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Abstract: A large number of mobile devices, smart wearable devices, and medical and health sensors
continue to generate massive amounts of data, making edge devices’ data explode and making it
possible to implement data-driven artificial intelligence. However, the “data silos” and other issues
still exist and need to be solved. Fortunately, federated learning (FL) can deal with “data silos” in the
medical field, facilitating collaborative learning across multiple institutions without sharing local
data and avoiding user concerns about data privacy. However, it encounters two main challenges
in the medical field. One is statistical heterogeneity, also known as non-IID (non-independent and
identically distributed) data, i.e., data being non-IID between clients, which leads to model drift.
The second is limited labeling because labels are hard to obtain due to the high cost and expertise
requirement. Most existing federated learning algorithms only allow for supervised training settings.
In this work, we proposed a novel federated learning framework, MixFedGAN, to tackle the above
issues in federated networks with dynamic aggregation and knowledge distillation. A dynamic
aggregation scheme was designed to reduce the impact of current low-performing clients and improve
stability. Knowledge distillation was introduced into the local generator model with a new distillation
regularization loss function to prevent essential parameters of the global generator model from
significantly changing. In addition, we considered two scenarios under this framework: complete
annotated data and limited labeled data. An experimental analysis on four heterogeneous COVID-19
infection segmentation datasets and three heterogeneous prostate MRI segmentation datasets verified
the effectiveness of the proposed federated learning method.

Keywords: federated learning; dynamic aggregation; knowledge distillation; COVID-19

1. Introduction

Deep learning models have recently achieved remarkable progress in the medical
image field, especially in medical image segmentation tasks [1–4]. However, traditional
centralized training requires uploading all of the original data to the server to train a
high-performance model. Under the framework of realistic privacy protection, data access
limits within institutions and inter-agency data access barriers have resulted in the status
quo of “data silos” [5]. Therefore, how to legally use healthcare data is a pressing problem
in protecting data privacy.

Federated learning is a potential solution for handling “data silos” in the medical
field [6]. Federated learning technology is one of the private computing branch technologies.
Adhering to the principle that data are available and invisible, it can use data scattered
among participants for joint analysis and modeling without uploading data to the server.
Specifically, each medical institution/client trains a local model using its private data. It
uploads the local model parameters (usually the gradients or weights) rather than the
raw data to the server. Then, the server calculates the new global model by a weighted
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aggregation of the locally trained models and distributes it back to the clients. Therefore,
FL can obtain a model with a greater generalization ability without sharing the local
datasets. As a result, it has recently attracted substantial attention in medical image
diagnosis. Qayyum et al. [7] allowed multiple-edge medical institutions to use a federated
learning framework to detect chest X-ray image abnormalities associated with COVID-
19. Dou Qi et al. [8] present a federated learning method allowing multiple multinational
institutions to detect COVID-19 lung abnormalities in CT images and externally validate
patients from cross-border studies. Sarma et al. [9] verified the effectiveness of federated
learning on three private prostate datasets, where the FL model has a better generalization
performance than a single model.

Although these prior works have shown success for federated learning, they present
new challenges. One of the critical challenges is statistical heterogeneity [10]. Since the
local data on each client do not sample from the global joint distribution of all clients, local
data cannot represent the overall global distribution. An interplay exists between local
models, leading to model drift. Data heterogeneity in the medical field mainly includes
quantity skew, feature distribution skew, and imaging acquisition skew. Quantity skew is
where the data number of each hospital institution may vary greatly, and large hospitals
often have more patients than small hospitals. Most medical images are gray-scale images
with fuzzy borders and noise. Even with the same label, the feature distribution varies
from customer to customer. Image acquisition skew refers to the difference in image quality
caused by equipment and instruments used in different hospitals. Many FL methods have
been shown to significantly reduce the performance where the data are non-IID [11–13].
Some works incorporated a proximal term in local optimization or changed the model
aggregation scheme on the server side to cope with this issue. For example, FedProx [10]
introduces an approximation term in the part of FedAvg to limit the size of local updates.
FedBN [14] leaves the client’s BN layer updated locally, and the aggregation of servers does
not require an average BN layer. Some existing FL methods perform well using shallow
neural network models on classification datasets. However, they have yet to be widely
verified on deep neural networks, especially in segmentation tasks [15].

Another challenge with FL in the medical field is that it is rare for each medical institu-
tion/client to have rich labeled data. In the early stage of the COVID-19 epidemic, medical
institutions needed more labeled data to train a high-precision model. The semi-supervised
setting could use unlabeled data to solve the label-expensive problem, which is valuable in
COVID-19 pandemic diseases. Recently, federated semi-supervised learning approaches
have been proposed to solve this challenge. Liu et al. [16] proposed an inter-client relation
matching scheme validated on brain CT and skin lesion classification datasets. Wu et al. [17]
offered a federated contrastive learning framework on multi-institution cardiac MRI for
volumetric medical image segmentation with limited annotations. However, these semi-
supervised federated learning approaches require clients to share some extra parameters as
supplementary information, which may leak privacy-sensitive information [18].

Federated semi-supervised learning includes two common scenarios, as shown in
Figure 1. The first scenario (a) considers when both labeled and unlabeled data are on each
client and the server contains no data. The second scenario (b) considers when the labeled
data are only available at the server, and the clients have completely unlabeled data. We
considered scenario (a) because it is closer to the actual situation. Medical institutions may
not provide labeled data to the server, but it is realistic for the institutions themselves to
have some less-labeled data.

This paper proposes a new framework, MixFedGAN, to solve the problem of medical
image segmentation under non-IID data silos. In MixFedGAN, we developed a scheme
to dynamically aggregate the global model according to the accuracy of the current client
models and their differences so that outstanding customers can make more contributions to
the global model. Moreover, we introduced knowledge distillation into the local generator
model with a proposed new distillation regularization loss function. We also trained the
global generator locally to protect the critical parameters of the global model from being
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changed arbitrarily. The global generator is regarded as the teacher because the global
generator has a stronger generalization ability and richer knowledge than the local models.
While imitating the teacher’s predictions, the local generator model’s generalization ability
can be improved to avoid over-fitting local data. An experimental analysis on four het-
erogeneous COVID-19 infection segmentation datasets and three heterogeneous prostate
MRI datasets shows that our method can improve the model’s convergence speed and
generalization ability.

Additionally, we considered how the proposed framework can be used for the fed-
erated semi-supervised learning (FSSL) of the labels-at-client scenario. The experiments
demonstrate that the proposed framework is still effective in handling semi-supervised
scenarios. We also show that, when consistency regularization is used, the model’s general-
ization ability in the semi-supervised scene can improve further.

