During the training process, the loss value of the training set approaches zero prematurely, which is
not conducive to later model learning. Therefore, this paper proposes the INTS-Net model, in which
the Stochastic Partial Swap (SPS) method is flexibly added to the feature extractor of NTS-Net. By
injecting noise into the model during training, neurons are activated in a more balanced and efficient
manner. In addition, we obtain a speedup of about 4.5% in test time by fusing batch normaliza-
tion and convolution. Experiments conducted on CUB-200-2011 and Stanford cars demonstrate the
superiority of INTS-Net.

Keywords: computer vision; convolution neural network; fine-grained imaged recognition

1. Introduction

Computer vision is an interdisciplinary field in artificial intelligence. The focus of the
research is to enable computers to extract information from digital images or videos that
rivals or surpasses human comprehension, including image processing, image analysis,
image understanding, etc. Image recognition, including both general and fine-grained
image recognition, is an important task in computer vision. With the vigorous develop-
ment of deep learning, fine-grained image recognition, a research hotspot in the visual
field, has made remarkable progress in the application of deep learning technology. Ex-
isting works [1–15] attempt to identify under subcategories of given images by exploring
various techniques. More recent part-based methods [2,9,10,12,13] and sampling-based
methods [1,3,4] can discover regions in a weakly supervised learning manner. In order
to enrich feature representations with high-order information, examples such as [16–18]
perform element-wise swapping or mixing for partial features between samples to inject
noise during training.

Twenty years ago, Irving Biederman et al. [19] put forward the concept of fine-grained
image classification (FGVC) for the first time. They introduced a critical issue largely
disregarded at the time: whether machines could recognize objects as precisely as humans
could at a fine-grained level. This idea has aroused the interest of researchers, and since
then many classic fine-grained image recognition models have been proposed, substantially
advancing this discipline. Traditional image recognition methods mainly learn advanced
features. Despite the high accuracy achieved in general image recognition tasks, the defect
of ignoring subtle details makes it impossible for them to achieve satisfactory results in
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fine-grained recognition. Compared with general image recognition, fine-grained image
recognition is more challenging, in that the inter-class differences in objects are subtle. The
model should be able to extract object features from the whole picture, and should also be
more sensitive to local features with discriminant information, which raises the threshold
for the feature extraction ability of the neural network model.

Many researchers have focused on gaining delicate feature representation which plays
a key role in fine-grained image recognition. Some methods [20–22] complete the detection
of the foreground object with the help of the annotation box and eliminate the interference
of the background. Due to the low labeling cost, other methods [11,23–26] that only need
label information have received more attention in research and application.

NTS-Net belongs to the latter method. Consisting of three networks sharing weights,
this model adopts a self-monitoring mechanism and combines multi-scale feature extraction.
Moreover, NTS-Net combines multiple networks to build an overall network structure,
processes features at multiple scales, and learns the features of the whole and parts of the
original image so that the critical features in the images can be fully extracted and selected.
Therefore, it can efficiently locate the information area without using any bounding-box or
part annotations, achieving the state-of-the-art performance of various public datasets at
that time. To some extent, the learning ability of a model determines its dataset recognition
accuracy. If used improperly, the excellent learning ability of image features will act
as a barrier to further promotion rather than a stepping stone for a successful model.
Similarly, the NTS-Net model can quickly improve the ability to capture detailed features,
but this kind of ability may cause bottlenecks in the process of model learning. That is,
the loss values may decrease rapidly and approach zero in the process of model training.
This phenomenon is not conducive to the weight update of the model. Methods such as
Mixup [27], Cutmix [28], and SPS [17] can be understood as a form of data augmentation,
which improve the performance of the models by injecting or reducing noise into the model.
These methods give us some possibilities for further exploration. Therefore, in order to
further improve the recognition effect of NTS-Net, this paper makes two improvements.
First, the SPS method is added to the backbone network, which not only suppresses over-
active neurons but also fully enhances the learning ability of each neuron in network layers,
thereby improving its ability to obtain discriminant information. Second, inspired by
module fusion methods which could merge adjacent modules to improve computational
efficiency, the fusion of a convolutional layer and a batch normalization layer is applied to
the feature extractor. During runtime, this strategy accelerates the inference time.

