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Abstract: Although predictions based on machine learning are reaching unprecedented levels of
accuracy, understanding the underlying mechanisms of a machine learning model is far from trivial.
Therefore, explaining machine learning outcomes is gaining more interest with an increasing need
to understand, trust, justify, and improve both the predictions and the prediction process. This, in
turn, necessitates providing mechanisms to evaluate explainability methods as well as to measure
their ability to fulfill their designated tasks. In this paper, we introduce a technique to extract the
most important features from a data perspective. We propose metrics to quantify the ability of an
explainability method to convey and communicate the underlying concepts available in the data.
Furthermore, we evaluate the ability of an eXplainable Artificial Intelligence (XAI) method to reason
about the reliance of a Machine Learning (ML) model on the extracted features. Through experiments,
we further, prove that our approach enables differentiating explainability methods independent of the
underlying experimental settings. The proposed metrics can be used to functionally evaluate the ex-
tent to which an explainability method is able to extract the patterns discovered by a machine learning
model. Our approach provides a means to quantitatively differentiate global explainability methods
in order to deepen user trust not only in the predictions generated but also in their explanations.

Keywords: machine learning; explainable machine learning; features selection; functionally-grounded
evaluation; quantifiable XAI evaluation

1. Introduction

As solutions based on Machine Learning (ML) are used in nearly every business
domain, the efficiency of decision-making and related tasks increases. However, the
efficiency of ML-based solutions is proportionally related to their complexity. As the
accuracy and efficiency of such solutions increase, their complexity increases while reducing
human interpretability. To address the need of making ML-based solutions understandable
and interpretable to users, ML researchers have suggested a plethora of methods under the
umbrella of eXplainable AI (XAI) [1–5].

1.1. Problem Statement

XAI methods are linked with varying goals, scopes, analysis techniques, user groups,
and output formats. However, the vast availability of divergent XAI methods raises the
challenge of the need to systematically evaluate and compare them. Evaluating XAI meth-
ods still constitutes a gap in XAI research gap. In particular, a comprehensive evaluation
method, which is neither specific to a particular data type (e.g, tabular, text, or images)
nor to an XAI method, is still lacking. Contemporary XAI evaluation methods follow
different goals that include: (1) the evaluation of the understandability and clarity of XAI
outcomes to humans, (2) the ability of humans to perform further tasks depending on their
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understanding of the XAI outcomes, and (3) the correctness and precision of an explanation
generated by an XAI method. Furthermore, XAI methods are evaluated either quantita-
tively or qualitatively with respect to the first two evaluation goals. Most proposals that
address the third evaluation goal provide quantitative approaches to measure a certain
characteristic of the respective XAI method or its outcomes. For example, the stability
of explanations is measured by [6] and fidelity by [7,8], whereas the robustness of XAI
methods is evaluated by [9].

1.2. Contributions

This article proposes a novel approach to evaluate the explanations generated by
XAI methods. This approach deals with the issue of how consistent an explanation is, in
terms of its constituting features, with a feature set that influences the dependent variable.
Ref. [10] refers to consistency as the similarity of the explanations generated for similar predictions
made by two different ML models that are trained on the same task. This paper uses the term
consistency to denote the similarity between the ground truth and the explanations generated
using different XAI methods that explain the predictions of the same ML model. In our context,
similarity expresses the amount of shared knowledge. By ground truth, in turn, we mean
extracted knowledge about the features that are expected to drive a prediction. These
features drive the prediction process by having a strong relation to the dependent variable
and influencing its value. In a nutshell, the proposed approach comprises the following
basic stages:

1. Analysis of the dataset to identify a set of features, that are considered indispensable
for the prediction process (ground truth extraction).

2. Extracting the features that are actually used by the ML model, based on the explana-
tions proposed by different XAI methods.

3. Computing the consistency value for the feature set suggested by each XAI method.
4. Comparing different XAI methods based on their ratios according to the model

selection metrics we propose.

Our main contributions can be summarised as follows:

• We develop an approach to extract a representation of the most influencing features in
a given dataset. We denote these features as indispensable ones.

• We introduce a consistency value that measures knowledge shared between the feature
set obtained with XAI methods and the computed indispensable features.

• We customize two well-known model selection metrics to incorporate three dimen-
sions of the problem space; namely, the feature set highlighted by an XAI method,
its relevant consistency value, and the sample size. This sample is the one used in
training the ML model and for which explanations are generated by the XAI method
under analysis.

The remainder of this paper is structured as follows. In Section 2, we provide back-
grounds on approaches and techniques required for understanding this paper. Section 3
deals with the addressed research questions. The approach and the main contributions of
this work are presented in Section 4. In Section 5, we define the settings of the experiments
we conducted to evaluate the approach. Experimental results are presented in Section 6.
Section 7 discusses related work followed by a summary and outlook in Section 8.

2. Backgrounds

The aim of the proposed approach is to quantitatively evaluate explainability outcomes
as an integrated part of an ML-based prediction process. In the following, we highlight the
most relevant concepts needed to understand our approach.

2.1. Explainable Artificial Intelligence

ML-based models codify the past, whereas they are unable to control the future.
Moreover, biases do not only occur due to the malfunctioning pattern learning of the



Electronics 2023, 12, 1670 3 of 23

ML model but might be also caused by unobserved biases in the dataset that is used for
the learning process. For example, consider a dataset whose entries mostly refer to male
employees and are collected only for a segment of male employees with more years of
experience. Note that such an imbalance in the collected data might lead to a conclusion
that males are gaining more income than their female colleagues even with the same years
of experience. An ML model trained on such a dataset might mistakenly infer that the
gender feature is highly correlated with high-income rates rather than the expertise level
or the organizational section the employees belong to. Therefore, identifying biases or
problems in the past reasoning process might enable us to prevent them in the future or at
least to be aware of the potential to encounter the same bias.

Ref. [11] discusses numerous cases of black box ML models generating an unjustified
prediction based on biased data or unreasonably learned patterns from a human perspective.
Such predictions were used to guide the human decision-making process, leading to wrong
decisions in many cases [11]. Gaining insights into the learning and reasoning process of an
ML model, therefore, becomes crucial, as ML models are increasingly integrated into our
daily lives and affect critical decisions made by governmental, medical, and other entities.
In response to this need, eXplainable Artificial Intelligence (XAI) emerged as a subfield of
AI and ML.

Since the ML community started to emphasize the importance of understanding
the behavior of ML models, there has been no agreed-upon definition of explainability.
Explainability represents the potential to provide an illustration of the model reasoning
process in terms of the features contributing to its outcome [12]. Over the last years, several
authors (e.g., Carvalho et al. [10], Guidotti et al. [11], Vilone and Longo [12] Jesus et al. [13]
Barredo Arrieta et al. [14]) have tried to determine requirements that, if met, will allow
characterizing an explanation and evaluating an XAI method. Most research works agreed
upon certain desiderata of an XAI method:

• Robustness, meaning that an explanation can withstand small perturbations of the in-
put that do not change the output prediction [12]. Consequently, robustness expresses
a low sensitivity of the XAI method to changes in inputs.