The main contributions of this paper are summarized as follows:

• A new dynamic aggregation scheme was designed to enhance the stability and quality
of segmentation results. We dynamically adjusted the client’s weight during train-
ing instead of fixing a constant weight according to the number of samples or the
average distribution.

• We proposed a distillation regularization loss function, i.e., using Kullback–Leibler
divergence to guide the local generator model. It prevents essential parameters of the
global generator model from significantly changing while tuning the global generator
model on client-side local data.

• We considered the effectiveness of our framework in both supervised and semi-
supervised scenarios and conducted an experimental analysis on four heterogeneous
COVID-19 segmentation datasets and three heterogeneous prostate MRI datasets.
Both comparative and ablation experiments show that our method is more stable
and efficient.

The remainder of the paper is organized as follows: Section 2 gives a brief introduction
to the relevant works in the literature; Section 3 presents the proposed framework and
related schemes; Section 4 reports the result of our experiments; Section 5 provides some
experimental discussions; Section 6 concludes.

Figure 1. Illustration of two scenarios in federated semi-supervised learning. (a) Labels-at-Client
Scenario: both labeled and unlabeled data are on each client. (b) Labels-at-Server Scenario: labeled
instances are available on the server, while the clients have no labeled data.

2. Related Works and Motivation

The goal of federated learning is to achieve joint modeling to ensure data privacy,
security, and legal compliance. It has played an essential role in medical image processing.
Many FI methods combined with GAN can receive good results. In this section, we first
briefly introduce the research progress of federated learning and its application in medical
image processing. Then, the concept of GANs and some works integrated with federated
learning are summarized. Finally, the research motivation of this paper is given.
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2.1. Federated Learning

Federated learning (FL) was first proposed by McMahan et al. [19] in 2016 for pre-
dicting text input stored on tens of thousands of local Android machines. Some classic
FL methods and their improvements have been widely verified in image classification.
MOON [20] is designed as a simple and efficient method based on FedAvg [19]. It uses
contrastive learning to add a new regularization function to constrain local models. Fed-
Nova [21] uses normalized averaging methods to eliminate target inconsistency while
preserving fast error convergence. Scaffold [11] computes and aggregates control variates
to correct the local updates. FedDyn [22] aligns the client using dynamic regularization
to solve the client drift problem. Recent research on introducing data augmentation into
federated learning has achieved promising results. FedMix [23] performs a mixup opera-
tion on average data from other clients and local data to approximate the global mixup.
FedFA [24] allows the client to extract new samples for training from the universal statistic
characterized by all participants to mitigate the client’s feature drift.

Moreover, FL has achieved good application value in medical image segmentation.
FL has been successfully applied on multi-institution brain MRI for tumor segmentation
and the protection of patient information [25]. Lo et al. [26] evaluated the performance
of a federated learning framework based on deep neural networks for retinal microvessel
segmentation. Vaid et al. [27] allowed multiple institutions to use a federated learning
framework that avoids collecting local data to predict mortality in hospitalized patients
with COVID-19. We focus on medical image segmentation in the FL settings and FL
semi-supervised settings.

2.2. Generative Adversarial Network

Generative adversarial networks (GANs) have received much attention for seman-
tic segmentation and are also active in medical image segmentation. Some works have
improved the generator and discriminator by combining the features of semantic segmen-
tation and GAN. For example, Luc et al. [28] proposed a GAN for segmentation, where the
generator tries to generate a segmentation map close to the ground. At the same time, the
discriminator is used to distinguish between the two. Xue et al. [29] improved the previous
work of Luc et al. and proposed a segmentation GAN (SegAN) where they used the critic
to discriminate the multi-scale L1 loss function instead of the value result (1 or 0) for giving
more gradient feedback to the critic. Lei et al. [30] proposed a split with dual-discriminator
network, trained with two supervised discriminator-assisted splits. A discriminator takes
care of semantic context text inspection, and another is used for texture details examination.
These methods achieve excellent segmentation accuracy in skin lesion segmentation.

Recently, the combined application of FL and GAN has been investigated. For example,
Nguyen et al. [31] proposed a COVID-19 detection scheme that achieves privacy preserving
and highly efficient COVID-19 detection by realizing the joint design of GAN and FL across
medical institutions in edge–cloud computing. Rasouli et al. [32] proposed a federated
generative confrontation network, FedGAN. It periodically synchronizes and broadcasts
the parameters of the generator and discriminator through the intermediary and provides
theoretical research on the convergence of FedGAN. Fan et al. [33] proposed four strategies
for synchronizing local and central models. Zhang et al. [34] simulated a centralized
discriminator by aggregating discriminators from all clients to learn the data distribution
of different clients.

2.3. Motivation

Even though significant progress has been made on state-of-the-art designs, exist-
ing FL methods still need to overcome the following challenges, especially in medical
image processing.

First, many medical image segmentation methods based on a federated learning
framework follow the conventional settings, such as FedAvg, i.e., the client trains the model
and sends the weights to the server, and the server performs simple average weighted
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aggregation to obtain the final global model. In clinical practice, the quality and quantity of
data from different clients may vary and not be independently and identically distributed.
Some clients with a lower performance delay the convergence speed and reduce the
model accuracy.

Second, most FL methods only consider image segmentation in supervised scenarios,
based on client-side improvement or server-side optimization, with limited guidance,
that cannot adapt to federated semi-supervised scenarios. These limitations motivate us
to enhance the entire training process of FL locally and globally and use this method
for FSSL on client-side labeling scenarios. Existing work on FSSL for unlabeled image
segmentation in medical image analysis is minimal. Recently, Yang et al. [35] demonstrated
the applicability of semi-supervised learning to COVID-19 pathological segmentation
in a federated setting. However, Yang adopted a federated learning algorithm with a
supervised and unsupervised client, which differs from the federated semi-supervised
learning scenario.

3. Methods

We explored the problem of COVID-19 infection segmentation in a federal setting,
considering four institutions collaborating by sharing network model parameters. Our
goal is to improve the local and server models and reduce the impact of non-IID data. We
proposed a new framework with an improved aggregation mechanism and introduced
knowledge distillation in the local generator model with a new distillation regularization
loss function. The generalization ability and stability of the global model were improved.
This section presents our framework and its components.

