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Abstract: Ultra-wideband (UWB) positioning systems often operate in a non-line-of-sight (NLOS)
environment. NLOS propagation has become the main source of ultra-wideband indoor positioning
errors. As such, how to identify and correct NLOS errors has become a key problem that must be
solved in high-accuracy indoor positioning technology. This paper firstly describes the influence of
the NLOS propagation path on localization accuracy and the generation method of ultra-wideband
signals, and secondly classifies and analyzes the currently available algorithms for ultra-wideband
non-line-of-sight (NLOS) identification and error suppression. For the identification of NLOS, the
residual analysis judgement method, statistical feature class identification method, machine learning
method and geometric feature judgement method are discussed. For the suppression of NLOS
propagation errors, weighting-based methods, filtering-based methods, line-of-sight reconstruction
algorithms, neural network algorithms, optimization methods with constraints, and path tracing
methods are discussed. Finally, we conclude the paper and point out the problems that need to be
solved in NLOS indoor positioning.

Keywords: NLOS identification; error mitigation; UWB; indoor positioning

1. Introduction

Location-based services have penetrated deeply into people’s lives and become an
important part of national defense, economic construction and social life. As the core tech-
nology of Internet of everything and location service applications, positioning technology
has become more and more indispensable. With the development of mobile communication
and positioning technology, the demand for precise positioning in indoor environments
is gradually increasing. The global positioning system, the BeiDou Navigation system [1]
and other mature positioning systems have been widely used in outdoor environments.
However, in indoor environments, satellite positioning technologies cannot provide reliable
positioning services due to the weakening and reflection of satellite signals, and so indoor
positioning methods have been developed which are suited to the special characteristics
of indoor environments. Traditional indoor positioning techniques include infrared po-
sitioning, Wi-Fi, Bluetooth, RFID [2,3], etc. It is obvious that the traditional positioning
method is susceptible to RF signal interference and that the positioning accuracy can no
longer meet the demands for an indoor positioning system. Therefore, researchers have
started to search for indoor positioning technologies that can provide high accuracy and a
low error level.

Ultra-wideband positioning technology [4] is a communication method that uses
non-sinusoidal narrow pulses to transmit data. UWB technology can effectively discrim-
inate between and reject multipath interference signals, the positioning error of UWB
technology can reach several centimeter levels, and it is widely used in emergency rescue,
intelligent logistics, intelligent prisons and other fields [5]. The current UWB wireless
ranging algorithms are used to determine the location of the target nodes by calculating
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some parameters in the radio signals emitted from the target node to the reference base
station as commonly used ranging methods, such as AOA [6], TOA [7], TDOA [8] and
RSSI [9], are not universally applicable to UWB ranging considering the cost and difficulty
of implementation in specific environments. On the other hand, the accuracy of UWB
positioning techniques is affected by several factors, including non-visual propagation, but
mainly including multipath effects, the number of reference base stations and non-line-of-
sight propagation [10]. All these factors can lead to errors in the information measured
by the signal, which can cause the degradation of positioning accuracy. The NLOS prop-
agation is the main reason for the degradation of ranging accuracy [11]; therefore, the
identification of LOS/NLOS propagation paths and the elimination of NLOS errors have
become the key problems that must be solved for the development of high-precision indoor
positioning technology.

2. Impact of UWB Propagation Path

The UWB propagation path is divided into two types: LOS propagation path [12] and
NLOS propagation path, as shown in Figure 1. NLOS propagation [13] means that the
signal is obscured by obstacles during propagation and cannot in essence propagate along
a straight line.
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Figure 1. UWB propagation path classification.

The impact of the NLOS path on positioning accuracy mainly includes the follow-
ing aspects:

Position Error: Due to the existence of different obstacles such as walls, wooden doors
and glass doors in the room, the propagation speed and propagation time of the signal will
change differently. In the LOS propagation environment, the true distance is affected by
the standard error ni, which is modeled by TDOA ranging as follows:

ri,1 = Li,1 + ni (1)

In the NLOS environment, the true distance is affected by the standard error ni and
the non-visual error ei in the TDOA range measurement as follows:

ri,1 = Li,1 + ni + ei (2)
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The value of ei is the measured signal propagation time that generates a positive
time delay. Generally, the value of ei is much larger than the measurement error, which
makes the measured distance in NLOS environment larger than the actual distance, and in
consequence the accuracy of node position estimation is adversely affected.

Positioning uncertainty: Due to the existence of NLOS paths, the model assumptions
in the ultra-wideband positioning system cannot fully meet the actual requirements, which
makes it difficult to accurately predict and control positioning errors; thus, the positioning
uncertainty increases.

Therefore, it is important to identify and suppress the NLOS before positioning in
order to achieve better positioning accuracy.