• Fidelity, meaning that the XAI method should preserve the internal concepts and
original behavior of the black box ML model whenever there is a need to mimic
that model.

• Causality, meaning that the XAI method should maintain causal relationships be-
tween inputs and outputs. Note that an ML model is perceived as being more human-
like whenever it provides such causal explanations. Therefore, causality is fundamen-
tal to achieving a human understanding of the ML model.

• Trust, meaning that the outcomes of an XAI method enable gaining confidence that
the ML model acts as intended.

• Fairness, meaning that an explanation has to enable humans to ensure unbiased
decisions of the employed ML models.

There are other characteristics such as, for example transferability, informativeness,
transparency, privacy, and accessibility. Moreover, characterizing an explanation or XAI
method might be case-dependent and shaped by domain requirements. Finally, XAI
methods may be grouped into different categories reflecting different perspectives of
explainability. In detail, these categories are:

• Explanation generation. The explanation generation approach represents a crucial
categorization dimension of XAI methods. The selection of a specific explanation form
depends on the level of complexity of the explanation to be conveyed as well as the
expertise level of the end user. Refs. [14,15] refer to certain explanation forms. First,
feature attributions represents a commonly used explanation form where the relevance
or the explanatory power of the features is computed with respect to predictions
generated by the original model. Second, Simplification uses an interpretable simpler
model to mimic and explain the behavior of the original model. Finally, explain-by-
example constitutes another form of explanation where a prediction corresponding to a
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sample is explained by finding a similar sample with a counterpart prediction or a
different sample with a similar prediction.

• Coverage. XAI methods are either global or local. Global explainability methods generate
explanations that summarize patterns learned by an ML model over a large number of
samples. These methods tend to understand the distribution of the prediction output
space in terms of the input features [10]. In turn, local explainability methods study the
interactions between patterns to better understand how a specific input led to a certain
output in a given sample [16]. Consequently, local explainability methods generate
explanations for a single sample or a group of similar samples.

• Chronological hierarchy. [10] groups XAI methods with respect to the point in time an
XAI method is applied with respect to the modeling step. First, Pre-Model Explainability
means that the XAI method is applied to the dataset itself regardless of the modeling
step. Methods falling into this category tend to adopt exploratory and presentation
perspectives of the input data. Second, In-Model Explainability means producing
explanations as part of the model training process. Finally, Post-Model Explainability
means producing explanations for predictions of an ML model as a post-momentum
step after training the model on historical data.

• Contextual hierarchy. Another criterion is concerned with the ability of an ML model
to provide explanations of the predictions by itself or a separate XAI method is applied.
In this context, intrinsic explainability means having models that are interpretable by
nature, i.e., models that show a high degree of transparency in terms of being simulat-
able, algorithmically transparent, and decomposable [14]. Linear models and simple
decision trees provide common examples of ML models with inherent explainability.
Post-hoc explainability targets complex models, which are not interpretable by design.
XAI methods in this category are applied to a trained model to reverse engineer the
reasoning process of the analyzed ML model.

• Model specificity. The influence of the executed ML model on the choice of an XAI
method. Model-specific explanation methods are limited to specific models, as the
XAI methods have been tailored towards specific model internals [10]. For example,
Layer-wise Relevance Propagation (LRP) [1] and Saliency Maps [5] are specific XAI
methods used in the context of models based on neural networks. In turn, model-
agnostic methods are applicable to any ML model independent from its internals [16].
Model-agnostic methods incorporate predictors which untied to a particular type of
black box, explanation, or data type [11]. LIME [2] and SHAP [3] are examples of the
latter subcategory.

Figure 1 summarizes the categorization criteria for XAI methods. Note that some of
these criteria define the relation between the XAI method on one hand and the explained
ML model on the other. Other criteria, in turn, define how an XAI method processes its
inputs or represents its outputs. The proposed approach is meant to provide an evaluation
approach of model-agnostic, global, and post-hoc XAI methods. We advocate evaluating model-
agnostic, post-hoc XAI methods in order to offer broad applicability to our proposal. Being
limited to a certain category of XAI methods restricts the number of XAI methods our
approach is applicable to, for example as in the case of evaluating XAI methods that explain
the predictions of deep learning models. The proposed approach evaluates global XAI
methods since the core idea of our approach is to measure the consistency with ground
truth extracted from the entire dataset. As a result, we need to study the group of XAI
methods that examine the reasoning process of an ML model over the entire dataset rather
than on single predictions.
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Figure 1. Categorisation of XAI methods.

2.2. Evaluation of Explainability Methods

The nature and definitions of the XAI methods characteristics presented in Section 2.1
imply that not all of them can be easily quantified. Further, note that an explanation is a
subjective matter that is affected by various factors, including user experience and domain
knowledge, explanation purpose, techniques to generate the explanation, and explanation
scope [15]. Various approaches are proposed to evaluate the quality of an explanation.
Ref. [17] assigns these evaluation approaches to three categories:

• Application-grounded evaluations imply the use of the ML-based solution in a real-
life application, generate explanations for the users of this application, and evaluate
the quality of an explanation in the context of real-life tasks.

• Human-grounded evaluations aim to evaluate general criteria with respect to expla-
nation quality. Corresponding evaluations create simplified tasks that resemble the
real-life application subject of the ML system. Humans involved in these experiments
are less experienced than the ones involved in application-grounded evaluations.

• Functionally-grounded evaluations. In this category, no humans are involved. In-
stead, some formal definitions of interpretability are considered to form a proxy of
explanation quality. Corresponding evaluations are objective (unlike the former cate-
gories) and depend on quantitative metrics [15]. These evaluations are suitable if the
cost and time budgets for human-based experiments are limited or the explainability
technique to be evaluated is not mature enough and still under iterative development.

Developing means to evaluate explainability techniques allows us to determine the ex-
tent to which a particular technique can fulfill explainability goals. Furthermore, evaluating
explanation techniques enables us to assess the suitability of specific techniques in a certain
context, e.g., if input data is changing over time or computational resources are limited. Our
proposed approach is meant to be a functionally-grounded explanation evaluation approach.

2.3. Feature Selection

Generating predictions for highly dimensional datasets mandates finding a compro-
mise between prediction accuracy and computation efficiency. Moreover, for a dataset
being both highly dimensional and having only a small number of samples, the ML process
itself becomes more complicated. In general, it turns out to be difficult for any ML model
to distinguish relevant data from noise as the search space gets sparsely populated with a
lower number of samples [18].

Feature set reduction becomes crucial in this context. The ultimate goal of feature
reduction is to obtain a minimal feature subset that maximizes the efficiency of the analysis.
With analysis, we mean whether the resulting feature subset shall be used in classification,
regression, or clustering analysis tasks. With efficiency, we mean the efficient use of compu-
tational resources in the analysis of the selected feature set in terms of computation time,
storage, and processing. Feature set reduction may be achieved through feature set extraction
or feature selection (FS) [19].
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In this context, we are interested in feature selection as its related methods provide
a minimal feature set without the need for transforming values in this feature set. Con-
sequently, further processing (e.g., explanations of predictions) is based on the original
values of the selected features; but neither on transformed nor concluded values. The
selected features are supposed to describe the observed phenomena with fewer storage and
processing demands. Furthermore, these features contain the maximum discrimination
information about the dependent variable.