3.1. Problem-Setting

Suppose that K institutions participate in federated learning. We denote (X,Y) as the
joint image dataset and label space over K clients. Each client sample is an image–label
pair (x,y) with x ∈ X, y ∈ Y and denotes the dataset on the kth client as Dk. The x is the
feature extracted from image x, and the joint probability P(x, y) can be written as P(y|x)P(x)
and P(x|y)P(y). L = {lk}K

k=1 denotes a set of local models for K clients. Unlike the setting of
IID, the dataset size of the K clients for joint learning is different. When the distribution of
feature P(x) varies from different clients, the distribution of P(y|x) is the same. Sometimes,
the distribution of P(x|y) is different from clients, and the P(y) is the same.

In the standard FL algorithm [19], the clients periodically update their local models
with a stochastic gradient descent (SGD) optimizer and the learning rate η (0 < η < 1). The
server collects C models’ (C ≤ K) local update parameter through the model averaging
algorithm and updates global model ω in the next round as ωt+1 ← ωt − η∇lk

(
ωt

k
)
. Our

method improves local models and aggregations to mitigate client drift and avoid accuracy
degradation caused by non-IID data.

3.2. MixFedGAN-Supervised

The overview of the proposed framework MixFedGAN is described in Figure 2, which
overcomes model drift caused by non-IID client data with a more stable performance. Our
framework has a server and K clients with their local datasets. Each client obtains the
parameters from the server for training the local GAN model. The rich knowledge of the
global generator could help to reduce the bias of the local generator. Then, the server
collects the model parameters of each client’s generator and discriminator and aggregates
them according to the model accuracy and model difference. The training is iterated
over a certain period of communication rounds T until the desired accuracy performance
is achieved.

Initially, each institution joints the training by updating the parameters of the generator
(S stands for generator) and the critic (C stands for the critic) in each communication
round (indexed by t). To make the output of the local model more reliable, we adopted a
supervised adversarial training process based on multi-scale feature loss [29]. We multiplied



Electronics 2023, 12, 1687 6 of 20

the local model predictions and ground truth separately with the input image to obtain
the segmentation area and the actual lesion area of COVID-19. Next, we input two regions
to the discriminator individually and obtained the corresponding features. The final loss
function of the generator is:

Lseg = ∑
h,w

`mae(C(xl ⊗ S(xl)), C(xl ⊗ yl)) + λdice`dice(S(xl), yl), (1)

where h is the image height and w is the image width. `mae is the mean absolute error
(MAE) or L1 distance. xl ⊗ S(xl) is the multiplication of the input image and the generator’s
predicted label map. xl⊗ yl is the multiplication of the input image and the ground truth
label map. λdice is the dice loss coefficient, and the value is 0.1.

Figure 2. An overview of the privacy-preserving generative adversarial network framework
(MixFedGAN) that deals with COVID-19 CT data from four regions using federated learning.

Because it is easy to explode or vanish the gradient of GAN, GAN has difficulties with
actual training. We adopted the suggestion of Zhu et al. [3] and introduced a gradient
penalty into the critic loss, which penalizes the gradient norm input of the discriminator.
The final loss function of the discriminator is:

Lcritic = ∑
h,w

`mae(C(xl ⊗ S(xl)), C(xl ⊗ yl)) + λdEx̃∼Px̃

[
(‖∇x̃C(x̃)‖2 − 1)2

]
, (2)

where λd is the gradient penalty coefficient, and the value is 0.0001. Px̃ is uniform distri-
bution along the straight lines between the pairs of points sampled from the actual and
generator distribution [36].

Then, we exploited the rich knowledge of the global generator to reduce the bias of
the local generator. Based on considering the accuracy of the current client model and the
difference from the previous round of global models, the weighted dynamic aggregation
mechanism was designed:

ωS
t+1 ← ∑

k ∈ K
mkωS

k,t

ωC
t+1 ← ∑

k ∈ K
mkωC

k,t,
(3)

where mk is the respective weight coefficient for each client. ωC
k,t and ωS

k,t are the model
parameters of the generator and critic in the tth round for the kth client.
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The formula for the supervised federated optimization objective is:

min max
ωSωC

l
(

ωSωC
)
= min max

ωSωC

(
Lseg + Lkd + Lcritic

)
, (4)

In the supervised training process, the generator S aims to minimize the Lseg and
Lkd. Critic C aims to maximize the `mae and minimize the gradient penalty loss in Lcritic.
Algorithm 1 shows the flow of our process. In Section 4, we demonstrate the advantages of
MixFedGAN experimentally.

Algorithm 1 Training procedure of the proposed MixFedGAN

Input: Total number of clients K, generator S, critic C, total communication rounds T, local
epochs E, learning rate η, B is mini-batchsize of data, if semi-supervised Bl , Bu is the
local mini-batch size for labeled and unlabeled data. Initialization of a copy of global
generator model weight ωS

k,t and critic model weight ωC
k,t, the global segmentor model

weight ωT
t .

Output: Output the global model ωS
t+1, ωC

t+1
1: for each global round t = 1, 2, . . . , T do
2: for each institution k ∈ K do
3: ωS

k,t, ωC
k,t ← LocalUpdate (k, ωS

t , ωC
t , ωT

t )
4: end for
5: ωS

t+1, ωC
t+1 ← ServerUpdate (k, ωS

k,t, ωC
k,t)

6: end for
7: LocalUpdate (k, ωS

t , ωC
t , ωT

t ): //Training in local
8: for local epoch e from 0 to E-1 do
9: if supervised then

10: Sample minibatch B from Dk;
11: Calculate the loss function according to (4)
12: end if
13: if semi-supervised then
14: Sample minibatch Bl from Dk

l ;
15: Sample minibatch Bu from Dk

u;
16: Calculate the loss function according to (9)
17: end if
18: end for
19: send ωS

k,t, ωC
k,t to the server

20: ServerUpdate ( k, ωS
k,t, ωC

k,t ): //Training in server
21: Calculate weight mk for aggregation according to (5)
22: ωS

t+1 ← ∑k ∈ Kmk ωS
k,t, ωC

t+1 ← ∑k ∈ KmkωC
k,t

23: send ωS
t+1, ωC

t+1 to the clients

3.3. Dynamic Aggregation

When the raw data among clients taking part in federated learning are not independent
and identically distributed, the model is prone to drift, and the model accuracy cannot
be guaranteed. To tackle this issue, we designed a client dynamic aggregation weighting
mechanism. It is no longer limited to the fixed index of the number of local data sets to
determine the aggregation weight. However, it dynamically sets the weight for the client
according to the current training situation and training information, achieving a more
reasonable aggregation weight distribution.