3. Ultra-Wideband Signal Generation Method

On the premise of conducting the exploration of the NLOS error identification and
suppression algorithm, we must explore the generation method of the ultra-wideband
signal [14]. This is because the frequency characteristics and power characteristics of
the ultra-wideband signal will differ depending on the generation method of the ultra-
wideband signal, which will affect the identification of the NLOS path and the effect of the
suppression algorithm. The principles and characteristics of the generation methods of
ultra-wideband signals are described in Table 1.

Table 1. Principles and characteristics of ultra-wideband signal generation methods.

Methods Principles Advantages Disadvantages Application Scenarios

Pulse Form

Repeat a short pulse
signal several times by

adjusting the pulse
repetition rate,

amplitude, width and
other parameters

Short pulse width and
long repetition period

Low signal energy,
need for power
amplification

radar, ranging,
communications

Orthogonal Frequency
Division Multiplexing

A technique for
splitting data signals

into pairs of subcarriers
and transmitting them

simultaneously

High data transmission,
high spectrum

utilization, strong
resistance to multipath

interference

High technical
requirements for time

synchronization,
channel estimation

mobile
communications,

indoor positioning

Spread Spectrum
Technology

Multiply the original
signal with the

pseudo-random code
sequence to increase
the signal bandwidth

Strong anti-interference
ability and high

security

High system
complexity

satellite
communications,

indoor positioning

4. NLOS Identification Algorithm

Non-line-of-sight signal identification algorithms are used to determine whether NLOS
propagation exists between the positioning base station node and the tag node to be located.
In recent years, many scholars have classified indoor positioning scenarios where NLOS
propagation exists into four categories, as shown in Figure 2.
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Figure 2. NLOS recognition algorithm.

5. Residual Analysis Judgment Method

The residual test method, by comparing the residuals between the model predictions
and the actual observations, is used to make a judgment. Specifically, the residuals be-
tween the observed and model predicted values show significant deviations when the
signal passes through a non-direct path. The NLOS error identification algorithm based
on residual class, on the other hand, does not need to anticipate a priori information and
directly estimates the intermediate position of the target to be measured to assist in the
identification of the LOS/NLOS propagation path. In [15], a residual hypothesis testing
algorithm for hyperbolic localization in a hybrid LOS/NLOS environment is proposed.
When there are at least four LOS anchor nodes in a two-dimensional scene, it is possible to
distinguish between LOS and NLOS in the absence of NLOS a priori information; ref. [16]
uses a correction of the identified NLOS measurements by variance inflation. However,
since the normalized innovation test uses empirical thresholds, NLOS may be detected in-
correctly, and the equivalent variance may not be accurate enough. The detection algorithm
of location residual (PRT), proposed in [17], is identified by applying approximate maxi-
mum likelihood algorithm to the number of LOS base station groupings before locating
them. Additionally, the condition for dividing the LOS/NLOS base stations is whether the
normalized residuals of the locations obey a χ2 distribution with a degree of freedom of 1.
The steps of the residual method test are as follows: in the first step, data are collected, such
as TOA data; in the second step, the base stations are combined and the estimated values
of the calculated positions are determined separately. For example, 3 to n base stations are
selected from all base stations for combination and the AML algorithm is used for each
combination to calculate the intermediate estimated position of the mobile station, there are

n

∑
i·3

Ci
n = m (3)
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intermediate estimated position results. Let the estimate of the kth combination be
θ̂(k) = [x̂(k), ŷ(k)]T , k = 1, 2 . . . m, where θ(1) is the estimate of Cn

n ; in the third step, the
fitted model is built and the normalized distance residuals are defined as:

λ2
i =

(Ri − ri(k))
2

σ2 , K = 1, 2 . . . , m, i = 1, . . . M (4)

and
ri(k) =

√
(x(k)− xi)

2 + (y(k)− yi)
2 (5)

where Ri denotes the measurement distance, σ2 is the variance of the measurement error,
and M is the number of all base stations in the combination. Then, the NLOS identification
method is whether χ2

i (k) ∼ χ2(1).
The advantages of the algorithm are that it does not require complex mathematical

calculations and it is simple to implement; it does not depend on the specific characteristics
of the signal and is effectively adapted to different indoor environments; the algorithm
is fast to implement and can be used to determine whether there is an NLOS error in
real time. However, the algorithm still has certain drawbacks; firstly, the algorithm is
only applicable to the case where the number of LOS base stations is not less than 3. For
this case, there are certain number of solutions. For example, ref. [18] proposes to use
the parameter values of AOA and TOA obtained from the measurement, to calculate the
position of the mobile station by AML algorithm, and then to make the reverse extension
of the measurement angle intersect with the chord of two circles at two points, and finally
to compare the distance of the three points and the residuals of the three points with the
set threshold value to determine whether the station is a complete LOS base station. There
is also a reduction in the number of AML calculations caused by introducing the sum of
squared distance residuals and NLOS recognition by using statistical features when there
are less than three LOS base stations, thus improving the recognition rate. Secondly, the
threshold selection of the algorithm has a large impact on the recognition accuracy, after
which the optimal threshold can be selected automatically by methods such as machine
learning. Finally, the residual test method can only be used to evaluate the fitting degree
of the model and cannot directly determine whether the signal has passed through the
non-direct path. Thus, it needs to be combined with the actual situation and other methods
for comprehensive analysis.

