
Citation: Nie, X.; Yan, Y.; Zhou, T.;

Chen, X.; Zhang, D. A Delay-Optimal

Task Scheduling Strategy for Vehicle

Edge Computing Based on the

Multi-Agent Deep Reinforcement

Learning Approach. Electronics 2023,

12, 1655. https://doi.org/10.3390/

electronics12071655

Academic Editor: Rameez Asif

Received: 23 February 2023

Revised: 23 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Delay-Optimal Task Scheduling Strategy for Vehicle Edge
Computing Based on the Multi-Agent Deep Reinforcement
Learning Approach
Xuefang Nie , Yunhui Yan *, Tianqing Zhou, Xingbang Chen and Dingding Zhang

School of Information Engineering, East China JiaoTong University, Nanchang 330013, China
* Correspondence: yunhuiyan@ecjtu.edu.cn

Abstract: Cloudlet-based vehicular networks are a promising paradigm to enhance computation
services through a distributed computation method, where the vehicle edge computing (VEC)
cloudlet are deployed in the vicinity of the vehicle. In order to further improve the computing
efficiency and reduce the task processing delay, we present a parallel task scheduling strategy based
on the multi-agent deep reinforcement learning (DRL) approach for delay-optimal VEC in vehicular
networks, where multiple computation tasks select the target threads in a VEC server to execute
the computing tasks. We model the target thread decision of computation tasks as a multi-agent
reinforcement learning problem, which is further solved by using a task scheduling algorithm based
on multi-agent DRL that is implemented in a distributed manner. The computation tasks, with each
selection acting on the target thread acting as an agent, collectively interact with the VEC environment
and receive observations with respect to a common reward and learn to reduce the task processing
delay by updating the multi-agent deep Q network (MADQN) using the obtained experiences. The
experimental results show that the proposed DRL-based scheduling algorithm can achieve significant
performance improvement, reducing the task processing delay by 40% and increasing the processing
probability of success for computation tasks by more than 30% compared with the traditional task
scheduling algorithms.

Keywords: task scheduling; deep reinforcement learning; vehicle edge computing; Internet
of Vehicles

1. Introduction

With the rapid improvement in the data rate in 5G communications, a significant
number of computation-sensitive services, such as AR and VR, real-time navigation, and
autonomous driving, are emerging [1–4]. Autonomous driving technology, including target
detection, information perception, and intelligent decision making, requires computation
resources to process various tasks within a limited latency [5]. However, the computation
capabilities of the vehicular terminals are generally limited and cannot meet real-time
task processing requirements [6,7]. Although the remote computation cloud has enough
computation resources to provide efficient computing services, the long-distance data
transmission of the task files between the remote cloud and the local vehicular terminals
will lead to significant communication delays [8,9]. To address this problem, vehicle edge
computing (VEC) is widely recognized as a promising solution to enhance computing
service performance, where the computation resources are pushed to the radio access
networks and provide computing service close to the vehicular terminals [10–12].

From the cost perspective of network operators, the computation resources of VEC
clouds may be limited [13,14]. During peak traffic, offloading tasks from vehicular termi-
nals increase sharply. As a result, the VEC cloud will be overloaded, and performance
degradation in task processing is incurred [15,16]. In order to cope with this problem, an
efficient task scheduling strategy based on VEC servers is indeed required [17]. To this end,

Electronics 2023, 12, 1655. https://doi.org/10.3390/electronics12071655 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071655
https://doi.org/10.3390/electronics12071655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5657-7445
https://doi.org/10.3390/electronics12071655
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071655?type=check_update&version=1

Electronics 2023, 12, 1655 2 of 17

we apply efficient deep reinforcement learning (DRL) to design a task scheduling algorithm
based on multi-agent deep Q networks (MADQN) for improving computing efficiency and
thereby reducing the task processing delay.