According to [18], feature selection is the process of detecting the relevant features and
discarding the irrelevant ones. Feature relevance is the extent to which a feature contains
useful information useful to make predictions and the way this information might be used
to decide against or in favor of a certain prediction [20]. Ref. [19] distinguishes between
relevance and repetition as two basic characteristics for selecting a feature set. Finally, the
selected feature set should maximize relevance and minimize repetition with respect to the
analysis goal [19].

Feature selection methods employ four basic steps [19]. First, a method begins with
searching for a suitable feature subset from the entire feature set. Second, the selected
subset is evaluated according to specific criteria. Third, a stopping criterion is employed to
terminate the search for additional features to be included in the selected feature subset.
Finally, the selected subset is validated by using it in the analysis task for which the feature
set is reduced. Feature selection methods can be categorized into three families:

• Wrapper methods. A prediction model is wrapped into the optimal feature subset
search step. The selected feature subset is the one that maximizes the performance of
the used prediction model [20]. These methods apply a greedy approach for selecting a
feature as they consider all possible features with respect to an evaluation criterion [21].
There is one category of methods in this family for which the method begins with
an empty feature subset and proceeds forward by adding more features one by one
until meeting a stopping criterion. There is another category in which the methods
start with the entire feature set and remove features one by one till the predetermined
stopping criterion is met. At each step, a new model is trained. Due to the slow
computations associated with these methods, wrapper methods have proven to be
less efficient despite being more accurate [18].

• Filter methods [20]. Each method belonging to this category utilizes a ranking cri-
terion for ordering the feature set. A selection threshold is used to determine the
relevance of a certain feature to the dependent variable. Dependencies between fea-
tures are not essential to determine whether a particular feature is relevant, i.e., these
methods do not take feature interactions into account. However, to be relevant, a
feature has to be strongly related to the dependent variable [20]. Note that methods of
this category do not rely on any underlying ML model [21].

• Embedded methods. The selection step is an inherent part of the training process
when the model assigns some weights or ranks to the features. Common embed-
ded methods include decision tree methods (e.g., CART) and linear models (e.g.,
linear regression).

Figure 2 summarises the basic properties of each category of feature selection methods.
Common to the wrapper and embedded methods is the employment of an ML model
at a certain point independent of whether the selection step is part of the model or the
model is used as part of the selection process. Filter methods, in turn, study the inherent
characteristics of a dataset and the relations between its features to find an optimal or
sub-optimal feature subset. Selected features are expected to be more relevant to the
analysis goal, and additionally hold minimal information in common with other features
(i.e., less redundant).
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Figure 2. Categories of feature selection methods.

3. Research Questions

Our goal is to propose an approach that enables differentiating between XAI methods
in a functionally-grounded way. We need to distinguish XAI methods with respect to their
ability to reflect underlying data facts, under the same prediction settings. For this purpose,
we define two research questions.

• RQ1: Given an ML model, how can we identify a feature subset that has the potential to
influence the prediction process of this model?

When generating predictions, an ML model depends on the relations and interactions
between features on one hand and the dependent variable on the other. If there is a means
to obtain features with the highest influence on the dependent variable, this will be a step
toward understanding which features are supposed to affect the prediction process. We
denote these features as the indispensable features. In this paper, it is out of scope to study
whether an ML model has already been used them. However, it should be possible to
identify the features that are supposed to guide the prediction process and, hence, may be
present in an explanation in an advanced stage. Each ML model has its own sensitivities
when concluding relations between features. As a result, we need to introduce a technique
that is model-independent. Simultaneously, the proposed technique has to provide insights
into the relations between the features and the dependent variable from a data perspective
and based on data analysis.

• RQ2: How to use the discovered ground truth as a basis to differentiate global XAI methods?

The proposed approach examines the consistency of an XAI method with respect to the
ground truth. To achieve this goal, we address the global XAI methods that investigate how
an ML model selects features with a high predictability power for the prediction process.
If the indispensable features have the potential to influence the prediction process, they
have to be captured by an XAI method and be present in an explanation. To answer RQ2
we need to measure the proximity of the feature set in an explanation to the indispensable
features. Furthermore, we need to introduce proper metrics to differentiate XAI methods
regarding their proximity in terms of the number of features and, if possible, the magnitude
of their importance as indicated by an XAI method.

4. Proposed Approach

We present our approach along four stages that complement each other but differ with
respect to the goals they address. Stage 1 is concerned with the data perspective in the
context of a prediction generation and explanation pipeline. Stage 2 deals with the analysis
of explainability step outcomes. Stage 3 computes a ratio that represents a starting point
to qualify the shared knowledge between explanations of an XAI method and the facts
extracted in Stage 1. Stage 4 is concerned with comparing multiple XAI methods using facts
learned about the data. Figure 3 summarizes the proposed approach and shows the possible
outputs of each stage. Note that we add stage (*) in Figure 3, which is “ML model training”,
to keep the approach conformance to the logical sequence of a prediction generation and
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explanation pipeline. However, we do not propose any additional procedures to the steps
held in the respective (*) stage.

Figure 3. Proposed approach.

4.1. Stage 1: Indispensable Features Analysis

The goal of Stage 1 is to obtain a ground truth about the data at hand. This ground truth
is essential to study the most influencing factors when generating a prediction. Therefore,
the steps followed in this Stage are model-independent and aim to extract knowledge from
a data perspective. The choice of a specific ML algorithm in the model training phase does
not influence the analysis executed in this stage. We pursue a basic understanding of the
data apart from the conclusions made by an ML model or obtained after applying an XAI
method. Algorithm 1 summarizes the steps executed in Stage 1.

We need to study the relationship between the features and the dependent variable
(i.e., the label) from a data perspective. Furthermore, we need to extract a subset of features
that are sufficient to drive the prediction process. To analyze the relationship between the
features and the dependent variable, we apply a set of feature selection methods that vary
in their underlying mechanisms in order to produce different possible subsets of features.
By using different feature selection methods, which belong to different categories, we want
to mitigate their drawbacks, while taking benefit of their advantages.

Each feature subset obtained with a feature selection method is expected to include
features with high predictability power, i.e., a strong statistical relation to the dependent
variable. Furthermore, a feature subset, denoted as a reduct in our approach, should be
minimal and less redundant. A reduct feature subset provides a representation of the basic
concepts and relations in a dataset and comprises features that are essential to generating
predictions. The general idea of a reduct has been inspired by the relevant concept from
rough sets theory [22].

Definition 1 (Reduct.). Let F be the set of all features in a dataset D, and T be the dependent
variable. Let g(F)⇒ T where features in F lead to predicting T then R is a reduct of D if g(R)⇒ T
and ∀ B ⊂ R, g(B) 6⇒ T. A reduct is a minimal subset of features that drives the prediction of the
dependent variable.