6. Statistical Feature Class Identification Method

The statistical feature class identification algorithm is a kind of wireless signal trans-
mission feature identification method based on statistical principles and models, and these
features can reflect the signal in the transmission process of the multipath effect, attenuation,
reflection, scattering and other physical phenomena. By analyzing these statistical features,
we can determine whether the signal transmission path passes through obstacles to achieve
LOS/NLOS identification. The more commonly used methods are the channel feature
identification method and the signal arrival parameter identification method.

When the model and characteristics of a specific channel are known, the method based
on channel statistics [19] mainly uses the statistical information of the received multipath
components for LOS and NLOS identification, which include channel parameters such as
mean, standard deviation, root-mean-square delay expansion, skewness, kurtosis, etc. The
basic channel feature definitions and recognition principles are described in Table 2. To
improve the NLOS recognition rate, researchers have implemented NLOS recognition by
using multiple combinations of feature parameters. The main work in this category has
been performed by [20–25].
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Table 2. Channel basic features definition and identification principle.

Channel Characteristics Definition Identification Principle

Cliffe
Reflects the kurtosis of the sample data,

which can be used to capture the
amplitude statistics of the signal

NLOS channel cliff index is smaller
than LOS.

Signal Energy Amount of energy transmitted by
the signal

LOS propagates signal energy higher
than NLOS signal.

Maximum value Maximum value of signal amplitude
The maximum amplitude of the signal

propagated by LOS is larger than that of
the signal propagated by NLOS.

Average additional delay Delay characteristics of signals

The MED of LOS signal is larger than that
of NLOS when the signal penetrates the

obstacle and the propagation speed
is reduced.

Root-mean-square time delay extension Method for comparing similarity
between two time series

The root-mean-square delay scaling of
the NLOS channel will be greater.

In NLOS identification, the most widely used method is based on channel statistics.
Based on the signal arrival parameters method used to determine whether the signal has
passed through the NLOS path by analyzing the received signal’s time delay, power, phase
and other parameters, Fan et al. [26] identified the transmission status of the signal based
on the Anderson–Darling test. The target node receives n different range values from the
anchor node, and the set of measurements is

µi =
∑n

j=1 dj
i

n
, σ2

i =
∑n

j=1

(
dj

i − µi

)
n

(6)

The AD statistics is defined as:

AD = − 1
n

n

∑
j=1

(2j− 1)
[
lnzj + ln

(
1− zn+1−j

)]
− n (7)

where Zj = ϕ

(
dj

i−µi
σ2

i

)
, ϕ(di) is the normal distribution function. The empirical value of

multiple measurements at the threshold is:

CV =
0.752n2

n2 + 0.75n + 2.25
(8)

If AD < CV, the measurement is considered to have been made under LOS conditions.
Otherwise, the measurement is made under NLOS conditions. The advantage of this
algorithm is that it does not require complex modeling or the simulation of the signal
propagation environment and that it has a high practicality for signal processing in practical
use. However, it is affected by the signal transmission distance and signal transmission
power. In the case of line-of-sight propagation, however, the measurement error generally
obeys a Gaussian distribution with zero mean and known variance. However, in the case of
non-line-of-sight propagation, the measured values also have the interference of non-line-
of-sight errors. It is then possible to determine the distribution of the measurement error
in a comprehensive manner. The errors can be divided into two cases: namely, whether
the LOS/NLOS propagation prior probability is known or not, and if the LOS/NLOS
propagation prior probability is known. Indeed, ref. [27] uses a generalized likelihood
ratio test to identify the LOS/NLOS propagation path. The generalized likelihood ratio
detection can be expressed as:

γ(r) =
maxPd(r|H1) >

maxPd(r|H0) <

P(H0)

P(H1)
(9)
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Under the condition of H1, the numerator of the above equation is taken as the maxi-
mum value, i.e., using the maximum likelihood method we can obtain d = 1

N ∑N
i=1 ri − µnlos.