Specifically, we first considered the test accuracy of each local model in each round.
The aim is to make excellent local models significantly impact the aggregation of the global
model, improving the quality of the global model. We denote the local model test accuracy
as acck. Next, we added to account for the parameter difference between the currently
trained local model and the previous round of the global model. We measured the L2
distance between all ωt

k and ωt, where the former is the local model parameters in client k
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and the latter is the global model parameters in each round t. The weight coefficient for
each client mk is:

mk = α
1
z1

acck + β
1
z2

∥∥ωt
k − ωt∥∥2

2, (5)

where z1 = ∑k ∈ K acck and z2 = ∑k ∈ K
∥∥ωt

k − ωt
∥∥2

2 are normalization factors. We normalized
the calculated coefficients mk again to bring them to the range of (0, 1) and ∑k ∈ K mk = 1.
The coefficients of α and β were used to control the weight of these two terms. When the
value of the l2-norm is small, the behavior of the two parameter sets is more similar, or they
are in the same direction.

3.4. Knowledge Distillation in MixFedGAN

Knowledge distillation (KD) is a kind of teacher–student training structure. Usually,
the trained teacher model provides knowledge learning. The teacher’s soft target provides
significant regularization for the student model. The soft target imposes regularization
training on the student model by providing label smoothing and a confidence penalty. The
teacher network is fixed during the distillation, and only the student generator network
is trained.

We used the previous round of the global generator model as the teacher and the
local generator model as the student and let the teacher’s rich knowledge learned from
different data distributions serve as the student’s supplementary knowledge. The global
generator is regarded as the teacher because the global generator aggregates rich knowledge
learned from different clients from the local data distribution and can represent the overall
data distribution better than the local generator model. Kullback–Leibler (KL) divergence
was used to reduce the difference between local generator network and global generator
network models, and the distillation loss is as follows:

Lkd = KL(σ(T(xi),τ)||σ(S(xi),τ)), (6)

where T(xi) and S(xi) denote the output of the global generator model T and local generator
model S. τ is used to control smoothness in probabilities as the temperature term increases.
It creates a more softened probability distribution. σ is the activation function. The soft
targets of the teachers’ model output carry more helpful information and improve the model
generalization ability. We built a predictive map distillation module that enables the local
generator network to learn prediction capabilities from the output feature map of the global
generator network. We think of segmentation as a collection of pixel-level classification
problems. We calculated the loss values for all pixel pairs at the same spatial location in
both networks and combined these values into the distillation loss of this module.

3.5. MixFedGAN-Semi-Supervised

We applied MixFedGAN to the labels-at-client scenario in FSSL to address the chal-
lenge of limited labeling in federated learning. As shown in Figure 3, the proposed
semi-supervised MixFedGAN consists of two loss terms: the labeled dataset {xl

i ,y
l
i}

N
i=1

calculates supervised losses Lseg and Lcritic, and the unlabeled dataset {xu
i }N

i=1 calculates un-
supervised losses Ldistill

u and Lcon
u . The supervised function is defined as a multi-agent game

of generators and critics, and has been discussed in Equations (1) and (2). For the unlabeled
loss function, we focused on distillation using unlabeled samples xu, and minimized the
subsequent distillation loss:

Ldistill
u = KL(σ(T(xu),τ)||σ(S(xu),τ)), (7)
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Figure 3. An overview of the privacy-preserving generative adversarial network framework
(MixFedGAN) that deals with COVID-19 CT labeled and unlabeled data from four regions using
federated learning.

We employed consistency regularization to learn from unlabeled data and improve
the performance on labeled data. Consistency regularization [37] means that the prediction
results of the model on the perturbed training samples should be consistent with the
original prediction results. Since such methods do not rely on the true labeling of samples,
large amounts of unlabeled data can be used. The consistency of the forecast is to hope
that the two prediction results are as close as possible, i.e., the distance of D[p((y|x),θ),
p(y|A(x),θ)] is as small as possible, where D[p,q] is the distance measurement function,
such as |p− q|22 and KL(KL-divergence)∑ pilog pi

qi
. A(·) is a random data augmentation

function, similar to random spatial translation, rotation, or adding noise. We aimed to
minimize the distance between these two distributions using KL divergence. In KL(p|q), p
represents the real distribution and q represents the hypothetical distribution. However,
in the consistency regularization method, p represents the predicted distribution of the
original data and q represents the predicted distribution of the perturbed data. We denote
the image augmentation of input xu as A(xu). We represent the current predictions of
samples as S(y|xu) and generated auxiliary predictions S(y|A(xu)) from the perturbed
samples A(xu). Therefore, the unsupervised consistency regularization loss for the kth
client is defined as:

Lcon
u = KL(S(y|xu)||S(y|A(xu))). (8)

Finally, we updated the parameters according to the redesigned aggregation mecha-
nism: ωS

t+1← ∑k ∈ KmkωS
k,t, ωC

t+1← ∑k ∈ KmkωC
k,t. The semi-supervised federated optimiza-

tion objective formula is as follows:

min max
ωSωC

l
(

ωSωC
)
= min max

ωSωC

(
Lseg + λuLdistill

u + λconLcon
u + Lcritic

)
. (9)

During generator and critic training with a min–max game in FSSL, the generator S aims
to minimize the Lseg, Ldistill

u , and Lcon
u and the critic C aims to maximize the `mae and minimize

the gradient penalty loss in Lcritic. In our experiment, we set λu = 1.0, and λcon = 0.5.

4. Experiments

This section evaluates our method on four publicly available COVID-19 CT scan
segmentation datasets from different regions and three heterogeneous prostate MRI seg-
mentation datasets. We conducted comparison experiments and an ablation study to verify
the effectiveness of the proposed method and each component of our framework. The
extensive evaluation demonstrates that our approach can improve local and global mod-
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els without compromising client performance and achieves a higher accuracy and faster
convergence than current state-of-the-art methods on non-IID datasets.

4.1. Dataset

To conveniently compare with others’ work, we used the following four open-source
COVID-19 segmentation datasets. Each dataset represents one FL client. The COVID-19-CT
dataset is denoted as Client A. MS COVID-19 dataset is denoted as Client B. COVID-19-9
dataset is denoted as Client C. COVID-19-1110 dataset is denoted as Client D. These four
datasets have different numbers of images and vary in size, shape, texture, and imaging
protocols, as shown in Figure 4. The lesion areas of Client B and Client C are more apparent
and prominent than others.

COVID-19-CT dataset [38]. The COVID-19 CT dataset was collected by Ma et al. [39],
and comprises 20 annotated COVID-19 chest CT volumes. The volumes of each CT scan
dataset subject have a resolution of 512 × 512 with slices of approximately 176 by mean
(200 by median).