2. Related Works
2.1. Fine-Grained Image Recognition

Compared with general image recognition tasks, fine-grained image recognition is
more challenging. Due to the subtle differences among inter-classes, fine-grained image
recognition requires more specialized techniques, such as discriminative feature learn-
ing and object parts localization. With the exploration of deep learning, fine-grained
image recognition models have developed rapidly, and the development process has also
witnessed some important progress in computer vision. At present, the research on fine-
grained image recognition is mainly carried out in two directions, that is, learning better
visual features from original images and using local or attention-based methods to obtain
vital features.

Before deep learning was widely applied, fine-grained image recognition methods
used multi-stage manual feature extraction methods for image recognition. Research results
of this stage showed that feature description methods and feature coding methods have
a significant impact on classification accuracy. Stronger feature processing methods can
improve the accuracy, which is further proved by subsequent studies on convolutional
features. Regarding the study on convolution features, Yu et al. proposed a bilinear
pooling method of end-to-end training [29], which interacted with local features from
two CNN branches. Despite the impressive performance it achieved, the method’s high
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dimensionality of bilinear features makes it challenging to optimize. The bilinear pooling
method gives researchers a lot of inspiration, so they study for the optimization of the
bilinear method on this basis. Using the compact bilinear representation kernel method [30]
or low-rank bilinear pooling [31] to represent covariance features as a matrix, and applying
the low-rank bilinear classifier, can greatly reduce the calculation time and reduce the
effective number of learning parameters.

Another research dimension lays emphasis on the extraction of discriminative local
features. The method can be further subdivided into fine-grained image classification
methods with strong supervision and weak supervision depending on whether additional
manual labeling information, such as labeling boxes and local area positions other than
the category labels of the images, is used. Although the extra manual labeling information
fosters the network in obtaining the local features with discriminant information and
improves the network performance to a certain extent, the practicability of this type of
algorithm is constrained by the labor cost of labeling information to a great extent. At
present, much research focuses on weakly supervised fine-grained image recognition, that
is, single reliance on category labels to complete model training. Xiao et al. [32] combine
three types of attention to train domain-specific deep nets, then use them to improve
performance. Sun et al. [5] propose a novel attention-based convolutional neural network
composed of two parts, and the model regulates multiple part regions among different
images. These methods introduce the attention mechanism into image recognition, making
the deep learning model pay more attention to certain local information. NTS-Net takes
advantage of the learning ability to pay attention to the details, so it is critical to fully and
evenly invoke neurons.

2.2. Noise Injection Methods

The model designed in deep learning should not only perform well on training data
but also achieve satisfactory results on new data sets, which requires a good generalization
ability of the model. For this reason, researchers have put forward many strategies to
explicitly reduce test errors, which are collectively called regularization. Deep neural net-
works often have over-fitting because of the data set or network structure. Regularization
is a common method to avoid this phenomenon. The method we choose belongs to the
noise regularization technology in regularization [33–35], where classic methods include
Dropout and its variants. These methods mainly inject noise by adding or increasing noise
during training. For example, Dropout randomly discards neurons in a certain ratio during
training, and Gaussian Dropout multiplies characteristic units by Gaussian random noise.
Compared with these methods mentioned before, Stochastic Partial Swap (SPS) [17] method
uses some elements of other samples as noise sources to generate noise features, which
can effectively suppress some neurons’ over-confidence in specific categories. It provides
a more reasonable method of simulating real data noise to improve the robustness of the
classifier. In this paper, SPS fully demonstrates its advantages in training.

3. Methods

In this section, firstly, the classic fine-grained image recognition model NTS-Net and
the SPS method are presented, then the improved model termed INTS-Net is introduced in
the following subsection.

3.1. NTS-Net

NTS-Net is a fine-grained image recognition method with weak supervision. It adopts
a novel self-supervision mechanism to locate the information area and uses ResNet50 as
the feature extractor. The model accurately identifies the information areas in the image
through a multi-agent cooperative learning scheme. This scheme includes the Navigator
network, Teacher Network, and Scrutinizer network. Agents share the parameters of
feature extractors, cooperate with each other, promote each other, and make progress
together, so as to improve the model’s ability to obtain discriminant information. At the
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same time, NTS-Net uses a three-part loss function, including Navigator loss, Teaching
loss, and Scrutinizing loss, to improve the probability of selecting an area containing more
semantic information about object features, thus providing a more accurate prediction.