Similarly, when the denominator is taken as the maximum value, d = 1
N ∑N

i=1 ri; thus, we
obtain the discriminant formula of NLOS signal:

σ2
nlos

2σ2(σ2 + σnlos
2)

N

∑
i=1

(ri − r)2 >

<
ln

P(H0)

P(H1)
+

N
2

ln
σ2 + σ2

nlos
σ2 (10)

Although the generalized likelihood ratio test algorithm is relatively simple to imple-
ment and can be adapted to a variety of signal models and statistical distributions, it is
difficult to adjust and optimize it for uncertain or unknown signal distributions that can
produce false positives and false alarms or which missed alarms in some specific cases.
If the prior probability of LOS/NLOS propagation is unknown, NLOS propagation can
be identified by testing whether the measurements obey a Gaussian distribution [28–30].
In recent years, tests such as K-S, A-D, chi-Square, gross test, skewness and cliffness tests
have emerged [31–33]. The threshold value can also be obtained based on its false alarm
probability p(H1|H0) in order to identify the LOS/NLOS propagation path. As in [34],
a statistical model based on the Neyman–Pearson criterion is proposed to determine a
threshold value for identifying NLOS nodes by the non-visible error of AOA and NLOS.
To reach this threshold value, the probability of false alarm is assumed to be fixed as:∫ ∞

x
P(x|H0)dx = γ (11)

Thus, the NLOS propagation signal is detected. P (H0) and P (H1) denote the prior
probabilities of LOS and NLOS propagation, respectively, and when the values of P (H0)
and P (H1) are unknown, the conditions for determining that NLOS holds are:

p(x|H1)

p(x|H0)
> γ (12)

The Neyman–Pearson criterion algorithm has a higher detection probability when the
NLOS error is larger, and in the actual environment NLOS error is larger. Therefore, the
algorithm has a good real-time performance. However, the N-P criterion only considers the
power factor. This means that the false positive rate is higher in some cases, is affected by
the signal strength, and cannot accurately determine the presence of the NLOS path when
the signal is weak.

Further, the method based on statistical class features can model and analyze the
overall statistical characteristics of the received signal, which has good adaptability for
complex environments. However, the selection and analysis of signal features is the key
factor, otherwise there will be misjudgment. On the other hand, the method is sensitive
to the influence of signal noise, the multipath effect and other factors, and how to make
appropriate corrections and adjustments should be the direction of future research. Finally,
such algorithms are simple to implement and light in computation. However, they all
require researchers to anticipate certain a priori information and so the applications of such
methods are limited. In addition to some traditional statistics, more features should be
introduced so as to fully reflect the characteristics of the signal.

7. Machine Learning Class

Theories based on machine learning and artificial intelligence have been successfully
applied and developed in many disciplines, and many scholars have conducted a great deal
of research in localization and NLOS recognition, which is a classification problem from the
perspective of LOS/NLOS recognition. The most commonly used learning algorithms for
classification problems include SVM (support vector machine), SGD (stochastic gradient
descent algorithm), Bayes (Bayesian estimation), ensemble, KNN, etc.
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The random forest algorithm [35] is an algorithm that integrates decision classification
trees for prediction and classification. The specific steps are as follows: (1) acquire ultra-
wideband data in different environments and label the category labels based on the real
distance information; (2) reconstruct the features based on the measured ultra-wideband
signal features; (3) randomly select the dichotomous recursive decision tree based on
the reconstructed features; (4) select the samples from the training set described in step
(1) to build a CART decision tree model; (5) draw M sets of data from the training set as
training samples with put-back, use the CART decision tree model built in step (4) to make
classification judgments, and repeat this process N times, N ≥ 30, so as to form a random
forest model. Reference [36] utilizes several static and time-varying features of the channel
impulse response (CIR), and the random forest algorithm adopted performs better than
any other solution in terms of the solution trained with the extracted features.

Support vector machine [37] is a machine learning algorithm based on maximum
interval classification, and its core idea involves mapping data onto a high-dimensional
space for classification. In [38], a method using support vector machines as LOS and NLOS
classifiers with a specific subset of features as training features was proposed. Reference [39]
proposed the use of support vector machine (SVM) clustering to improve the localization
performance. The specific steps are as follows: (1) multiple (more than 3) anchor nodes
are arranged in the indoor localization area, any 3 anchor nodes are not in the same plane,
and Nc = C3

N forms a combination of anchor nodes, where C3
N denotes the total number of

combinations of 3 base stations selected from the total number of N anchors. (2) For each
Sk (Sk represents the kth combination of anchor nodes), in the data collection phase, the
data are tagged into two categories: 1 for when all anchor nodes are in LOS; -1 for when
at least one anchor node is in NLOS. Additionally, the corresponding classifier should be
trained, where Gk, K = 1, 2 . . . Nc, and a total of Nc classifiers should be trained to form a
complete classifier network. (3) In the test, the TOA measurement distance of each mobile
station is combined as the input of the corresponding Nc classifiers, and the combination
with output “1” is represented as the LOS base station combination. The combinations with
“1” are de-duplicated and the unique value is taken to correctly identify the NLOS base
stations. In recent years, the literature [40–42] has improved NLOS recognition rates by
operations such as the optimization of the parameters of support vector machines and the
dimensionality reduction of the input data.