Current works generally assume that the computation resources of the server are
enough to process the offloading tasks from vehicular terminals [6,7]. However, as men-
tioned above, the computation resources configured in the VEC server are generally limited.
Especially during peak periods, the VEC server is overloaded, which will prolong the
task processing delay because of the increase in the queuing time. In order to enhance the
computing efficiency of the VEC server, this paper solves the task scheduling problem to
improve the execution efficiency of VEC servers in mobile edge computing networks. We
assume that each VEC server has multiple threads and consider a parallel task scheduling
scheme. We model the target thread decision of computation tasks as a multi-agent DRL
problem, which is then solved by using a DRL-based approach to improve the computing
efficiency and reduce the task processing delay. The main contributions of this paper are
summarized as follows:

• We model the task decision of the target thread as a multi-agent DRL problem and
employ recent progress in DRL to develop a distributed task decision algorithm
based on the MADQN framework, which enhances the computing efficiency of the
VEC server.

• We illustrate that via an appropriate training mechanism with a time-related reward,
the task decisions can learn from interactions with the VEC environment and decide
upon a clever strategy in a distributed manner that simultaneously ensures the rapid
convergence of the proposed algorithm and reduces the task processing delay.

• We use the intensive and diversified computing task data to carry out simulation
experiments, and the experiment results demonstrate the effectiveness of the proposed
algorithm. Compared with the existing benchmark algorithms, the DRL-based algo-
rithm proposed in this paper can obtain a lower system delay and has relatively stable
performance gain in dense multiple-task computing scenarios.

The remainder of the paper is summarized as follows. We discuss the related work
in Section 2. Then, we introduce the system model, which includes the task-computing
model and problem statement. In Sections 4 and 5, we describe the MADQN algorithm
framework of task scheduling. Finally, we show the simulation results in Section 6 and
conclude our work in Section 7.

2. Related Work

Currently, research on task scheduling for vehicular networks has received extensive
attention. However, most existing works highly depend on the static system model. The
authors of [18] proposed a genetic algorithm-based approach to minimize the weighted
sum of the service time and energy consumption by jointly optimizing the task caching
and computation offloading in VEC networks. The authors of [19] applied Lyapunov
optimization technology and the greedy heuristics approach to minimize the response time
in caching-assisted vehicular edge computing. Meanwhile, energy consumption was taken
into account. The authors of [20] proposed a heuristic algorithm based on the ant colony
algorithm to solve the service arrangement problem among fog computing nodes. However,
the accuracy of both intelligent algorithms and heuristic algorithms greatly depends on
accurate system models. Practically, the offloading tasks from vehicular terminals belong
to a dynamical process, and thus the traditional static models cannot capture the dynamic
features of offloading tasks [21]. Deep reinforcement learning, integrating the perceptual
ability of deep learning (DL), and the decision making ability of reinforcement learning
(RL) can be used to solve the decision-making problem in complex environments [22,23].

At present, many scholars have used the DRL method to solve the problem of an optimal
task scheduling strategy [24–27]. The authors of [24] used the Markov decision process (MDP)
to establish a task scheduling model to solve the problems of task processing delay and
system energy consumption minimization in VEC task scheduling scenarios, and then they

Electronics 2023, 12, 1655 3 of 17

optimized the task scheduling scheme through the DRL method. The experiment results
verified the effectiveness of the DRL method in solving complex decision-making problems.
The authors of [25] used the DRL method to optimize the scheduling strategy of joint wireless
transmission and computing resources for the vehicle-road cloud cooperation scenario to
reduce the task processing delay. The authors of [26] proposed a dynamic framing offloading
algorithm based on a double deep Q network to minimize the total delay and waiting time
of computing offloading in vehicular edge computing networks. The authors of [27] used
the DRL method to design an optimized content caching scheme under the high mobility
of vehicles and dynamic wireless channels. However, with the development of vehicular
networks, the computing dimension of task files is increasing sharply, and the traditional
DRL methods cannot adapt to scenarios of highly complex task computing [28,29].

Fortunately, artificial intelligence algorithms based on multi-agent deep reinforcement
learning (MADRL) can efficiently solve complex computation problems [30]. The authors
of [23] applied the MADRL method to obtain a spectrum allocation scheme of vehicle-to-
infrastructure (V2I) links for maximizing the overall network throughout. The authors in
that paper assumed that each vehicle-to-vehicle (V2V) link worked as an agent, and multiple
V2V agents jointly explored the environment. Then, they optimized the power control and
spectral allocation strategies according to their own observations from the environment
state. The authors of [31] designed the MADRL algorithm to solve the optimal decision
problem of task offloading from the VEC vehicle terminals and for minimizing the task
execution delay. The existing works assumed that the computing resources of edge servers
are sufficient. However, during peak traffic, the edge server cannot effectively schedule
the computing tasks with limited resources, which results in computation performance
degradation and decreases the service quality of the VEC. To this end, we propose a DRL-
based framework to solve this problem and design a MADQN-based task scheduling
scheme to decrease the task processing latency for VEC networks.