As shown in Figure 1, the structure of NTS-Net consists of three networks: Navigator
network, Teacher Network, and Scrutinizer network. Firstly, the original image is input to
the Navigator network, which includes a top-down architecture with horizontal connections
to detect areas at multiple scales, and then the multi-scale feature map is used to generate
areas with different scales and proportions. The first network generates several regions,
then uses NMS to select M areas and send them to the Teacher network. The teacher
network outputs confidence as teaching signals which help the Navigator network learn.
The Scrutinizer network receives op-K candidate regions from the Navigator network and
resizes these regions. Finally, the Scrutinizer network concatenates K regions with the full
image feature and predicts the label of the image. The Ltotal is the loss function composed
of three parts for the total model, which is defined as:

Ltotal = LI (I, C) + λLC(R, X) + µLS(R, X) (1)

Ltotal = ∑
(i,s):ci<cj

f (Is − Ii) +

(
−

M
∑

i=1
log C(Ri)− log C(X)

)
+(− log S(X, R1, R2, · · · , Rk))

(2)

where the parameter X stands for the full image, I and C separately denote the informative-
ness of candidate regions R predicted by Navigator network and corresponding confidence
predicted by the Teacher network. In the experiments, λ = µ = 1.
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Figure 1. The framework of NTS-Net which consists of three parts.

3.2. SPS

When a model performs well in the training set but fails to achieve the desired effect
on the test set, the model is overfitting. In the face of insufficient samples, the model will
often over-fit, but this does not imply that the deep neural network will not over-fit in the
presence of enough samples. The deep neural network is a very powerful machine learning
system. However, as the depth increases, over-fitting becomes a serious problem.

In 2014, Srivastavae et al. put forward the dropout method to solve this problem.
During the training process, they suggested injecting noise into each layer of the network
before calculating the subsequent layers. Because when training a deep network, noise
injection will enhance the smoothness of the input-output mapping. Therefore, injecting
noise into each inner layer of forward propagation computation has become a common
technique to train neural networks.

Although dropout activates more neurons in the process of model training, the pre-
dicted result will still be controlled by highly activated neurons, which is not conducive
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to model training and generalization. Therefore, in this paper, SPS is adopted to alleviate
this phenomenon. As one of the noise injection methods, SPS exchanges elements of partial
features between samples, injecting noise when neural networks are trained in this way.
For each sample (feature vector) in the mini-batch, we first randomly select another sam-
ple from the same mini-batch as a noise source and swap their partial feature elements
element-wise. The function of SPS is summarized in Algorithm 1. Figure 2 illustrates how
SPS works, which is similar to the regularization effect of Dropout. The noise-injecting
operation can be expressed as:

f̃ m
ρ∼U(α,β)(xi) = M� f m(xi) + (1−M)� f m(xj

)
(3)

where xi and xj are samples from the same mini-batch, U is a uniform distribution between
α and β,� denotes element-wise multiplication, the function f m stands for feature extractor
of the model, and M ∈ Rdim( f m(x)) is a binary mask acting on samples. To define SPS, we
need a random number generation function rand to regenerate a value ρ between 0 and 1
for every epoch, that is

M[k] =
{

1, rand(0, 1) ≤ ρ
0, rand(0, 1) > ρ

(4)

where M is based on the generated value ρ, and the parameter k ∈ [0, dim( f m(x))− 1] is
the dimension index.
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Algorithm 1. The function of SPS

Input: A two-demensional matrix x, which represents mini batches of data. The two dimension
respectively represents batch size and feature vectors.
Output: x is the processed output.