The basic principle of neural network [43] classification is that it computes the input
data according to certain rules and maps them onto a specific output class. The specific steps
are as follows: (1) initialize the weights of all neuron nodes in the neural network; (2) feed
inputs to the input layer receives and generate the outputs through forward propagation;
(3) calculate the deviations based on the predicted values of the outputs, combined with
the actual values; (4) give the output layer the deviations to allow all neurons to update the
weights through the back-propagation mechanism; (5) hold together the complete process,
from the second to the fourth step, of training the model and repeat the process until the
deviation value is minimized, thus forming a neural network model. Convolutional neural
network [44] methods recognize NLOS signals, the basic steps of which are: convolutional
layer extracts initial features; pooling layer extracts main features; fully connected layer
aggregates features and performs classification prediction. Cui et al. [45] proposed a method
for use in identifying identify NLOS signals using a capsule network. The proposed capsule
network model includes a convolutional layer, main capsule layer and channel capsule
layer. This capsule network will mainly separate different classes of channels by applying
two types of channel capsules, LOS capsule and NLOS capsule. AdaBoost is a strong
learner algorithm, which can improve prediction accuracy. A new direction is proposed for
LOS/NLOS recognition. The algorithm first trains a number of weak learners on the sample
data, and then adjusts the weights of the previously misidentified samples to train a weak
learner until the weak learner reaches the specified required index. Thus, the LOS/NLOS
recognition rate can be improved.
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As shown in Table 3, the basic idea of recognition based on machine learning algo-
rithms is to learn the significant differences between NLOS/LOS by training models on a
large amount of sample data and building classification models that can be used to classify
new data. This type of algorithm can handle complex nonlinear relationships, is suitable
for multi-dimensional feature data, and has high recognition accuracy. However, there are
still some drawbacks. Firstly, it is easy to over-fit for small amounts of data; secondly, this
algorithm requires operations such as data enhancement and regularization; and finally,
the results and parameter selection for the classifier require several experiments, which are
more time-consuming and computationally resource-intensive than traditional methods.
The future improvement direction of such algorithms is the aim to design new feature
extraction methods and classifier results for the problems in special scenarios.

Table 3. Comparison of the advantages and disadvantages of machine learning algorithms to
identify NLOS.

Methods Advantages Disadvantages

Random
Forest

Highly scalable and efficient;
interpretable

For highly correlated features,
performance is affected

Support vector machines
High accuracy, good generalization to

small samples, able to handle
high-dimensional data

Sensitive to data noise and missing
values, need to manually select the
appropriate kernel function, have

problems in handling large data sets
Neural

Network
Capable of automatically extract features

with high accuracy
More complex network structure, poor

model interpretability

8. Geometric Relationship Class

The geometric relationship method is a geometry-based method that can determine
whether the transmission path of a signal is blocked by geometric measurement features
such as the distance and angle between nodes for NLOS/LOS judgments. It is specifically
divided into the distance matrix constraint method and the non-closure detection method.

The principle of the distance matrix constraint method is to model the distance matrix
when the wireless signal propagates in space. Additionally, when the signal is transmitted,
according to the geometric relationship, all distance values are fixed in the LOS case,
while in the NLOS case, some distance values change, so to distinguish LOS and NLOS.
Reference [46] grouped all anchor nodes, combined with the Cayley–Menger determinant,
to detect the presence of NLOS signals in each group, and then determined the LOS and
NLOS anchor points based on the detection results. The algorithm has high signal path
classification accuracy and scalability. However, the distance matrix constraint method
requires accurate location information, high network requirements, and requires a certain
computational complexity to implement, which requires the implementation of efficient
algorithms and data structures.

The basic principle of the non-containment measurement method is to use the time
delay and amplitude information of the received signal, combined with the location in-
formation of the anchor node and the sparsity assumption, to determine whether there
is multipath propagation. In [47], a non-closure checking algorithm that can be applied
in NLOS environments with sparse anchor nodes is proposed. The specific steps are
as follows:

1. Determine the estimated position value based on the TOA measurements.
2. Decompose the TOA measurements using the approximate estimated position to form

the statistics for non-closure detection.
3. Perform the non-closed detection.
4. If it passes, proceed to the next detection step; if it fails, put the starting and ending

points into the spoofed NLOS set.
5. Find the NLOS node from the spoofed NLOS set.
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The algorithm achieves good NLOS identification without a large number of re-
dundant measurements. However, the non-closure detection method requires certain
computational resources and other besides factors affect the performance of the algorithm.

The advantages of geometric relationship-based class algorithms are wide applicability,
high accuracy and simplicity. However, there are also certain disadvantages, such as the
dependence of geometric relationship, the sensitivity to signal strength and the restricted
environment, each of which need to be considered and overcome in practical application.