There are cases in which two different features may have a similar influence on the
dependent variable, e.g., in the case of highly correlated features. As a result, one of the
two correlated features may be selected by two different feature elimination and analysis
techniques. As a result, a single dataset may have multiple reducts that provide different
representations of the underlying concepts of the analyzed dataset.

The ability of a feature selection method to return all features with their respective
importance scores constitutes a crucial criterion to choose a feature selection method to be
applied in this Stage. As a result, we need to define the length of the reduct or the feature
subset obtained using each of the applied feature selection methods. To achieve this goal,
we use the scores provided by each feature selection method to set a threshold. The latter is
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used for selecting the features to reside in the reduct computed for such feature selection
method. To set a threshold, we follow two steps. First, we normalize the scores returned by
each feature selection method. This normalization step takes place separately for the scores
computed by each feature selection method. The normalization of scores is important to
ensure the comparability of the obtained scores. In order to mitigate the effect of negative
score values (whenever found), we shift the scores before the normalization. With shifting
scores, we mean the process of adding the absolute value of the lowest score in the column
containing negative values. All values are shifted by a step equal to the lowest score, while
preserving distances between numbers, before normalizing all the values.

Second, we compute the mean of these scores. To set the threshold, we pick the
minimum mean score as the selection threshold. For each applied feature selection method,
we obtain a reduct that contains the top K features whose scores are greater than the
threshold. At this point, we obtain a number of reducts equal to the number of applied feature
selection methods.

At the end of this stage, we need to obtain one reduct representing the set of indispens-
able features of the dataset. We pick the shortest reduct as the dataset reduct.

ReductsDataset = shortest(ReductFS ),

where ReductFS is the set of all reducts obtained using the applied feature selection meth-
ods. A dataset reduct constitutes features that are supposed to be most relevant to make
the predictions for the analyzed dataset.

Algorithm 1: Compute Dataset Reduct

Input: Dataset, seto f f eatureselectionmethods(FS)
Output: ReductDS

Initialise empty lists to store MeanScores and ReductsFS
foreach f s ∈ FS do

Compute all f eatures importance scores (Scores f eats)
MeanScore = Average(Scores f eats) . average of scores of the entire feature set

MeanScores.append(MeanScore)
MinScore = min(MeanScores) . the min average score among all the applied FS methods

Threshold = MinScore
foreach f s ∈ FS do

Reduct f s = { f eat ∈ Feats ∀ f eat ∃ Score f eat ≥ Threshold}
. A reduct contains features scoring ≥ the threshold

Append Reduct f s to ReductsFS . One reduct for each applied FS method

ReductsDS = shortest(ReductsFS ) . The shortest reduct represents the dataset

4.2. Stage 2: Explainability Methods Application and Explanations Analysis

The goal of Stage 2 is to obtain explanations in the form of features that are ranked
according to their contribution to the prediction. A fundamental procedure in our approach
is to choose the XAI methods that shall be evaluated. The former methods are employed
on top of the trained ML model. XAI methods provide insights into features that have the
greatest influence on ML predictions. Our approach evaluates XAI methods that explain
predictions by calculating feature attributions, i.e., feature contributions to the prediction.
The approach addresses global XAI methods applied in a post-hoc manner after training
an ML model.

To compute and transform feature attributions, we execute two steps. First, we
select a subset with the top K most important features according to the employed XAI method.
The size of this subset is the same as the reduct computed in Stage 1. The resulting subset
is called ReductXAI . ReductXAI comprises features with the highest scores computed using
the selected XAI method. This subset acts as the starting input for the upcoming stages.
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The second step is to transform the scores from the last step into a form that reflects the
respective importance of each feature. Note that not all XAI methods directly produce the
scores indicating the importance of a feature. Thus, the need for executing this step varies
depending on the respective XAI method. For example, consider the SHAP method, which
has been designed as a local XAI method. However, Shapely Values can be aggregated
to provide a global interpretation [23]. For each feature, SHAP produces a vector of
contributions. Each value in this vector reflects the contribution of the respective feature in
producing a single prediction. In turn, these contributions need to be aggregated to obtain
a score representing the contribution of the feature to the predictions generated for the
entire dataset. As a result of executing this step, we obtain the top K features associated
with the scores that represent their importance with respect to the entire prediction process.
Finally, Stage 2 results in N reducts, where N corresponds to the number of employed XAI
methods, i.e., we obtain one reduct for each XAI method.

4.3. Stage 3: Consistency Computation

Stage 3 quantitatively measures the shared knowledge (in terms of features and feature
scores) between the reduct computed for each XAI method and the indispensable features,
i.e., the dataset reduct obtained in Stage 1. We use the term reduct ratio to denote the
numerical value we compute for consistency. Reduct ratio shall enable quantifying the
agreement between the reduced subset of the features, and the most important features
that an XAI method presented as the most important to the ML model.

The reduct ratio is computed as follows: first, we compute the intersection
(IntersectFeats(IFeats)) between the dataset reduct and the reduct returned by the XAI
method under inspection. In the following, we refer to the resulting features subset as
the intersection set. The latter consists of features whose importance is agreed on by both
the XAI method as well as the data analysis. In other words, these features are important
from a data perspective, and it is concluded by the XAI method that the ML model used
them to make predictions. Second, the reduct ratio is computed according to Equation (1).
Equation (1) is based on the recall equation applied to measure the fidelity of explanations
in [2]. Applying Equation (1) on the features scores (i.e., not the features themselves) is
the difference we introduce here. We believe that applying Equation (1) on the number
of features instead of their scores does not enable comparing XAI methods when facing
equally-sized reducts. Furthermore, using scores instead of the number of features in the
intersection set enables us to preserve the magnitude of features’ influence even if different
XAI methods have the same features at the intersection with indispensable features.

Reduct_RatioXAI =
∑ Scores(ReductXAI ∩ ReductDS)

∑ Scores(ReductDS)
(1)

The scores to be summed in the numerator of Equation (1) are the ones of the features in
the intersection set and are computed by the XAI method. Scores, as computed by an XAI
method, are fractions of 1.0. In the denominator, we use the summation of scores of the
features at the dataset reduct. Given that a dataset reduct contains the most relevant and
the least redundant features, we assign a value of 1.0 to each feature as its importance.
Therefore, by the summation of scores in the denominator, we mean the length of the dataset
reduct. Algorithm 2 summarizes the proposed technique to compute the desired ratios.

Through experiments, numerous scholars have confirmed the instability and sensi-
tivity of different XAI methods to small changes in input data even if these changes do
not affect the final prediction. This has been confirmed through several runs of the XAI
methods on the same datasets and using the same ML models [6,24]. Therefore, we argue
that unstable results, whenever they occur, can be traced back to characteristics of the
respective XAI method rather than the underlying data. The proposed ratio produced in
this stage can be used to get insights into the ability of an XAI method to reflect underlying
ground truths, over independent executions of the method. However, we can also argue
that the ratio computed in this stage has the potential to provide a broad understanding
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of an XAI method. This goal can be achieved when the reduct ratio is utilized in the
context of other metrics to compare XAI methods. This will be illustrated in Stage 4 of the
proposed approach.