COVID-19-1110 dataset [40]. The COVID-19-1100 scan dataset comprises 1100 lung CT
images of COVID-19 patients. The dataset was provided by medical hospitals in Moscow,
Russia. Fifty of them were annotated, and ground-glass opacities (GGO) and consolidation
regions were marked for lesion region segmentation.

COVID-19-9 dataset [41]. The COVID-19-9 dataset comprises nine axial COVID-19
volumetric CTs from Radiopaedia. A radiologist evaluated 373 out of the total of 829 slices
as positive and labels including lungs and infected areas are present.

MS COVID-19-CT dataset [42]. The MS COVID-19 dataset was collected by the Italian
Society of Medical and Interventional Radiology, and consists of 100 axial CT images
from over 40 patients. The CT images were segmented by a radiologist using three labels:
ground-glass opacity (GGO), consolidation, and pleural effusion.

Figure 4. Examples of COVID-19 images from four clients showing considerable statistical hetero-
geneity.

We used the following three open-source prostate MRI segmentation datasets. We
divided the data set into six parts, according to Liu et al. [43]. Each part represents
one FL client. The BIDMC, HK, and UCL datasets are from the MICCAI 2012 Grand
Challenge (PROMISE12). The I2CVB dataset is the Initiative for Collaborative Computer
Vision Benchmarking (I2CVB). The BMC and RUNMC datasets are from the NCI-ISBI 2013
Challenge. We present a visualization of these datasets in Figure 5.

PROMISE12 dataset [44]. The PROMISE12 MRI dataset contains 50 training cases and
30 testing cases. These cases include a transversal T2-weighted MR image of the prostate.
These scans were acquired using Siemens or GE scanners with or without endorectal coils
and field strengths of 3 T or 1.5 T at different resolutions.

I2CVB dataset [45]. The I2CVB dataset is a multi-parameter dataset obtained from
Siemens or GE scanners and field strengths of 3 T or 1.5 T at different resolutions.

NCI-ISBI 2013 dataset [46]. The NCI-ISBI 2013 dataset consists of 60 subjects. Among
them, 30 cases are from the 1.5T scanner, and another 30 cases are from the 3 T scanner. The
ground truth comprises four different classes: prostate, peripheral zone (PZ), central gland
(CG), and cap.
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Figure 5. Examples of prostate MRI images from six clients showing considerable statistical heterogeneity.

4.2. Experimental Setup and Evaluation Metrics

Experimental Setup. We first demonstrated the effectiveness of our method in a super-
vised federated learning scenario, in which all clients have complete annotated data and
ensure that no data are transferred among the clients except for centralized training. We
compared it with current state-of-the-art FL methods, including FedAvg [19], FedProx [10],
FedBN [14], MOON [20], and FedNova [21]. Moreover, for FedAvg, FedProx (µ = 0.001),
and FedBN, we considered two different ways of assigning weights to clients. One is to
allocate according to the number of samples that each client provides. We used “FedAvg”,
“FedProx”, “FedBN” to represent. The other is that all clients have the same constant
weight. We used “FedAvg-even”, “FedProx-even”, and “FedBN-even”, respectively. The
“centralized” model was trained on the aggregate training sample obtained from the clients’
subsamples, which can be considered as an upper bound on FL. In the COVID-19 exper-
iment, we compared local models that only use single-client data instead of aggregated
updates, denoted by “Local only-A”, “Local only-B”, “Local only-C”, and “Local only-D”,
respectively. In the prostate MRI experiment, we report the results of the FL methods
running on the six clients. In addition, we include a comparison of the ablation study to
verify the effectiveness of each component in our framework. “Proposed-1” represents the
proposed method without knowledge distillation. “Proposed-2” describes the proposed
process without dynamic aggregation.

In the COVID-19 training process, the batch size is 4, and we adopted the Adam
optimizer with a learning rate of 2× 10−4, (β1, β2) of (0.5, 0.999), and learning rate decay
of 0.5. The whole iteration number T is 100, and the number of local iterations defaults
to 1. Each slice was resized to 256 × 256 as the input. For each client, we randomly split
the annotated cases into training/testing data, resulting in splits of 1375/113 for Client A,
80/20 for Client B, 282/28 for Client C, and 588/58 for Client D. In the prostate MRI training
process, the batch size is 4, and we adopted the Adam optimizer with a learning rate of
1 × 10−4, (β1, β2) of (0.9, 0.999), and learning rate decay of 0.5. The whole iteration number
T is 300, and the number of local iterations defaults to 1. Each slice was resized to 384 × 384
as the input. For each client, we randomly split the annotated cases into training/testing
data, resulting in splits of 181/28 for the BIDMC dataset, 124/23 for the HK dataset, 143/27
for the UCL dataset, 331/85 for the I2CVB dataset, 347/92 for the BMC dataset, and 334/88
for the RUNMC dataset. All experiments were performed on a machine with GTX 3060
GPU and a 16 GB RAM equipped with PyTorch. All results reported are the average of
three repeating runs.

Evaluation Metrics. We used three widely adopted metrics in the literature, including
the Dice similarity coefficient (Dice), Sensitivity (Sen), and Accuracy (ACC). The formulae
of Dice, Sen, and Acc are shown as follows:

Dice =
2× TP

FN + 2× TP + FP
, (10)

Sen =
TP

FN + TP
, (11)

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)
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where TP, TN, FP, and FN refer to true positive, true negative, false positive and false
negative pixels of the output images and the ground truth.

4.3. Comparison Experiments and Ablation Study

The quantitative results are shown in Table 1. The first column (Client A) indicates
the model’s test results using only Client A’s testing data. It can reflect the generalization
performance of the model on Client A. Columns 2–4 are also similar. The fifth column
(Avg.) is abbreviated for the average accuracy in terms of Dice. It is an important indicator
used to measure the performance of the global model.

In Table 1, we first trained each client’s local model using only their data, and the
results are shown in the first four rows. The local model performs best on its own test set,
and the generalization performance on other clients’ testing data is much lower. Combining
all datasets in centralized training can improve the model’s accuracy and generalization,
which can be seen as an upper bound.