3. System Model

In this section, we first describe the system model, and the task scheduling problem is
then formulated. The characteristics of the computation task scheduling problem based on
the DRL approach are further analyzed.

We consider the VEC scenario of a vehicular network shown in Figure 1. The VEC
server is connected to the macro base station (BS), which acts as a data center for model
training. Each roadside BS is connected to the VEC server by optical fiber. We assume
that each VEC server has M threads. The thread set of the VEC server is denoted by
S = {1, 2, . . . , M}. The corresponding computation resources of thread m (1 ≤ m ≤ M)
is denoted by fm in GHz/s. The computation tasks offloaded by vehicular terminals are
modeled according to a uniform distribution [32]. The set D = {1, 2, . . . , K} represents
the computation tasks cached in the VEC server. Each computation task k (1 ≤ k ≤ K)
has two parameters: task file size dk in MB and delay constraint τk in ms. Both dk
and τk are modeled according to a uniform distribution [21]. Set T = {t1, t2, . . . , tM}
represents the waiting time of the threads in the VEC server. This means that the
scheduled task may not be processed immediately when the target thread is busing. T
is modeled according to a Gaussian distribution, while xk,m denotes the target thread
index of computation task k and xk,m = 1 if the computation task k selects the thread m;
otherwise, xk,m = 0. We assume that each computation task can only occupy one thread,
and thus ∑m∈S xk,m = 1 for a given task k. We model each selecting action of the target
thread as an agent and perform a multi-agent decision mechanism. The DRL-based
framework of task scheduling in the VEC server is shown in Figure 2.

Electronics 2023, 12, 1655 4 of 17

VEC ServerMacro

Base Station

Roadside

Base Station

Figure 1. A VEC scenario of vehicular networks.

Task sets Thread set

Multi-agent

decision-making
VEC

task

caching

1t

,k mT

Figure 2. The DRL-based framework of task scheduling in the VEC server.

3.1. Task Computing Model

If the task k selects the thread m, then the task processing delay Tk,m of task k in thread
m is given by

Tk,m = xk,m × dk × e/ fm , (1)

where e denotes the computational intensity (in CPU cycles per MB), representing how
many CPU cycles are needed to process one MB of data. From the latency calculation in
Equation (1), we can see that both the task file size dk and computation resources fm have a
significant impact on Tm,k. We denote the processing delay of thread m as Tm, which can be
calculated by

Tm = tm + ∑
k∈D

Tk,m , (2)

where tm represents the task waiting time of thread m. From Equation (2), we can notice
that Tm increases with the number of tasks scheduled to thread m. Parallel task scheduling

Electronics 2023, 12, 1655 5 of 17

is adopted in this model, and then the total task processing delay Ts of the VEC server is
calculated as follows:

Ts = max{T1, . . . , Tm, . . . , TM} . (3)

From Equation (3), we can find that Tm has an important impact on Ts. In order to
reduce Ts, avoiding scheduling a large task to a thread with fewer computation resources
is necessary.

3.2. Problem Statement

The overall goal of the task scheduling strategy is to minimize the total task processing
delay under delay constraints. The optimization problem can be expressed as

P1. min
{k,m}

{
max
m∈S

Tm −min
m∈S

Tm

}
(4)

s.t. C1 : Tk,m ≤ τk (5)

C2 : xk,m ∈ {0, 1} (6)

C3 : ∑
m∈S

xk,m = 1 , (7)

where C1 represents the delay constraints of the computation task, C2 represents the target
thread index, and C3 means that each task can only be scheduled by one thread. Because of
the integer constraint (C2), the optimization problem in Equation (4) is NP-hard [21].