Algorithm 2: Calculate Reduct Ratio
Input: ReductDS(RDS), ReductXAI(RXAI)

Output: Reduct_RatioXAI
IntersectFeats(IFeats) = ∩ {RDS, RXAI}

. common features between reduct of the dataset and XAI method

ScoresIFeats = IFeatsScoresR_XAI . scores of intersection sets as calculated by XAI method

ScoresReductFeatsDS(ScoresRFeatsDS) = len(ReductFeatsDS)
. each feature in the reduct of the dataset scores 1

Reduct_RatioXAI = ∑ ScoresIFeats/ ∑ ScoresRFeatsDS

4.4. Stage 4: Explainability Methods Comparison and Selection

As explained in Stage 3, for each XAI method a reduct ratio is computed separately.
Stage 4 builds upon the results of Stage 3 and introduces two metrics for evaluating XAI
methods. The proposed metrics enable the comparison of XAI methods based on their
scores with respect to the reduct ratio computed in Stage 3.

The first metric has been inspired by the Akaike Information Criterion (AIC) [25], which
was designed to select an ML model that minimizes the prediction error. However, this
evaluation aims at selecting an XAI method that reflects the maximum information shared
with the ground truth. Therefore, the reduct ratio replaces the likelihood in the original
metric, except for the use of the complement value of the ratio. As a second metric, we use
the Bayesian Information Criterion (BIC) [26]. BIC is similar to AIC, except that it penalizes
complex ML models that have many parameters. As our goal is to maximize the number of
features in the intersection set, we use the complement of this number to calculate the BIC
value. By the complement we mean the number of features in the dataset reduct that are
not part of the intersection set. Note that the XAI method achieving the lowest AIC/BIC
values is the one assumed to have the highest consistency. By using both metrics, i.e., AIC
and BIC, we want to compare XAI methods in terms of the number of features (in the case
of BIC) and the reduct ratios (in the case of AIC). Based on this, we obtain insights into the
deterministic factor of comparing XAI methods. This deterministic factor may be either the
number of indispensable features captured by an XAI method or the emphasis it places
on the captured features in terms of their scores. Note that whenever the indispensable
features achieve high importance scores in the context of an XAI method, this is reflected
in the respective reduct ratio and, hence, affects the achieved value on the AIC metric.
Equations (2) and (3) define the proposed metrics.

AICConsistency = −2 ∗ log2(Reduct_RatioXAI) + 2 ∗ K (2)

Reduct_RatioXAI is the reduct ratio obtained in Stage 3 and K is the number of features of
the intersection set.

BICConsistency = −2 ∗ log2(Reduct_RatioXAI) + K ∗ log2(N) (3)

N corresponds to the sample size of the analyzed dataset. When fixing the underlying
settings, e.g., data and ML model, the reduct ratio provides a useful criterion to differ-
entiate XAI methods. By applying a log function to the reduct ratio, a small change in
the values of this ratio results in a significant difference in the resulting AIC and BIC
values. Note that these two metrics inherit both the characteristics and inconsistencies of
the underlying settings.
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The potential inconsistencies of the underlying settings can take several forms. For
example, when the XAI method to be evaluated is unstable, it is expected to produce
different explanations in different execution runs under the same conditions. As another
example, consider an XAI method that is not robust to small changes in the data. Note
that the latter is expected to not change the ML model prediction significantly. Such
inconsistencies might result in different explanations over multiple executions of an XAI
method even when the underlying settings are fixed. Consider as an example of fixed
settings, the case when using the same ML model with the same parameters and/or the
same data. This inconsistency of the XAI method might affect the resulting reduct ratio and
the intersection set, as well as the resulting AICconsistency and BICconsistency values. In this
case, the source of outcome change is neither due to malfunction application nor instability
as a characteristic of the proposed metric.

5. Experimental Setup

To evaluate the applicability of the proposed approach, we perform a number of
experiments on open datasets. The design of these experiments is described in detail
in this section. To ensure reproducibility, the code of the proposed approach and the
conducted experiments is made available through a GitHub repository https://github.
com/GhadaElkhawaga/ConsisXAI (accessed on 30 March 2023 ). All experiments were
run using Python 3.6 and the scikit-learn library [27] on an i5 Intel Core notebook with
12 GB of RAM.

5.1. Datasets

The experiments are based on nine datasets from the UCI Machine learning reposi-
tory [28]. These datasets are all labeled with a binary classification goal (see Table 1 for an
overview of the considered datasets). They vary in the number of samples and features.
This variability provides a space for the results to vary, especially while having one of
the metrics (i.e., BIC) taking the sample size as input. We apply appropriate sampling
techniques to maintain a balance between the positive and negative classes. In the pre-
processing step, we remove data points with missing values, remove duplicate samples if
they represent more than 5% of the sample size, and label-encode categorical attributes.
Numerical attributes are used as-is.

Table 1. Datasets statistics.

Dataset #Samples #Features % Pos Class Attributes

Diabetic 1151 19 0.52 Numerical
Ionosphere 430 34 0.5 Numerical
Spect 227 22 0.55 Numerical
Kidney disease 400 34 0.61 Categorical & Numerical
Credit 689 21 0.55 Categorical & Numerical
Climate 180 20 0.5 Numerical
Adult 28,533 17 0.5 Categorical & Numerical
Truck failures 17,352 170 0.5 Numerical
Spam 4938 57 0.5 Numerical

5.2. ML Predictive Models

For the experiments, we selected four classification ML models. The first one is
Logistic Regression (Logit) [29], which is interpretable by nature, the other three are ensemble
models. As ensemble ML models we use Gradient Boosting Machines (GBM) [30] and eXtreme
Gradient Boosting (XGBoost) [31] as boosting-based models, and Random Forest (RF) [32] as a
bagging-based ensemble model. Ensemble-based models are widely used due to their high
performance, despite the drawback of being less interpretable. GBM and XGBoost build a
better learner taking the errors of a weaker learner that was built in the previous iteration
into account. The final iteration result in a strong learner after improving the loss rate

https://github.com/GhadaElkhawaga/ConsisXAI
https://github.com/GhadaElkhawaga/ConsisXAI


Electronics 2023, 12, 1670 13 of 23

obtained by the previous weak learners. By contrast, RF uses parallel learners that were
trained on different subsets of the data. Furthermore, a voting scheme is applied to make
the prediction based on the majority votes. We selected these four models as they provide
built-in functions to access the most important features they relied on when generating
the predictions. In Logit [29], the model can be queried for the weights representing the
log odds assigned to each feature. The executed ensemble-based models can be queried
for the importance of a feature regarding criteria such as gain, cover, and weight [31]. We
optimized the parameters of all models by applying the TPE algorithm over 50 iterations.
To mitigate the effect of any possible model overfitting, we perform 5-fold cross-validation.