9. NLOS Error Suppression Algorithm

Most of the methods used to suppress NLOS propagation or correct NLOS errors
are based on NLOS identification and some algorithms to mitigate the impact of NLOS
propagation on localization accuracy. Many studies have also proposed algorithms that are
feasible for use in specific scenarios to suppress NLOS errors, as shown in Figure 3.
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10. Weighted Class

The basic idea of the weighted localization method is to use all available measurements
for localization estimation and to set a weighting factor to the TODA/TOA residuals accord-
ing to the characteristics of the measurements. In the LOS case, the measured TODA/TOA
values are assigned larger weights. Conversely, in the NLOS case, the measured values are
assigned smaller weights to effectively reduce the impact of NLOS errors on positioning
accuracy. Commonly used algorithms include the residual weighting method and the
weighted least squares method.

Reference [48] proposed a residual weighting (RWGH) algorithm, and the basic steps
of the RWGH algorithm are as follows.

(1) Give M (M > 3) distance measurements in the form of N = ∑n
i=3 (

M
i ) distance mea-

surement combinations.
(2) Each combination consists of a BS index set {Sk | k = 1, 2, N} for each combination,

and so calculate the intermediate LS estimates of x and Res.
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xk = argmin
x

Res(x; Sk), Res(xk, Sk) =
Res(xk, Sk)

size o f Sk
(13)

(3) Determine the final estimate of x as a weighted linear combination of the intermediate
estimates from step 2. The weights are inversely proportional to the estimated Res.

x =
∑N

k=1 xk(Res(xk, Sk))
−1

∑N
k=1(Res(xk, Sk))

−1 (14)

In recent years, researchers have optimized the residual weighting algorithm in order
to reduce the complexity of the residual weighting algorithm and improve its localization
accuracy. For example, in [49,50], the complexity of the residual weighting algorithm was
reduced by selecting the smallest combination of normalized residuals in different ways
and then performing weighted summation; in [51,52], for the TOA/AOA hybrid local-
ization method, the localization accuracy was improved by selecting a suitable iterative
minimum residual criterion and using the estimated result of selecting the iterative mini-
mum residual combination as the final MS position, and the algorithm can play an obvious
role in NLOS error suppression under certain conditions. The algorithm can provide sig-
nificant suppression of NLOS error suppression under certain conditions. The advantage
of this algorithm is that only one measurement needs to be made, and the variance of the
measurement noise as well as the mean and variance of the NLOS error do not need to be
known. The disadvantage is that it requires the participation of multiple anchor nodes and
high computational complexity.

Least squares are a mathematical optimization technique [53] that finds the best
functional match of data by minimizing the quadratic sum of errors, and is usually used to
find unknown data and minimize the quadratic sum of errors between the found data and
the data. The characteristic equation of the least squares’ formula is as follows.

AX = b (15)

where A is an n × k matrix; X is a k × 1 column vector; b is an n × 1 column vector. If the
number of equations is greater than the number of unknowns, the system of equations has
no solution. However, a solution can be found using the least-squares method, meaning
that this solution minimizes the quadratic sum of errors for the system of equations. It is
worthy of note that the quadratic sum of solutions to the equations is

E2 =
n

∑
i=1

[
k

∑
j=1

ai,jxj − bi

]2

(16)

If
(

AT A
)

is a non-singular matrix, then the least-squares solution of the equation is
given as follows,

X =
(

AT A
)−1

AT A (17)

In [54,55], based on the assumption of known knowledge of NLOS measurements,
the least-squares algorithm was first used to perform global search, then the best initial
value was obtained by threshold screening and weight calculation, and finally it was used
as the input of Taylor’s algorithm for iterative solution, and the localization accuracy
was improved by 63% compared with the LS algorithm. In [56], for the case of a mixed
LOS/NLOS environment with unknown anomaly variance case, a weighted least-squares
method based on Hampel and skip-filter was proposed to solve the final estimated position,
which suppressed the error significantly.

The algorithm has the disadvantage of requiring the participation of multiple anchor
nodes and decreasing the performance of anchor nodes with the increase in anchor nodes,
and the problem of setting the weighting factor must be considered if the NLOS error is
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to be suppressed. Reference [57] proposed a method for the dynamic determination of
the weighting factor. As the possibility of being affected by NLOS error increases with
the distance between the mobile station and the base station in the mobile communication
channel, the weighting factor is determined and denoted as:

ai =
1
dε

i
(18)

where ε is the channel parameter taken as 0.5, dε
i is the estimated distance between the

mobile node and the anchor node.

11. Filter Class

The basic principle of using a filtering algorithm to suppress the NLOS error is to
remove the multipath interference caused by the NLOS path through filtering to improve
the signal-to-noise ratio of the signal, thus reducing the error The commonly used filtering
algorithms for this task are Kalman filtering and particle filtering.

The basic principle of Kalman filtering in the suppression NLOS errors is to use prior
knowledge and observations to infer the state of the target in order to calculate an estimate
of the current state. The Kalman filter algorithm is divided into two phases, prediction and
update [58], and its state equation and measurement equation are formulated as follows.