4. Multi-Agent DQN-Based Task Scheduling

The task scheduling scenario for the VEC server in a vehicular network is shown in
Figure 2. Multiple computation tasks attempt to occupy thread resources, which is formulated
as a multi-agent DRL problem. Each computation task acts as an agent and interacts with the
VEC thread environment to obtain experiences by receiving observation results, which are
then applied to modify their policy and enhance the computing efficiency of the VEC server.
While computation task scheduling may result in a competitive game problem, we transform
it into a cooperative mode by employing the same reward based on the task processing delay
to improve the computing efficiency of the VEC server.

The proposed MADQN-based approach is divided into two stages: the centralized
learning (training) phase and the distributed implementation phase. In the centralized
learning phase, each task agent can easily obtain a computing efficiency-oriented reward
and then refine its actions to an optimal strategy by updating its deep Q network (DQN).
In the distributed implementation phase, each task agent observes the local environment
state and then picks an action on the basis of its learned DQN. The main elements of the
MADQN-based task scheduling design are described as followed in detail.

4.1. State and Observation Space

In the multi-agent RL of the task scheduling problem, each task k acts as an agent,
collectively interacting with the unknown VEC environment [21]. This problem can be
formulated as a Markov decision process (MDP). As illustrated in Figure 3, given the
current VEC environment state st at each time t, each task agent k gains an observation
result Z(k)

t , determines the function O with Z(k)
t = O(st, k), and then executes an action

A(k)
t . Thus, these agents form a joint action At. Subsequently, a reward Rt+1 is achieved

by the agent k, and the VEC environment turns into the next state st+1 with a probability
p(s′, Rt|s, a). In the next step t + 1, each agent receives the new observations Z(k)

t+1. It
is worth noting that all task agents employ the same reward to encourage cooperative
behavior among task agents.

Electronics 2023, 12, 1655 6 of 17

Task agent 1

VEC environment

Task agent

1tR +

t
R

t
A

k

()k

t
A

(1)

t
A

(1)

t
Z

()k

t
Z

(1)

1tZ +

()

1

k

t
Z

+

Figure 3. The multi-agent environment interaction with the DRL-based framework.

The true VEC environment state st includes all computation resources of all threads
and all agents’ behaviors. However, each task agent can only observe a part of the VEC
environment. The observation space of task agent k contains the computation resources of
the VEC thread fm, the processing delay Tm,k of the VEC thread m, the file size dk of the
input task, and the delay constraint τk. Therefore, the observation function for task agent k
can be expressed as

S(k)
t = { fm, Tm,k, dk, τk} . (8)

4.2. Action Space

The task scheduling strategy based on the MADQN approach is to select the optimal
thread to minimize the task processing delay. While the VEC server breaks into M threads,
at each time t, each agent k decides the target thread m to use to process the task from the
M threads. As a result, the action of each task agent is to select the target thread and decide
the value of the target thread index xk,m.

4.3. Reward Design

The computing efficiency of the VEC server can be improved when the designed
reward correlates with the system objective. Our objectives are twofold: minimizing the
task processing latency of thread m and the total latency of the VEC server while increasing
the success process probability of computation tasks under a certain time constraint τk.
Therefore, the system reward must be consistent with the objective of improving the
system’s performance. In response to the objective of reducing the task processing latency,
the designed reward at each time slot t is formulated as follows:

Rt = min
m∈S

Tm −max
m∈S

Tm . (9)

From the reward function in Equation (9), we can observe that the designed reward Rt
is a negative value, which means that it is a better choice to keep the load balance among
the threads in the VEC server. The objective of learning based on the MADQN approach
is to find the optimal strategy π∗ that maximizes the expected return from any state s,

Electronics 2023, 12, 1655 7 of 17

denoted by Gt, which is defined as the cumulative rewards with a discount fraction λ; in
other words, we have

Gt = Eπ

{
∞

∑
k=0

λkRt+k+1

}
, 0 ≤ λ ≤ 1 . (10)

5. MADQN-Based Task Scheduling Algorithm

The structure of MADQN-based task scheduling is shown in Figure 4. In the learning
process, an evaluation network is constructed to generate scheduling policies. The input
parameter is the server state space s, and the output result is the scheduling function of
the corresponding action-value function Q(s, a; ω), where ω is the weight parameter of
the evaluation network. The function Q(s′, a′; ω′) represents the next state, and ω′ is the
weight parameters of the target network, which are duplicated from the training Q network
parameter set ω.