Table 2 presents the search space of each hyperparameter tuned for the four models. To
evaluate the performance of the selected models, we used F1 and AUC evaluation metrics,
which we imported from the Scikit-learn python library. Performance evaluation results
are presented in Table 3. Both Logit and XGBoost are achieving high scores in four datasets.
Concerning the remaining datasets, acceptable scores are achieved as well.

Table 2. Search spaces for hyperparameters of the executed ML models.

ML Model Hyperparameter Search Space

Logit Regularization (c) 2x, x ∈ [−5, 5]

XGBoost

Learning rate x ∈ [0, 1]
Min child weight x ∈ [1, 6]
Subsample x ∈ [0.5, 1]
Max tree depth x ∈ [4, 30]
Colsample by tree x ∈ [0.5, 1]
n estimators 500

GBM Learning rate x ∈ [0, 1]
n estimators 500

RF Max features x ∈ [0, 1]
n estimators 500

Table 3. Performance of ML models

Dataset Testing Shape
Logit XGBoost GBM RF

F1_score AUC F1_score AUC F1_score AUC F1_score AUC

Diabetic (231,19) 0.76395 0.76287 0.74286 0.72978 0.71429 0.6917 0.69828 0.69774
Ionosphere (84,34) 0.88889 0.87896 0.95238 0.93665 0.96078 0.95645 0.95146 0.94174
Spect (46,22) 0.69767 0.71739 0.66667 0.67391 0.625 0.60869 0.625 0.60869
Kidney disease (80,34) 1.0 1.0 1.0 1.0 0.9836 0.99 0.98305 0.98333
Credit (138,21) 0.86667 0.85833 0.8961 0.88397 0.84768 0.83526 0.87898 0.85897
Climate (36,20) 0.88889 0.76154 0.94545 0.85 0.86792 0.7423 0.90566 0.81154
Adult (5707,17) 0.7116 0.759 0.79306 0.82322 0.77386 0.80759 0.75693 0.79337
Truck failures (3471,170) 0.82264 0.89058 0.89681 0.93157 0.8784 0.93468 0.88117 0.93333
Spam (696,57) 0.91515 0.92134 0.95149 0.95505 0.8826 0.88777 0.89813 0.90396

5.3. Feature Selection Methods

As explained in Stage 1, we want to derive several subsets of the same feature set that
may act as the starting point for computing the indispensable feature subset, i.e., the dataset
reduct. When choosing the feature selection methods, we considered several criteria:

• The feature selection method provides the feature subset together with a score indi-
cating the rank of each feature. Therefore, we excluded the wrapper-based methods
(cf. Section 2.3), as their available implementations only return a subset without any
means to order the features or any kind of relevance scores.

• The feature selection method must not be biased towards any ML model. This criterion
provides another reason to exclude wrapper-based methods. The latter tend to produce
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feature subsets that are biased towards the characteristics of the wrapped ML model.
The same criterion may affect the results of embedded methods. To remedy this, we
used two embedded methods that rely on different underlying ML models.

• The implementation of the feature selection method shall facilitate setting the selection
threshold to the minimum or the number of selected features to the maximum. In
this way, we can obtain an overview of the importance of the entire feature set or
relevance scores.

• Whenever an ML model is an input to a feature selection method, it should be possible
to input the model that was trained on the same dataset. Using the same model
prevents fitting a new one as part of the feature selection process. Based on this, we
try to ensure that the selection conditions are the same as the training conditions in
our pipeline.

After applying these criteria to the feature selection methods, we obtain seven methods.
These comprise two embedded methods and five filter methods. The embedded methods
include lasso and tree as well as their corresponding implementations from the Scikit-learn
library [27]. To apply the lasso and tree feature selection methods, it should be possible
to query a model for its important features. This requirement is met by the ML models
executed in our experiments (cf. Section 5.2). We use lasso and tree, with the corresponding
ML models that were pre-trained on the datasets.

Concerning lasso, we used the logit model as input. Similarly, we use the tree feature
selection method with the three ensemble-based models, i.e., XGBoost, GBM, and RF. As
a result, we obtained three subsets of important features. Following this approach, we
can guarantee that the resulting reducts include a share of the most important features
according to the four models trained on the datasets. As filter methods, we use information
gain [33], gini-index [33], TuRF (as one of the ReliefF versions) [34], Information Value (IV) [35],
and Chi-square [36] and ANOVA [37] interchangeably based on the underlying nature of
features. Note that Chi-square is more suitable for analyzing the relevance of categorical
features with respect to the dependent variable. ANOVA, in turn, is suitable for analyzing
the respective relation between continuous features and the dependent variable.

5.4. XAI Methods

We need to generate explanations over the complete dataset to evaluate the consistency
of a feature set that includes the most important features according to an applied XAI
method. We choose two XAI methods that provide global explanations [24], i.e., Permutation
Feature Importance and SHAP. Both methods are model-agnostic [24], i.e., they are not
specifically explaining predictions of a certain type of model.

Permutation Feature Importance (Perm) [23] measures the average prediction error before
and after shuffling the feature values a predefined number of times. In the context of Perm,
feature importance scores are computed in isolation without taking feature interactions into
account. SHAP [3], in turn, computes the contributions of each feature to a change in the
prediction outcome with respect to a baseline prediction. A shapely value is the average
marginal contribution of a feature value across all possible combinations of this value with
the rest of the feature set. SHAP explanations tend to be consistent. Consistency of SHAP
explanations implies that the SHAP value of a feature changes whenever its marginal
contribution changes in response to a change in the model [23].

6. Analysis and Lessons Learned

In Section 4, we proposed an approach for evaluating XAI methods based on their
ability to reflect the basic information upon predictions made. In Section 5, we further
applied this approach to various datasets to answer the defined research questions. In the
following, we present and discuss the major results, observations, and lessons learned from
the presented experiments.
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6.1. Experimental Results

The results of the experiments are summarized in Tables 4–7. Each table comprises
nine rows (one for each dataset) and eight columns. For each ML model, there are two
columns: the first column represents the results obtained for SHAP, whereas the second
column holds the corresponding results for Perm.

As discussed in Section 4, for an XAI method to be selected, this method has to achieve
a high reduct ratio, a high number of features in the intersection set, and low AIC and BIC
values. Tables 4–7 highlight the values meeting these prerequisites for each ML model. If
both XAI methods achieve the same score, we do not consider any of them to be the best
method for the given ML model.

The starting point of our evaluation is the number of features in the intersection set
obtained with each XAI method. Table 4 shows the number of features in the reduct of
each dataset. Furthermore, for both XAI methods, the respective number of features at
the intersection between the XAI method and the dataset reduct is shown. For each XAI
method, it has to achieve a number of features as high as possible compared to the value in
the first column (dataset reduct). As can be seen, SHAP is scoring better than Perm for most
datasets, ignoring cases in which both XAI methods obtain the same scores. SHAP obtains
the best scores for all datasets when using it to explain the predictions provided by the RF
model. This might indicate that SHAP is able to cope with the randomness in building the
RF trees, whereas Perm can not. When explaining GBM predictions, Perm scores better in
three datasets, whereas SHAP scores higher in four datasets. Moreover, SHAP performs
better for XGBoost, when not considering datasets for which both explainers score the
same. When explaining Logit predictions, the results obtained for SHAP and Perm are
indecisive for most datasets. However, the number of features captured at the intersection
set represents a large percentage of the dataset reduct in all cases. Furthermore, in these
datasets when SHAP is scoring better, it can capture most of the features at the reduct of
the dataset. Figure 4 plots the volume of the intersection set achieved by both XAI methods
when applying them to each of the executed ML models. Figure 4 also plots the total
number of features in the dataset as well as the number of features in the respective reduct.