Xn = AXn−1 + Bµn−1 + W, Yn = HnXn + vn (19)

where Xn, Yn are the state and measurement values, respectively, A is the state transfer
matrix; B is the gain of the optional control input µ, W denotes the process noise, which is
disturbed by many external factors, vn is the observation noise, which contains the error
generated between measurement times, and Hn denotes the measurement matrix of the
system. The traditional Kalman filtering algorithm described method in [59,60] calculates
the sample standard deviation for TOA data measured over a period of time and considers
the TOA data to contain NLOS errors when it is greater than a set judgment threshold. The
shortcoming of this method is that the filtered output results are prone to jumping. To solve
this problem, researchers have improved the parameter settings of the Kalman filtering
algorithm. For example, ref. [61] identifies and suppress NLOS error with a Kalman filter
based on the credible factor; ref. [62] suppresses the NLOS error based on the asymmetry
of TOA probability density function, which is applicable no matter what distribution the
NLOS error obeys or in the absence of NLOS error. However, the method is computationally
intensive in the process of probability density estimation and the real-time performance
of the algorithm. The algorithm has poor real-time performance. The advantage of this
algorithm is that it can deal with unstable measurement and positioning data in real time,
but the Kalman filter algorithm requires high accuracy of the system model and noise model
and it cannot deal with nonlinear systems; additionally, if a linear system is to be used, the
extended Kalman filter [63] or the traceless Kalman filter algorithm [64] is required.

In the real world, people are mostly faced with nonlinear and non-Gaussian systems. In
order to better solve the nonlinear filtering problem, researchers have proposed the particle
filtering algorithm [65]. The particle filtering algorithm approximates the distribution of
the localization points by introducing a set of random particles, and resamples and updates
them according to the observed data to finally obtain the posterior distribution of the
localization points. In terms of suppressing NLOS errors, the basic principle of the particle
filtering algorithm is to compensate for the effects of NLOS errors by dynamically adjusting
the weights of the particles. The literature [66] takes the approach of filtering the data
acquired by the UWB system in NLOS environment twice to reduce the effect of NLOS
errors, thus achieving precise positioning. The advantages of this algorithm are that it can
handle nonlinear and non-Gaussian system models, which require less assumptions for
the model, and can increase the number of particles to reduce the NLOS error. However,
there are also some disadvantages. Due to the large number of particles to be processed,
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the computational complexity is high. In addition, due to the introduction of randomness,
the computational results of the particle filtering algorithm have some uncertainty, and
several trials are needed to verify the reliability of the experiments.

12. Neural Network Algorithms

Neural networks are suitable for dealing with inaccurate and ambiguous infor-
mation that requires many factors and conditions to be considered simultaneously.
Therefore, the use of neural networks to estimate the parameter λ of the unknown NLOS
error model can indirectly suppress the effect of NLOS errors and improve positioning
accuracy. Reference [67] proposed a semi-supervised SVM learning method to mitigate
UWB ranging errors in NLOS environments, which incorporates unlabeled measure-
ments into the training data pool by self-training and assigns different weights to labeled
and unlabeled measurements to reduce the accumulated errors. By optimizing deep neu-
ral networks, CNNs and long and short-term memory methods, the problem of adaptive
NLOS suppression was investigated in [68]. In the proposed method, the alignment of
the CIR in reprocessing was achieved by correlating all channel impulse responses (CIRs)
with the associated first CIR and shifting the peak index of the associated CIR; then, the
normalized and aligned CIRs were used as the input to the CNN model. In order to
obtain the time series information and analyze the dependencies between elements from
the CIR, the long- and short-term memories were further developed.

The advantage of this algorithm is its strong nonlinear fitting ability, which means it
can be trained according to different NLOS error cases, thus allowing adaptation to various
cases of NLOS errors. It has a certain generalization ability. However, there are also certain
disadvantages, such as the need for a large amount of training data, which may lead to
overfitting and underfitting phenomena when the data are insufficient; a large number of
matrix calculations are required, so the computational complexity is high, requiring strong
computing power and time cost; the neural network algorithm is a black box model, which
struggles to explain the internal mechanism and decision-making process and may cause
trouble in the application scenario.

13. LOS Reconfiguration

In the identified LOS/NLOS case, ref. [69] used the LOS reconstruction method to
suppress the NLOS error and thus improve the localization accuracy. The steps of the LOS
reconstruction method are as follows: firstly, the distance measurements are smoothed and
the NLOS error is assumed to be a positive number. Then, the NLOS error is corrected
by the pre-know pair σm. After the first step of LOS/NLOS identification process, the
deviation of the measured value from the smoothed value dm(ti)− Sm(ti) can be calculated
for each moment, and a tn can be found after a long enough time so that the negative
deviation of the measured value from the smoothed value is at a maximum value at the
moment tn. The smoothed curve shifts to the point at tn and then shifts upward due to
am. The curve after two shifts is the reconstructed curve. References [70,71] also used the
empirical value of the average excess delay caused by NLOS in a real environment for LOS
reconstruction. Although the algorithm is simple in principle and small in computation, the
drawback is also obvious in that the method requires a large amount of data. In addition,
due to the variance of the distance measurement in the LOS environment and when the
NLOS error obeys the delta distribution, the reconstructed distance differs significantly
from the true distance, meaning that the NLOS error cannot be effectively suppressed.