1. maxp, minp = 0.3, 0.5 //Initialized two parameters
2. lam = random.beta(1, 1) //A random value that obeys the beta distribution
3. sp = minp + lam * (maxp −minp) //The parameter sp is bigger than 0 and less than 1
4. rp = random.permutation(x.size(0)) //The parameter is a randomly arranged array
5. actidx = rand(x.size(1)) //Randomly generate a list based on the size of the feature vectors
6. sidx = actidx < sp //The value sidx is a binary mask acting on samples
7. x[:, sidx] = x[rp[:, None], sidx] // This step is to inject noise into the samples

This training strategy has more advantages compared with the existing noise injection
methods. Firstly, SPS provides a method that allows gradient to suppress overconfident
neurons in the process of back propagation. For example, when a certain neuron in the
model is highly activated by one kind of sample but negatively affects the prediction of
another kind of sample, it is necessary to punish the over-activation of neurons in order
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to make the neuron reach the balance of category prediction, which also promotes the
expression of more neurons. At the same time, SPS is also a better way to simulate the
real noise data to train the classifier. For instance, swapping partial features between the
intra-class samples will increase the likelihood that the model will learn the relationship
between features and classes, in large part because it injects the real activation value of one
sample into another sample rather than artificial noise.

3.3. Improvement

NTS-Net uses ResNet50 as the backbone network to extract features from images,
and on this basis, it adds a module to extract multi-scale features. Therefore, NTS-Net
can acquire detailed information from images very well, but this also leads to the rapid
convergence of NTS-Net in the training set. When reproducing NTS-Net, we used an
Nvidia 2080 Ti graphics card and changed the original batch size from 16 to 8 based on the
experimental environment. After 30 epochs of training, the loss dropped below 0.009, and
the accuracy reached over 99%. At this time, the loss of the test set was about 1.000, and the
accuracy was 83.2%. As shown in Figure 2, after training 100 epochs, the loss value and
accuracy of the training set were 0.000 and 1.000, while the loss value of the test set was
maintained between 0.831 and 0.893, with the highest accuracy of 86.7%. We also tried to
continue to increase the number of training epochs, which proved to be unsatisfactory, so
we finally selected 140 rounds as the final number of training rounds.

Therefore, the idea of improving NTS-Net was born; this required us to slow down the
decline in the loss function in the training set, and further enhance its learning ability. The
network feature extractor was effective, and the design of the loss function also involves
the whole picture, local features, and the combination of both. Therefore, the noise injection
method is a suitable way to optimize the model in one step. We fuse SPS into NTS-Net,
which can effectively suppress the neurons that have a great influence on the prediction
results and encourage more neurons to perform feature representation. SPS has the ability
of data enhancement and can improve the robustness of the classifier. This improved
method proved to be effective through our experiments.

The original ResNet network contains dropout, we use SPS in replacement of Dropout
in the backbone network of NTS-Net because SPS has the same effect as Dropout. Consid-
ering that the feature extractor of NTS-Net has required the multi-scale feature extraction
network and the training time cost, this paper only uses the SPS method with a single
branch. Without excessive impact on the feature extraction of NTS-Net, this method is only
added to the feature extractor of the Scrutinizer network but not used in the other two
networks. Experiments show that this design has the best effect on improving network
performance, and the improvement of the INTS-Net model is also significant.

As mentioned above, we inject noise by exchanging some feature units, which helps
prevent the model from excessive attention on active neurons. Thus, the training loss for a
single training instance X is defined as:

L̃tatol = LI (I, C) + L̃C

(
R̃, X

)
+ L̃S

(
R̃, X

)
(5)

where R̃ is the informative regions after treatment by the SPS method, Teacher network
and Scrutinizer network both use this method in the same feature extractor

Batch Normalization (BN) [36] allows the use of much higher learning rates and
accelerates network convergence. It is widely used for training convolutional network
models. NTS-Net has a large number of BN layers in its deep architecture and takes
advantage of BN to normalize activation. The input feature maps fpre go through the
convolutional layers to obtain more advanced features fconv, Wconv, and bconv denote
Weights and biases in convolutional layers,

fconv = Wconv· fpre + bconv (6)
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Consider a mini-batch A = {x1, x2, x3, . . . , xn} from the previous convolutional layer,
n is the batch size and represents values of this activation in the mini-batch. The parameters
γ and β are to be learned in training. BN requires mean µA and variance σA calculations
over each mini-batch during training,

x̃i ←
xi − µA√

σ2
A + ε

(7)

fi ← γx̃i + β (8)