Observation (1): In most cases, SHAP captures a high percentage of the features in the reduct set.

Table 4. Intersection sets.

Dataset #Features at Dataset Reduct
XGBoost Logit RF GBM

SHAP Perm SHAP Perm SHAP Perm SHAP Perm

Diabetic 3 2 1 3 3 1 1 1 1

Ionosphere 5 2 2 1 1 4 1 2 2

Spect 3 2 2 2 2 2 2 1 3

Kidney 10 8 7 7 4 10 1 9 3

Credit 9 3 3 3 3 4 3 3 4

Climate 7 6 6 5 5 5 4 5 4

Adult 5 4 2 3 2 4 2 4 3

Truck Failures 16 8 8 3 5 11 7 7 8

Spam 8 2 2 1 1 3 3 2 1

Despite calculating reduct ratios for the features in the intersection sets, the results of
reduct ratios do not provide the same indications as in the intersection feature sets results.
Table 5 shows the reduct ratios achieved by both XAI methods. As can be seen in the
results, SHAP is superior to Perm in almost all ML models executed on all datasets. Perm
only scores better for the reduct ratios computed for Spect dataset for three ML models.
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When SHAP and Perm have the same size of an intersection set, we observe that SHAP
is scoring better with respect to the reduct ratios, i.e., the importance score assigned to
an intersection feature is higher in the context of SHAP. This difference in the magnitude
enabled SHAP to score higher than Perm even though the features in the intersection sets
of both XAI methods are similar. Note that this difference in magnitude persists even when
normalizing importance scores to fall into the same range.

Observation (2): The difference in magnitude of the importance scores assigned by both XAI
methods to the same features is crucial for the computed values of the reduct ratios.

Table 5. Reduct ratios: results (rounded to 4 digits).

Dataset
XGBoost Logit RF GBM

SHAP Perm SHAP Perm SHAP Perm SHAP Perm

Diabetic 0.3358 0.3333 0.3665 0.3562 0.3333 0.3333 0.3333 0.3333

Ionosphere 0.3382 0.1599 0.0 0.0 0.4329 0.0 0.3945 0.0552

Spect 0.3736 0.3756 0.6099 0.5652 0.5297 0.6291 0.3333 0.362

Kidney 0.4995 0.1983 0.2889 0.1724 0.5473 0.0 0.3905 0.04149

Credit 0.1341 0.1405 0.149 0.113 0.1357 0.1239 0.1423 0.1283

Climate 0.3761 0.3237 0.3408 0.3278 0.3276 0.2695 0.2995 0.3169

Adult 0.3272 0.0508 0.3217 0.2999 0.3159 0.2831 0.4084 0.3949

Truck Failures 0.1237 0.1896 0.0865 0.0718 0.2572 0.0348 0.0517 0.0202

Spam 0.2012 0.1931 0.0175 0.1047 0.2562 0.1659 0.1294 0.1249

Table 6. AIC values: results (rounded to 4 digits).

Dataset
XGBoost Logit RF GBM

SHAP Perm SHAP Perm SHAP Perm SHAP Perm

Diabetic 3.1804 5.1699 1.3173 1.2706 5.1699 5.1699 5.1699 5.1699

Ionosphere 7.1912 6.5031 8.0 8.0 3.6365 8.0 7.4475 6.1638

Spect 3.3498 3.3587 4.7162 4.4033 4.1767 4.8619 5.1699 1.2969

Kidney 5.9973 6.6378 6.984 12.5459 2.2866 18.0 3.4284 14.1223

Credit 12.4154 12.4368 12.4656 12.345 10.4208 12.381 12.4427 10.3962

Climate 3.3613 3.1287 5.2023 5.1459 5.1452 6.9059 5.0272 7.0998

Adult 3.1435 6.1503 5.1199 7.0289 3.0958 6.9604 3.5144 5.4496

Truck Failures 16.3809 16.6064 26.2609 22.2149 10.8579 18.1023 18.1531 16.0588

Spam 12.6483 12.6191 14.0508 14.3191 10.8541 10.523 12.3999 14.3853

The results of applying the proposed evaluation metrics, i.e., AIC and BIC, are pre-
sented in Tables 6 and 7. For each dataset, we may conclude that the lowest-scoring XAI
method is the same in both metrics. Remember that BIC penalizes methods with a low
number of features in the intersection set, whereas AIC penalizes methods with a low
reduct ratio. A match between the results of both metrics is expected in cases when there is
a match between the number of features in the intersection set and the reduct ratio. How-
ever, for datasets for which the difference in the reduct ratios between both XAI methods
is indecisive, AIC results fluctuate. Figure 5 plots the AIC values we computed for the
reduct ratio of both XAI methods. Both AIC and BIC metrics receive the reduct ratios and
the number of indispensable features (dataset reduct) that are not present the intersection
set of an XAI method. If the difference between the reduct ratios of both XAI methods is
unremarkable, we expect that the number of features excluded from the intersection to
have a key role in computing AIC values. For these datasets, we believe that computing
BIC metric adds more value to the analysis.
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Table 7. BIC values: results (rounded to 4 digits).

Dataset XGBoost Logit RF GBM

SHAP Perm SHAP Perm SHAP Perm SHAP Perm

Diabetic 11.0259 20.8609 1.3173 1.2706 20.8609 20.8609 20.8609 20.8609

Ionosphere 26.4699 25.7819 33.7051 33.7051 10.0627 33.7051 26.7263 25.4426

Spect 8.8497 8.8586 10.216 9.9031 9.6765 10.362 16.1696 1.2969

Kidney 18.6411 25.6035 25.9499 50.4775 2.2866 74.8974 9.7504 58.3758

Credit 55.0508 55.0723 55.101 54.9805 45.9503 55.0169 55.0782 45.9257

Climate 8.5312 8.2986 15.5421 15.4858 15.4851 22.4157 15.367 22.6096

Adult 15.6218 43.5855 30.0767 44.4641 15.5742 44.3956 15.9928 30.4064

Truck Failures 110.4675 110.6929 179.1517 151.584 69.662 123.9498 124.0 110.1454

Spam 68.3225 68.2933 79.004 79.2723 57.2492 56.9189 68.0741 79.3385

Observation (3): AIC and BIC values agree if an XAI method scores higher in terms of the reduct
ratio and the number of features in the intersection set. If the reduct ratios are very close, AIC results
fluctuate and the BIC metric provides more distinguishing results.