Then, we compared the proposed method with five current state-of-the-art FL methods.
All forms operate under the same conditions, i.e., the global model can collect information
(the gradients and weights) from multiple local models but cannot obtain client data for
privacy reasons. We can find that the proposed method outperformed other methods and
is closer to or even better than the centralized one. We attributed this improvement to
knowledge distillation and dynamic aggregation, enhancing the training process on both
the client and server sides. When all clients have the same constant weight, “FedAvg-
even”, “FedProx-even”, “MOON-even’,’ and “FedNova” achieve similar results on “Avg.”.
“FedBN-even” outperforms “FedAvg-even” by 0.61% on “Avg.” but only improves the
accuracy of clients A, B, and C in terms of Dice compared to “FedAvg-even”. These methods
do not achieve results close to centralized training, as improvements are limited only from
the client or server sides. Our proposed method outperforms “FedAvg-even” by 3.4%
on “Avg.” and improves the accuracy of clients A, B, C, and D compared to “FedAvg-
even” by 4.13%, 5.37%, 0.92%, and 3.17% in terms of Dice. With client-side improvement
and server-side optimization, our method consistently outperforms others, reaching an
accuracy of 72.96% on “Avg.”, which is 2.79% higher than the previous state-of-the-art
method (“FedBN-even”) for the non-IID dataset.

These federated learning methods show limited progress when assigning weight
according to the number of samples that each client provides. This is because, when the
sample sizes of clients vary widely, clients with large sample sizes will dominate when
the model is aggregated, causing the global network to shift towards the clients with large
sample sizes and obliterating the contribution of clients with small sample sizes.

Compared with “FedAvg-even”, proposed-1 adopts dynamic aggregation, improving
the accuracy of clients A, B, and C by 2.25%, 4.42%, and 0.66% in terms of Dice, outper-
forming “FedAvg-even” by 1.67% on “Avg.”. Proposed-2 adopts knowledge distillation,
improving the accuracy of clients A, B, C, and D by 2.83%, 1.89%, 0.4%, and 1.88% in terms
of Dice, outperforming “FedAvg-even” by 1.75% on “Avg.”. Although proposed-1 did
not improve the accuracy of client D compared to “FedAvg-even”, the reason may be that
the local test accuracy of client D is too low and the weight assigned is small. Still, the
purpose of proposed-1 is to allow clients with a high local test accuracy to gain more weight.
Proposed-2 transfers the global generator model information to local generator training, im-
proving the accuracy of all clients compared to “FedAvg-even”. In summary, our proposed
combinations make sense because each component individually beats “FedAvg-even” in
terms of “Avg.”.

In addition, we visualized the segmentation results to demonstrate a qualitative
comparison. As shown in Figure 6, all of these methods’ results were roughly the same in
terms of segmentation boundaries. Compared with the ground truth, other FL methods
over-segment or miss some of the COVID-19 lesion areas. The proposed method can
segment the infected area of COVID-19 with more details than other FL methods.
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Table 1. Multi-national COVID-19 lesion segmentation. T is the total time required for model training
in minutes.

Method
Client A Client B Client C Client D

Dice Sen Acc Dice Sen Acc Dice Sen Acc Dice Sen Acc Avg. (Dice) T (min)

Local only-A 72.35 82.18 99.56 53.80 34.18 98.20 57.12 47.40 95.81 33.94 21.03 98.28 54.30 168
Local only-B 53.89 71.71 99.16 76.87 57.96 98.93 73.73 77.93 96.73 44.76 53.28 98.62 62.31 17
Local only-C 49.85 56.35 99.12 65.63 44.18 98.58 75.99 73.19 97.27 56.60 58.76 99.20 62.02 36
Local only-D 55.63 55.01 99.40 58.29 37.71 98.34 71.50 73.84 96.06 61.88 63.10 99.31 61.83 75
Centralized 72.18 79.73 99.58 81.15 59.10 99.16 80.40 80.91 97.68 59.12 58.97 99.28 73.21 225

FedAvg 71.67 71.27 99.59 64.53 42.54 98.57 52.71 35.79 95.88 42.02 33.79 99.17 57.73 230
FedProx 71.01 78.84 99.56 65.05 43.98 98.55 64.84 52.03 96.68 57.93 51.03 99.24 64.70 255
FedBN 72.23 79.06 99.58 64.30 43.23 98.53 63.84 56.02 96.26 41.78 33.10 99.18 60.54 223
FedAvg-even 70.52 78.84 99.55 74.59 52.59 98.90 76.87 72.99 97.44 56.26 53.10 99.29 69.56 230
FedProx-even 69.27 69.04 99.58 73.18 50.13 98.85 75.27 73.63 97.15 58.50 53.79 99.33 69.05 255
FedBN-even 72.17 84.63 99.55 76.18 55.03 98.92 76.96 69.77 97.54 55.38 51.90 99.26 70.17 223
MOON-even 68.07 78.17 99.37 76.01 55.17 98.91 77.16 69.93 97.56 56.42 55.86 99.27 69.41 385
FedNova 69.22 86.64 99.47 76.42 55.07 98.96 75.94 73.97 97.24 55.17 50.17 99.28 69.18 231
Proposed 74.65 88.20 99.60 79.96 57.86 99.11 77.79 74.75 97.49 59.43 61.72 99.26 72.96 273

Proposed-1 72.77 77.06 99.60 79.01 58.51 99.05 77.53 76.35 97.39 55.62 60.69 99.17 71.23 232
Proposed-2 73.35 79.06 99.61 76.48 55.72 98.95 77.27 73.53 97.45 58.14 56.03 99.29 71.31 272

The results of the prostate MRI dataset are reported in Table 2. We compared our
method with “FedAvg”, “FedProx”, “FedBN”, “MOON”, and “FedNova” with the same
constant weight. “FedAvg” and “FedNova” achieve similar results on “Avg.”. “MOON”
outperforms “FedAvg” by 0.22% on “Avg.”. “FedBN” outperforms “FedAvg” by 0.68% on
“Avg.”. Our proposed method outperforms “FedAvg” by 1.72% on “Avg.” and can improve
all client’s accuracy in terms of Dice compared to “FedAvg” by 2.09%, 1.53%, 1.42%, 1.15%,
2.26%, and 1.84%. Compared with “FedAvg”, proposed-1 adopts dynamic aggregation,
outperforming “FedAvg” by 0.97% on “Avg.”. Proposed-2 adopts knowledge distillation,
outperforming “FedAvg” by 1.08% on “Avg.”. Although proposed-1 did not improve the
accuracy of the BIDMC dataset compared to “FedAvg”, the reason may be that the BIDMC
dataset is blurry and the weight assigned is small. Still, the purpose of proposed-1 is to
allow clients with a high local test accuracy to gain more weight. Proposed-2 transfers the
global generator model information to local generator training, improving the accuracy of
all clients compared to “FedAvg”.

Table 2. Multi-national prostate MRI segmentation. Dice score (%) is reported. T is the total time
required for model training in minutes.