Many studies accelerate inference by fusing adjacent network layers. In this paper, the
fusion of a convolutional layer and a batch normalization layer is applied to the feature
extractor except for the downsampling block. To save time, the calculation in network
runtime is reduced through the combination of parameters between layers. Figure 3 shows
the detailed structure of INTS-Net. The fusion process is shown below,

f̂conv = WBN
(
Wconv· fpre + bconv

)
+ bBN

f̂conv = WBN ·Wconv· fpre + WBN ·bconv + bBN
f̂conv = W· fpre + b

(9)Electronics 2023, 12, x FOR PEER REVIEW 8 of 15 
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4. Experiments
4.1. Dataset

The dataset used in the experiment is Caltech-UCSD Birds (CUB-200-2011) [37], which
is one of the most classic and common databases in fine-grained image recognition. There
are 11,788 images from 200 wild bird species. Figure 4 shows four kinds of birds. The
number of training data and test data are 5994 and 5794 respectively. Meanwhile, the
dataset provides abundant manual annotation data, and each image contains 15 local area
positions, 312 binary attributes, one annotation box, and semantic segmentation images.
The other dataset is Stanford Cars [38], which contains 16,185 images over 196 classes,
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and each class has a roughly 50-50 split. The cars in the images are taken from many
angles, and the classes are typically at the level of production year and model. NTS-Net is
a weakly supervised fine-grained image recognition method, so any bounding boxes or
part annotations are not used in all experiments based on our improved method.
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 NTS-Net INTS-Net 
pre-trained False True 
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learning rate  0.001 0.001 
momentum  0.9 0.9 

Figure 4. Images we used for visual recognition. From left to right, each column contains examples
from CUB Bird.

4.2. Implementation Details

The hardware environment configured in the experiment includes a GPU with 8 G
video memory, Windows10 operating system, and CUDA version 1.11.0. We use Pytorch
to implement our algorithm. NTS-Net used no pre-trained detection model. When repro-
ducing the model, we use a pre-trained detection model and reduce batch size because
of the hardware constraints. Table 1 shows detailed comparison information. The weight
of pre-trained on ILSCRC2012 is used to initialize the backbone network, and the initial
learning rate of the INTS-Net model is 0.001. The public datasets have abundant images,
but image sizes are not uniform. In all our experiments, we preprocess images to size
600 × 600. Then each image is randomly cropped and randomly flipped, which could
augment data. During the 140 epochs of training, the learning rate multiplied by 0.1 in
the 60th and 100th epochs, so that the goal could continue to decline along the gradient.
The hyperparameters M and K in the model respectively act on the number of candidate
regions in the NMS method and the selection of K regions from M candidate regions for
future prediction. Experiments show that the value of k has a slight effect on the model
results and the model works best when K is 4. Considering that the SGDM can be closer
to the real gradient, thus increasing the stability of the optimizer, the Stochastic Gradient
Momentum (SGDM) was applied to function as the optimizer of the model.
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Table 1. The comparison of partial hyperparameters.

NTS-Net INTS-Net

pre-trained False True
epoch 500 140

batch size 16 8
learning rate 0.001 0.001
momentum 0.9 0.9

4.3. Quantitative Results

After the second convolution layer becomes the group convolution in every bottleneck,
different runs in CUB-200-2011 are designed and the results are reported in Table 1. It is
discovered that the performance of object recognition can be further demonstrated in terms
of recognition accuracy and model parameter. The number of parameters is reduced to
61.4% while the model performance is basically maintained.

We reproduce NTS-Net and SPS, and train the INTS-Net in the same environment
based on the aforementioned experiment to verify the performance of the improved algo-
rithm proposed in this paper, as illustrated in Table 2. In order to help the model converge
faster, ResNet50′s pre-training parameter on the ImageNet dataset is used. This operation
greatly reduces the number of training rounds and saves the training time. In the repeated
experiment, the accuracy of NTS-Net is slightly lower than the result mentioned in the
original article. There is a small loss of accuracy, and small changes in pre-training, batch
size, random disruption of data sets, and the process of model training all had an impact
on the final result of the model. On the whole, the results of the two models are not much
different from those in the original text. During the training process, the changes in the loss
values of NTS-Net and INTS-Net are compared as shown in Figure 5. From the training, it
can be seen that the SPS method further increases the difficulty of learning image features in
the initial stage of training, and its effect of suppressing overactive neurons is obvious. As
shown in Table 3, INTS-Net is tested several times in order to reduce the training error. The
average value and corresponding standard deviation are 92.16% and 0.32. On the whole, it
promotes the model’s learning ability. The final loss value of the improved NTS-Net on the
test set of CUB-200-2011 is 0.410, which is nearly 0.440 lower than that of NTS-Net, and
the highest accuracy rate is 92.6%, achieving a 5.1% growth. Overall, the effect of group
convolution and the SPS method is remarkable.