For the RF and GBM models, there is a match between the number of features and the
BIC scores. This has been confirmed after analyzing the BIC values and comparing them
with the number of features in the intersection sets in Table 4. The XAI method with the
lowest number of features excluded from the intersection set (in other words, the highest
number of features in the intersection set) scores lower in the BIC metric. If the sizes of
intersection sets differ significantly between both XAI methods, this former observation
holds. As an example, consider the results of the two XAI methods explaining the pre-
dictions of the RF and GBM models. In BIC scores of XAI methods applied to XGBoost
and Logit, this observation is true for the datasets for which the number of features at the
intersection is different (e.g., in the case of the Diabetic, Kidney, Truck failures, and Adult
datasets). The number of features is not a decisive parameter in the remaining five datasets
to distinguish between SHAP and Perm when applying them to XGBoost and Logit. In this
case, the similarity in the intersection sets and the inconclusive difference between reduct
ratios provides room for fluctuation in BIC results and almost similarity as indicated in the
results of Credit, Climate, and Spam datasets.

Observation (4): For different sizes of the intersection sets, the BIC measurement can penalize XAI
methods with smaller sets. BIC results fluctuate whenever the number of features in the intersection
set is similar and the difference between the reduct ratios is unremarkable.
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Figure 4. Number of features in the intersection sets obtained by each XAI method.
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Figure 5. AIC values obtained at each reduct ratio.

6.2. Discussion

An intersection set with a high number of features indicates the ability of an XAI
method to reflect how the ML model uses the indispensable features. However, achieving
a high number of features in the intersection sets might not guarantee achieving a high
reduct ratio. In a situation for which the dataset reduct is small compared to the complete
set of features, the intersection set does not provide a decisive factor to choose either XAI
method. Note that this indicates that the dataset holds a large amount of superfluous data
that is of low benefit to the ML model.

When computing the reduct ratios, an XAI method, with a high number of features in
the intersection set, scores better than another XAI method with a low number of features.
However, whenever both XAI methods have the same sizes of intersection sets, scores
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of these features play an important role. Regarding the results of the experiments (cf.
Section 6.1), the AIC and BIC values used for method selection conform to each other.
The latter observation holds whenever the difference in the reduct ratios between the XAI
methods is unremarkable.

In future work, we will study the effectiveness of the presented approach when
applying it to XAI methods that have been designed to explain the predictions of more
complex models, i.e., deep learning ones. This necessitates conucting experiments on larger
datasets, as it is not feasible to apply deep learning models on the small datasets under
investigation in the course of this study. However, with the current experimental setting,
we have provided a proof-of-concept of the proposed approach and obtained insightful
observations that demonstrate the applicability of the presented approach. To enable
further experimentation, extensions, and improvements of the approach, we make the code
of these experiments available through our Github https://github.com/GhadaElkhawaga/
ConsisXAI (accessed on 30 March 2023).

7. Related Work

With the surge in introducing XAI methods, suitable evaluation metrics are required.
There is a lack of objective approaches to functionally evaluate XAI methods [17]. A crucial
step in providing such an objective evaluation means of explainability is not only to define
how to quantify explainability but also to know which aspects are quantifiable about an
explanation. Ref. [38] proposes an approach in which an explainability method is evaluated
based on its ability to minimize three complexity measures, i.e., the number of features in
an explainer, the interaction strength, and the main effect complexity.

The available objective approaches can be categorized according to the explanation
characteristic they address. The Fidelity, stability, and robustness of an XAI method are
examples of explanation characteristics that are gaining dedicated attention. There are two
reasons that might have contributed to this increased attention. First, these characteristics
can be quantified and, hence, triggered more research efforts in proposing metrics for
measuring them. Second, the human-independent nature that is associated with these
characteristics compared to other characteristics which are subjective in nature. Consider
trust and fairness as examples of human-dependent characteristics.

Ref. [39] breaks down XAI effectiveness into four measures which are concerned with
the stability of the explanation, the number of features used to build the explanation,
the number of rules used in the explanation, and the differing performance between the
proxy or interpretable model and the original one. These measures can be translated into
the widely quantified XAI characteristics, i.e., fidelity, robustness, and stability. Another
evaluation approach is presented in [40], which evaluates the robustness of the explaining
technique with respect to changes in the inputs. Ref. [6] proposes a technique to assess the
stability of the set of important features and their coefficients which are generated after
several runs of the explanation technique, in this case, LIME.

A technique to evaluate the fidelity of XAI methods with respect to black box ML
models is presented in [7]. The proposed technique depends on measuring the difference in
the predictions between a local XAI method and the original model using perturbed feature
vectors instead of the original dataset. Using this technique, Ref. [7] aims to measure
the similarity of the decision-making processes of the black box model and the surrogate
model trained in the context of the XAI method. An infidelity objective measurement
is introduced in [8] to evaluate the expected effect of introducing significant changes to
the input to the explanation method on the resulting explanation. By pursuing optimal
explanations that decrease the value of infidelity, the robustness of an explanation may
be questioned. However, Ref. [8] argues that explanations being highly sensitive to input
perturbations are more vulnerable to adversarial attacks, and those with low sensitivity
are trivial and vague. Therefore, Ref. [8] proposes a technique that achieves a reduction
of sensitivity accompanied by an increase in fidelity. Ref. [9] introduces a method that
bases the robustness analysis of an XAI method on feature relevance. Assuming that
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small perturbations on irrelevant features are not expected to introduce a big change to
the output while having the opposite influence on relevant features, Ref. [9] mitigates the
risk of having biased and inaccurate conclusions when applying large perturbations and
removes relevant features. Thus, it is two-sided in this method where a robustness analysis
is not only used to evaluate the quality of an explanation but to also find an important set
of features optimizing this measure.

8. Summary and Outlook

Functionally-grounded evaluations of XAI methods aim to measure to what extent
an XAI method reflects the relation between the inputs and outputs of a prediction gen-
eration process without human involvement. Contemporary proposals to quantitative
measurements in the former category mostly target certain explainability characteristics
such as fidelity, robustness, and stability of the resulting explanations. In the presented
work, we provide an evaluation technique of XAI methods regarding their consistency
with ground truth facts. We propose a technique to automatically extract these facts and
concepts without predefined parameters or the inclusion of potentially biased techniques.
Using the proposed metrics, we quantify the consistency of XAI methods and compared
them based on the number of features they extract as well as the reduct ratios.

We applied our proposal to nine publicly available datasets. Our experiments have
shown that SHAP performs better in terms of the achieved ratios. Furthermore, SHAP is
able to reflect a larger percentage of the underlying concepts in terms of the size of the
intersection sets. Computing BIC provides a clear-cut XAI differentiation mechanism if the
number of features in the intersection sets differs significantly. Regarding AIC serves the
same purpose if there is a difference between the reduct ratios achieved by the different
XAI methods. If the difference between the reduct ratios is small, AIC provides information
that is redundant to the one achieved through BIC computation. In future work, we want to
demonstrate the broad applicability of our approach using more types of predictive models
to enable the evaluation of more types of XAI methods based on the proposed approach.
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