The evaluation network and target network of each task agent in this paper are
composed of an input layer, three hidden layers, and an output layer. Each layer is
composed of multiple neurons and connected with the neurons in the next layer. There
are relevant weight parameters between the interconnected neurons. Different weight
parameters indicate the importance of variables. Larger weight parameters contribute more
to the output. In this paper, the number of neurons of the input layer is the length of the
state space s. The number of neurons in the three hidden layers is 256, 128, and 64. The
number of neurons in the output layer is the number of server threads M. When the agent
selects the maximum scheduling value function Q from the output layer, it also indicates
the selection of server threads.

In the training process, the loss function loss is used to evaluate the accuracy of the
network. The goal of training is to minimize the loss function by adjusting the weight
parameters. In the process of weight parameter updating, only the weight parameters of
the evaluation network ω are updated. The weight parameters of the target network ω′ are
updated by copying from the evaluation network ω′ ← ω after a certain number of rounds.
In this way, the target of the evaluation network weight update is a fixed target for a period
of time, increasing learning stability. Each task agent has an independent evaluation net-
work and target network, which is an independent DQN, while the experienced playback
is public to encourage task agents to explore the environment cooperatively.

Replay memory
VEC

environ

ment

Evaluation network

s

s

Target network

s¢

s¢

Parameter

copy

Gradient

update

(,)s a
tR

(, , ,)ts a R s¢

(, ;)aa argmax Q s a w=

(, ;)Q s a w

(, ;)Q s a w¢ ¢ ¢

(, ;)Q s a w max (, ;)Q s a w¢ ¢ ¢

2[(max (, ;) (, ;))]tloss E R Q s a Q s al w w¢ ¢ ¢= + -

Figure 4. Structure of the MADQN-based task scheduling algorithm.

Electronics 2023, 12, 1655 8 of 17

5.1. Training Process

We utilized the DRL experiential replay to effectively train the multi-tasking agent for
learning the selection strategy of the target thread. The MADQN-based training process is
shown in Figure 5.

Start

Vehicle unloads task to the

nearest RSU

Task agent obtains RSU

server status information

Task agents use DQN to

learn their task scheduling

strategies

RSU server threads process

received tasks

Calculating the total delay,

is it the optimal strategy?

Yes

Task agents use their trained DQN

networks to execute task scheduling

strategies in a distributed manner

End
No

RSU transmits the processed

results to the corresponding

vehicle

Figure 5. MADQN-based training process.

In the training process, each episode begins with a randomly initialized VEC envi-
ronment state, including ω, which is the parameter of the evaluation network. Then, the
evaluation network receives the environment state st and the output results of all action
value functions Q(st, at; ω), which can be calculated as

Q(st, at; ω) = Rt + λE[Q(st+1, at+1; ω)] , (11)

where Rt is defined in Equation (9). Then, the largest Q value from the action value function
Q(st, at; ω) is obtained, and the action corresponding to the largest Q value Q(st, at; ω) is
executed. The environment turns into the next state st+1 and saves the transition tuple
(st, at, Rt, st+1) in a replay memory.

A batch of experiences in each episode K is uniformly sampled from the replay
memory, which will be used as the input of the target network. Then, the target network
outputs all the action values Q(st+1, at+1; ω′) of the next state st+1 and calculates the target
value Ut of the evaluation network. Ut can be computed as follows:

Ut = Rt + λmax
at+1

Q(st+1, at+1; ω′) . (12)

The goal of training is to minimize the loss function loss to ensure the correctness of
the fitting of any given observation. The loss function is defined as follows:

loss ,
1
B ∑
K
[Ut −Q(st, at; ω)]2 , (13)

Electronics 2023, 12, 1655 9 of 17

where B is the sample size. The weight parameters are adjusted through gradient descent
so that the model can determine the direction of error reduction. The gradient descent of
the loss function can be calculated as follows:

∇wloss =
1
B ∑
K

2[Ut −Q(st, at; ω)]∇Q(st, at; ω) . (14)

Then, the evaluation network weight parameter is further updated to ωup, which can
be calculated as follows:

ωup = ω + η
1
B ∑
K

2[Ut −Q(st, at; ω)]∇Q(st, at; ω) , (15)

where η is the learning rate of the evaluation network. After the weight parameter ω has
been updated, the environment turns into the next state s← st+1. The weight parameter
ω′ of the target network is duplicated from set ω periodically. The algorithm procedure is
illustrated in Algorithm 1. In Algorithm 1, we use an ε-greedy strategy to explore the state
and action space. This means that the random action is checked with the probability of ε,
and the action with the maximum Q value is checked with the probability of 1− ε. Here, ε
is a global variable which decreases with the number of training sessions and finally tends
toward a fixed value.