Method BIDMC HK UCL I2CVB BMC RUNMC Average T (min)

FedAvg 88.38 92.33 90.78 90.71 90.42 93.70 91.05 846
FedProx 87.63 92.17 90.14 90.65 91.04 93.89 90.92 921
FedBN 88.16 93.37 91.60 91.42 91.72 94.13 91.73 834
MOON 88.56 92.85 90.95 90.56 91.13 93.58 91.27 1224
FedNova 87.24 92.73 90.64 90.92 90.63 93.97 91.02 849
Proposed 90.47 93.86 92.20 91.86 92.68 95.54 92.77 984

Proposed-1 88.24 93.69 92.15 91.65 92.16 94.24 92.02 852

Proposed-2 89.65 93.76 91.83 91.10 91.43 95.01 92.13 979



Electronics 2023, 12, 1687 14 of 20

Figure 6. Visual comparison of COVID-19 infection regions segmentation results on the four clients,
where the red labels denote COVID-19 infection regions, and the green boxes highlight some segmen-
tation details.

4.4. Dealing with Semi-Supervised Setting

We considered another scenario with limited labeled data that was closer to reality.
In previous works, some semi-supervised methods have achieved performance results in
a traditional centralized training scenario. For example, mean teacher (MT) [47] used the
EMA of the student model weights and calculated the MSE distance between teacher and
student predictions. Virtual adversarial training (VAT) [48] used random perturbations
to change the current model’s predictions on unlabeled data substantially. Interpolation
consistency training (ICT) [49] encouraged the predictions interpolated for unlabeled
data to be consistent with the interpolation of predictions. Deep adversarial networks
(DANs) [50] employ adversarial learning to distinguish between labeled and unlabeled
data. We used “FedAvg” under the same constant weight setting with a naive combination
of some semi-supervised methods to compare our experiments. We evaluated the model
performance under the 10% and 20% labeled data settings using partly labeled federated
data training as a baseline on FSSL and fully labeled data federated training as an upper
bound on FSSL.

Table 3 presents the results of semi-supervised training with 10% and 20% labeled
labels. As observed, both “FedAvg-MT” and “FedAvg-DNA” can improve the accuracy
of clients A and C on the baseline but perform poorly on clients B and D. “FedAvg-
ICT” improves the accuracy of clients A, B, and C on the baseline but perform poorly
on client D. “FedAvg-VAT” improves the accuracy of clients A, B, and C on the baseline
and outperforms the baseline by 1.37% on “Avg.” under the 10% labeled scenario. It also
exceeds the baseline by 1.61% on “Avg.” under the 20% labeled scenario. However, the
FedAvg naively combined with semi-supervised methods does not improve the accuracy of
all clients, and all combinations perform poorly on client D. The reason may be that existing
consistency-based semi-supervised methods are built with a single trainable model, which
cannot provide information from multiple clients to enrich the unsupervised knowledge
for unlabeled data in an FL setting.

Compared with these methods and the baseline, our method achieves a higher ac-
curacy on all clients. The method based on dynamic aggregation (DA) and knowledge
distillation (KD) can outperform the baseline by 2.41% on “Avg.” under the 10% labeled
scenario and exceed the baseline by 3.06% on “Avg.” under the 20% labeled scenario.
Based on the perturbation of unlabeled data by consistency regularization, we can further
improve the model’s generalization performance. It outperforms the baseline by 3.71% on
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“Avg.” under the 10% labeled scenario and the baseline by 4.33 % on “Avg.” under the
20% labeled scenario. Our method is effective under FSSL because the local and global
generator models can produce different decision boundaries for unlabeled data. The global
generator model’s viewpoint can be regarded as complementary knowledge of the local
generator model.

Regarding the time cost, our MixFedGAN takes about the same time as the semi-
supervised method mean teacher, but our accuracy is higher. If the consistency regular-
ization method is added, the prediction will be further improved, but the training time
will be longer due to the more complex loss function. In summary, our method is superior
in terms of the time cost and accuracy compared to FedAvg naively combined with other
semi-supervised methods.

Table 3. Comparison with a naive combination of some semi-supervised methods and FedAvg, using
limited labeled data on multi-national COVID-19 lesion segmentation.

Method Labeled Unlabeled
Client A Client B Client C Client D

Dice Sen Acc Dice Sen Acc Dice Sen Acc Dice Sen Acc Avg. (Dice) T (min)

FedAvg-Fully 100% 70.52 82.18 99.52 74.59 52.59 98.90 76.87 72.99 97.44 56.88 53.10 99.29 69.72 230
FedAvg-Partly 10% 62.01 68.17 99.38 53.01 33.73 98.17 50.97 36.29 95.89 48.70 33.97 99.37 53.67 58
FedAvg-MT 10% 90% 63.01 69.27 99.36 45.29 28.61 97.88 51.31 38.38 95.71 39.37 28.62 99.04 49.75 268
FedAvg-DAN 10% 90% 62.40 68.72 99.39 49.26 32.78 97.80 53.76 41.34 95.81 45.22 40.34 99.13 52.66 318
FedAvg-VAT 10% 90% 64.84 70.69 99.45 52.87 33.18 98.17 54.77 42.29 95.88 47.67 37.93 99.26 55.04 276
FedBN-ICT 10% 90% 63.16 68.93 99.41 53.13 34.58 98.15 52.38 43.59 95.14 45.37 34.24 99.28 53.51 277
Proposed(KD+DA) 10% 90% 63.81 69.82 99.43 53.62 34.63 98.16 58.13 46.31 96.06 48.76 40.69 99.24 56.08 272
Proposed(KD+DA+Consistency) 10% 90% 64.95 71.65 99.46 54.75 35.42 98.20 60.43 47.97 96.30 49.39 41.90 99.29 57.38 330

FedAvg-Partly 20% 66.06 70.82 99.47 64.07 41.74 98.56 62.40 49.57 96.48 51.05 43.97 99.25 60.90 71
FedAvg-MT 20% 80% 68.35 78.40 99.50 54.96 33.93 98.29 62.95 50.48 96.50 43.63 38.17 99.11 57.47 236
FedAvg-DAN 20% 80% 67.59 73.72 99.53 55.06 34.78 98.26 64.03 51.98 96.56 46.02 38.41 99.14 58.18 285
FedAvg-VAT 20% 80% 69.47 78.15 99.59 64.17 42.64 98.34 67.22 57.89 96.67 49.19 42.07 99.23 62.51 243
FedAvg-ICT 20% 80% 66.46 71.05 99.51 64.67 44.45 98.43 63.61 52.08 96.49 47.84 38.28 99.26 60.65 244
Proposed(KD+DA) 20% 80% 68.75 74.61 99.54 64.84 45.32 98.49 70.28 64.28 96.67 51.98 39.66 99.35 63.96 238
Proposed(KD+DA+Consistency) 20% 80% 70.41 78.85 99.61 66.03 42.89 98.65 71.69 65.08 97.02 52.80 45.38 99.30 65.23 295

5. Discussion
5.1. Convergence Analysis

In this paper, our method was used for reducing local modal and global modal drifts,
which partly improves learning efficiency. The Dice similarity coefficient (Dice) results
using different communication rounds are plotted in Figure 7. In Figure 7a–c, our method
increases smoothly with an increase in the number of communication rounds. In contrast,
other FL methods show unstable convergence and a lower accuracy. In Figure 7d, the
overfitting phenomenon inevitably occurred due to the single test sample of client D.
However, it can be seen that, because our method alleviates a certain degree of overfitting,
the prediction of our method on client D is also better than other FL methods. Therefore, the
proposed method can achieve better results with fewer communication rounds, accelerate
the convergence speed, and improve the model’s generalization ability.