14. Optimization Algorithm with Constraints

Optimization methods [72] are based on the use of mathematical calculations and use
the ideas and methods related to optimization to solve engineering problems as a way to
find the best decisions for the problem at hand and construct the optimal solutions. Refer-
ences [73–76] directly suppresses the NLOS errors by the use of constrained optimization
methods, including three-step optimization algorithms and linear quadratic programming
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algorithms. Then, the optimization problem with constraints is expressed in a generalized
form as:

min f (x)
s.t. gj(x) = 0, j = 1, . . . , m,

hk(x) ≤ 0, k = 1, . . . , p.
(20)

When the objective and constraint equations are linear, the optimization problem is
transformed into a linear program; conversely, if there is nonlinearity in the equations, the
problem is transformed into a nonlinear program. Reference [77] proposes a new algorithm
for suppressing NLOS, namely the RSA algorithm, which suppresses the effect of NLOS
by multiplying the measured distance of each base station by a scale factor that takes
values between 0 and 1. The main idea is to find the optimal solution for the nonlinear
equations with constraints that exploit the geometric relationship between the estimated
location of the mobile station, the cell geometry, and the positioning circle of the three base
stations. Wang et al. [78] convert the localization problem into one of detection-assisted
optimal planning, where all distance measurements are initially considered as NLOS
links with unknown non-negative deviations and then the target node is estimated in an
iterative manner location. In addition, the maximum likelihood estimates of the target
node locations and NLOS deviations are relaxed to follow a semi-definite plan, and the
geometric relationship of NLOS deviations is introduced as a constraint for optimization.

The advantages of this algorithm include high flexibility, wide applicability and scala-
bility. However, there are some drawbacks. The optimization algorithm with constraints
requires a large amount of computation and optimization, and therefore requires suffi-
cient computational power and time. The performance of the algorithm is limited by the
precision and accuracy of the model and the interference of noise.

15. Path Tracing Algorithm

Most of the commonly used NLOS error identification and suppression algorithms are
based on NLOS propagation models and their probabilistic statistical properties, but they
vary greatly in different environments [79]. Therefore, researchers have proposed the latest
method for NLOS error identification and suppression, which is known as path tracing.
It features a new approach to improve localization accuracy by “exploiting” the informa-
tion of multiple arrival paths instead of adhering to the traditional idea of “suppressing”
multipaths and non-direct paths. It uses path tracing to trace the actual propagation path
of the signal to map the propagation path of the signal and then identify and utilize the
NLOS path based on it. For example, ref. [80] used the ray tracing LOS/NLOS algorithm
to predict the effect of NLOS propagation on signal quality in a complex 3D environment,
thus determining the maximum capability of the localization system in terms of accuracy.

The path tracking algorithm [81] focuses on the direct, reflected, and edge-bound cases
of the signal. If only direct and reflected signals occur during propagation, the resulting
signal propagation path is called a pointing path; conversely, if the signal excessively
bypasses during propagation, the resulting signal propagation path is called an area
pointing path. The path tracking algorithm reduces the NLOS error by: building a multi-
path model, where the NLOS path is modeled as an additional path; using extrapolation,
the analysis of obstacles to estimate the effect of the NLOS path, and then correcting the
results of the algorithm; performing statistical analysis of multiple measurements to reduce
the NLOS error; and using multiple receivers to receive signals and fusing the data from
the receivers.

Although the algorithm is highly adaptable and suitable for real-time use, the tracking
algorithm not only requires high computational resources and hardware support, but
also requires multiple instances of sampling and modeling of the signal, resulting in high
computational complexity and high demands being placed on the algorithm.
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16. Conclusions

Starting from the fact that NLOS error is the main reason affecting the high accuracy
of future ultra-wideband positioning, this paper analyzes the impact of NLOS error on
positioning accuracy. Then, the existing NLOS error identification and suppression algo-
rithms are classified and studied, and the current latest NLOS error suppression algorithm
is discussed. The future research work can be carried out from the following aspects: (1) the
current NLOS error suppression and recognition algorithms have some shortcomings such
as the need for a priori information and high complexity of the algorithms, therefore, there
should be a solution on how to integrate related techniques to improve the robustness of
the algorithms; (2) for the existing NLOS recognition of indoor positioning algorithms, the
future study should be more inclined to develop some statistical feature-based algorithms
so that the application of NLOS sparse or dense scenarios can improve the recognition
accuracy; (3) in view of the shortcomings of the current path tracking, other techniques can
be combined to further improve the accuracy and real-time of the path tracking algorithm
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