Algorithm 1 Task scheduling algorithm based on MADQN

1: for each episode do
2: for each step t do
3: for each agent do
4: Evaluating network reception st, choose action at at random with probability ε,

with probability 1− ε choose action at = argmaxaQ(st, at; ω), ε decreases with
training sessions;

5: end for
6: To perform an action at,get environmental rewards Rt, the environment updates

to the next state st+1;
7: for each agents do
8: Saves experience (st, at, Rt, st+1) to experience playback
9: end for

10: end for
11: for each agents do
12: Select a batch of experiences from experience playback (si

t, ai
t, Ri

t, si
t+1)(i ∈ B)

13: Calculate the target value Ut according to Equation (12)
14: Update ω according to Equation (15) to reduce loss
15: The weight ω′ ← ω of the target network is updated every a certain episode
16: end for
17: end for

5.2. Distributed Implementation

In the distributed implementation stage, at each time slot t, the task agent k receives
the VEC environment state and chooses an optimal action value based on its trained Q
network. Then, each thread of the VEC server starts to process the received tasks. It is
worth noting that the intensive training procedure of VEC computation in Algorithm 1
can be executed offline. When the environment features have been changed significantly,
the trained Q network needs to be updated according to the environmental dynamics and
system performance requirements.

6. Simulation Results

In this section, the experiment results are provided to verify the effectiveness of the
MADQN-based task scheduling strategy for vehicular networks. The software environment

Electronics 2023, 12, 1655 10 of 17

for the simulation experiments was Python 3.6, and the convolutional neural network was
created based on TensorFlow. The hardware platform for the simulation experiments was
based on a desktop computer. Unless otherwise stated, the major simulation parameter
settings of the VEC environment and neural network are shown in Table 1.

Table 1. Simulation parameters.

Simulation Parameters Value

Number of tasks (k) 10 [33]
Task data size (dk) U(5,50) MB, U(50,200) MB [21]

Task delay constraint (τk) 10∼50 ms
Number of server threads (m) 4
Total computation resources 8 GHz

Server thread computing resources (f) 0.5, 1.5, 2.5, 3.5 GHz
Thread wait time (κ) 1∼3 ms

Computational intensity (e) 0.001 GHz/MB [33]
Number of neuron and hidden layers 5,3

Number of neurons 256, 128, 64
Neural network activation function ReLU

Gradient descent algorithm RMSProp
Learning rate of neural network (η) 0.001

Discount fraction (λ) 0.99

We investigated the convergence behaviors of the proposed MADQN-based algorithm,
with the training rewards versus the number of training episodes shown in Figure 6. We
can see that the training rewards improved with the number of training episodes. It has
been demonstrated that the proposed MADQN-based algorithm is effective. The training
rewards gradually converged when the episode count reached approximately 2500. In
order to provide a security guarantee of algorithm convergence, the number of training
episodes was set to 3000 for each agent in the Q networks.

0 500 1000 1500 2000 2500 3000

Training episodes

-2.5

-2

-1.5

-1

-0.5

T
ra

in
in

g
 r

ew
ar

d

Figure 6. Training rewards versus the number of training episodes.

Figure 7 shows the total processing delay versus the number of training episodes. We
can see that with the increase in the number of training episodes, the total processing de-
lay decreased. This further demonstrates the effectiveness of the proposed MADQN-based
algorithm.

Electronics 2023, 12, 1655 11 of 17

0 500 1000 1500 2000 2500 3000

Training episodes

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
o

ta
l

p
ro

ce
ss

in
g

 d
el

ay
 (

s)

Figure 7. Total processing delay versus the number of training episodes.