5.2. Influence of α and β

The aggregation mechanism that we designed calculates the contribution score for
each client in each round according to the model accuracy index and the model difference
index. Among them, α and β in (5) are used to distinguish the importance of the model
accuracy index and the model difference index. Specifically, the significance of the model
accuracy index is greater than that of the model difference index. The whole training is to
dynamically set the weight for the client, which realizes a more reasonable aggregation
weight distribution.

As we gradually increased the coefficient of β, the weights of those clients whose
model parameters differ significantly from the global model parameters increased. In our
experiments, the weight of client A varies the most from the global model, and the reason
for this may be that the generalization performance of A is the worst. Increasing the β
coefficient will cause the weight of client A to increase, thereby improving the accuracy of
client A. It can be seen from Figure 8 that the accuracy of client A will reduce the accuracy
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of the other three clients simultaneously. Since the samples of clients B and C are relatively
small, but the images of clients B and C are fairly clear, the image quality is better, and
the test results of their local models are also better. If aggregated according to the amount
of sample data, the contributions of clients B and C will be obliterated by the client with
large samples. Therefore, we aggregated them according to the model accuracy and model
difference during training to give them a greater weight to speed up the training process.
In this experiment, we set α to 0.8 and β to 0.2.

Figure 7. (a) Client A’s convergence in terms of testing dice with communication rounds. (b) Client
B’s convergence in terms of testing dice with communication rounds. (c) Client C’s convergence in
terms of testing dice with communication rounds. (d) Client D’s convergence in terms of testing dice
with communication rounds.

Figure 8. Visualizations of the effect of different α and β on the training results.

5.3. Influence of Distillation Temperature

Reference [51] showed that a soft temperature larger than one is critical for the ef-
fectiveness of KD. Increasing the temperature τ for the model output in (6) generates a
smoother probability distribution. We gradually increased the distillation temperature,
increasing the temperature from 1 to 20, and performed ablation experiments on the hy-
perparameter τ on proposed-2. As seen in Figure 9, with an increase in temperature, the
accuracy of the proposed-2 method increases on the C and D clients, and the accuracy
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of the A and B clients decreases. We can also see that each client’s Dice score is better
than the baseline “FedAvg” when the temperature equals 15, indicating that introducing
global knowledge for distillation benefits client learning. In this experiment, we set τ to 15
because this temperature performs best.

Figure 9. Visualization of the effect of different distillation temperatures on the training results.

5.4. Computation and Communication Cost

High computational and communication costs have always been an urgent problem
to be solved in federated learning. The total cost of FedAvg includes the computing cost of
the local client and the upload/download communication cost between the client and the
server. The improvement in the FedAvg algorithm inevitably introduces local computing
costs, upload and download communication costs, and even server-side computing costs.
Table 4 shows the average training time per round. FedProx introduces an approximation
term in the local model, which nearly doubles the computational cost of local training.
MOON presents the previous round of the global model and the local model in local
training, which increases the computing resources of local training by nearly triple and
significantly increases the training time. FedNova assigns client weights by normalizing
the number of local iterations, and each client sends the normalized parameters update to
the server, which adds a negligible communication cost to the server. FedBN ignores the
exchange of the BN layer in the server aggregation part, and the computing resources that
it introduces to the server are negligible.

Our method introduces the previous round’s global generator model in the local client,
inevitably increasing the local computation cost. In addition, regarding the communication
cost, although the weights of client-side aggregation need to be recalculated on the server
side, it will add negligible communication cost to the server because the client only needs to
send the two indicators of local accuracy and model difference to the server for aggregating
the model. Our total round training time increased compared to FedAvg. From the actual
running time in Table 3, the time increase is within the acceptable range. However, our
method can achieve a higher accuracy than FedAvg. We can still consider our approach as
adequate. In future work, we will also solve the problem of the local computational cost
through model compression and quantization.

Table 4. The average training time per round.

Method COVID-19 Prostate MRI

FedAvg 2 min 16 s 2 min 49 s
FedProx 2 min 31 s 3 min 04 s
FedBN 2 min 15 s 2 min 48 s
MOON 3 min 51 s 4 min 05 s
FedNova 2 min 17 s 2 min 50 s
MixFedGAN 2 min 44 s 3 min 17 s
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6. Conclusions

In this paper, we proposed a new framework MixFedGAN for automatic COVID-19
infection segmentation in order to mitigate client drift caused by non-IID data. The dynamic
aggregation mechanism was designed to reduce the impact of current low-performing
clients and improve stability. Knowledge distillation with a new distillation regularization
loss function prevents essential parameters of the global generator model from significantly
changing while tuning the global generator model on client-side local data. We also
considered both supervised and semi-supervised scenarios to verify our methods. Four
public COVID-19 CT scan datasets were employed for qualitative and quantitative analysis.
The experiment shows that our proposed method can obtain high-quality segmentation
results and outperforms some state-of-the-art FL methods. The model test in the supervised
federal scenario is increased by 3.4% in terms of Dice compared with FedAvg in the COVID-
19 dataset and increased by 1.72% in terms of Dice compared with FedAvg in the prostate
MRI dataset. In the semi-supervised federated scenario, the model test is improved by
3.71% in terms of Dice compared with the baseline algorithm when the label is 10%. Since
federated learning is in its infancy, problems still need to be solved, such as a limited
communication bandwidth, limited mass data storage of edge node devices, and model
parameters and gradients that are vulnerable to malicious attacks. To tackle the challenges
of federated learning in communication efficiency and security, in future work, we plan
to reduce the number of model parameters through a model compression technique to
reduce the communication time of federated learning without sacrificing much accuracy
and prevent the leakage of the original model.
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