Table 2. Comparisons on CUB-200-2011 dataset. * refers to the model we reproduce.

Method Accuracy

NTS-Net 87.5%
NTS-Net * 86.5%

SPS 87.29%
SPS * 87.95%

INTS-Net 92.16%

In the training, the information areas of top-K combined with the whole picture
are used as the input of the Scrutinizer network, which promotes fine-grained image
recognition. Therefore, apart from making the comparison with the original NTS-Net
results, the influence of the K value on the experimental results is also explored. When the
value of k is 4 and 6, the final accuracy rate is above 92%. When K = 4, the training effect of
the model is the best, and the influence of the value of k on NTS-Net and the improved
NTS-Net is basically the same. In order to get a more intuitive understanding, we use two
classical network visualization methods, Guided backpropagation, and Class Activation
Mapping (CAM), to visualize the last layer of ResNet50. As shown in Figure 6, INTS-Net
pays more attention to the head, wings, and other parts with category characteristics when
learning bird images. To verify the effectiveness of our methods, we tested our method on
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two datasets. A comparative evaluation of the CUB-200-2011 and Stanford Cars datasets is
reported in Table 4. Obviously, it can be observed that the accuracy improvement is more
significant on the CUB dataset.
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Figure 5. The curves of loss value changes of NTS-Net and INTS-Net on the CUB_200_2011 data set
after 140 rounds of training.

Table 3. Repeated Experimental of INTS-Net on CUB-200-2011 dataset.

Number Accuracy

1 92.6%
2 92.2%
3 91.9%
4 91.8%
5 92.3%
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Table 4. Comparison with state-of-the-art methods on classification accuracy with the CUB, the CAR.

Method Backbone Year Accuracy(%)

CUB CAR

Bilinear-CNN [4] VGG16 2015 84.1% 91.3%
RA-CNN [5] VGG19 2017 85.3% 92.5%
MA-CNN [15] VGG19 2017 86.5% 92.8%
Cross-X [21] ResNet50 2019 87.7% 94.6%
MGE-CNN [39] ResNet-50 2019 88.5% 93.9%
SPS ResNet50 2021 88.7% 94.35%
DTRG [7] ResNet50 2022 88.8% 95.2%
INTS-Net ResNet50 - 92.16% 94.8%

The feature extractor of NTS-Net consists of a certain number of bottleneck modules
that contain many combinations of batch normalization and convolution. After module
fusion, the comparison experiment of INTS-Net is run in the same setting, as shown in
Table 5. The accuracy of the model marginally decreased by 1.4%, but the accuracy is
still much improved compared with NTS-Net. In previous training, due to BN’s similar
function to bias, bias is not set in the convolutional layer. After fusing the network layer,
the weights, and bias in the BN are added to the previous convolutional layer, so the overall
parameter number of the network hardly changes. INTS-Net improves inference speed by
nearly 4.5% on the test set. We added precision and recall of each category as evaluation
index and drawn four scatter plots in Figure 7. It can be seen that the model basically
maintains all indexes.

Table 5. Experimental Results in CUB-200-2011. This table shows the comparison with the accuracy,
parameters, size, flops, and time.

Method Accuracy Size Flops Params Time

NTS-Net 87.5% 116.48 MB 167.19 G 29.03 M 2 min 56 s
INTS-Net 92.6% 117.77 MB 167.19 G 29.03 M 2 min 58 s

INTS-Net-light 91.2% 116.46 MB 165.77 G 29.01 M 2 min 50 s
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5. Conclusions

In this paper, we improved the NTS-Net and proposed the INTS-Net model, which
adds the noise injection method SPS and fuses batch normalization and convolution in
runtime. We also made flexible adjustments to make the two methods more compatible
with the NTS-Net network. The method gives full play to its role in suppressing over-active
neurons and enhances the balance. Experiments against state of-the-art methods exhibit
the superior performance of our method on various fine-grained recognition tasks. Also,
our proposed method is lightweight, easy to train, and agile for inference.
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