In order to verify the performance of the proposed algorithm, the following two
baseline algorithms were executed:

• Single-agent deep Q networks (SADQN) is a traditional deep reinforcement learning
algorithm which was proposed in [34], where at each time slot t, only one task agent
replaces its action while the other agents’ actions remain unchanged.

• The shortest time (ST) scheduling algorithm, proposed in [35], is an algorithm where
the task agent always selects the thread with the lowest processing time.

Figure 8 shows the impact of the data size of the task file on the task processing
delay of different scheduling algorithms, including the SADQN, ST, and our proposed
MADQN-based algorithms. We can see from Figure 8 that our proposed MADQN-based
algorithm obtained the minimum task processing delay compared with the scheduling
algorithms based on SADQN and the ST. With the increase in the data size of the task files,
the task processing delay gradually increased. Intuitively, the larger the data size of the
task file, the longer the execution time for a given computing resource. We can further
observe that the performance gains obtained by the proposed MADQN-based algorithm
were improved compared with scheduling algorithms based on SADQN and the ST. It is
worth noting that our proposed MADQN-based algorithm reduced the task processing
delay by more than 28% and 40% compared with the SADQN algorithm and ST algorithm,
respectively, when the data size of the input tasks was greater than 50 MB.

The effect of the data size of the task file on the successful processing probability of
computation tasks is shown in Figure 9, where the data size of the computation task file
is uniformly distributed with U(5,50) MB. We can see that the success probability of task
processing decreased with the increasing data size of the task file. This is due to the fact
that a larger file size requires more computation resources. When the VEC server was
overloaded, the degradation in computing efficiency resulted in an increase in the task
processing delay, which led to a reduction in the successful processing probability. It is
worth noting that compared with the SADQN and ST algorithms, the proposed MADQN-
based algorithm could achieve significant performance gains in the successful processing
probability of more than 30% when the data size of the task file was greater than 50 MB.

Electronics 2023, 12, 1655 12 of 17

10 15 20 25 30 35 40 45 50

Data size of task file (MB)

0

5

10

15

20

25

T
as

k
 p

ro
ce

ss
in

g
 d

el
ay

 (
m

s)

 MADQN

 SADQN

 ST

Figure 8. The effect of the data size of the task file on the task processing delay.

10 15 20 25 30 35 40 45 50

Data size of task file (MB)

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
u
cc

es
s

p
ro

ce
ss

in
g
 p

ro
b
ab

il
it

y

 MADQN

 SADQN

 ST

Figure 9. The effect of the data size of the task file on the successful processing probability.

We further investigated the effect of the number of computation tasks on the total
processing delay, where the data size of the computation tasks was uniformly distributed
with U(5,50) MB. From Figure 10, we can note that the total processing delay of different
scheduling algorithms increased with the increasing number of computation tasks. We can
further observe that our proposed MADQN-based algorithm obtained the minimum task
processing delay. With the ever-increasing number of computation tasks, the performance
gain obtained by the proposed algorithm improved continuously. Compared with the
SADQN algorithm and the ST algorithm, the proposed MADQN based algorithm was
superior because a distributed implemented approach was introduced and task processing
was conducted in a parallel manner by the proposed algorithm, which is more suitable for
solving complex problems. The total processing delay of the MADQN-based algorithm
decreased by more than 2% when the number of computation tasks was more than four.

Electronics 2023, 12, 1655 13 of 17

0 4 8 12 16 20

Number of computation tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
o

ta
l

p
ro

ce
ss

in
g

 d
el

ay
 (

s)

 MADQN

 SADQN

 ST

Figure 10. The effect of the number of computation tasks on the total processing delay.

The impact of the number of computation tasks on the successful processing probability
with different scheduling algorithms was investigated, with the results shown in Figure 11.
We can see from Figure 11 that with the increasing number of computation tasks, the suc-
cessful processing probabilities of different scheduling algorithms decreased. This is due
to the fact that a large number of computation tasks require more computing resources. As
the number of computation tasks increases, the VEC servers are overloaded, the computing
efficiency decreases, and thus the successful processing probability decreases. Fortunately,
we can observe that the proposed algorithm outperformed the traditional SADQN algorithm
and ST algorithm. Even when the workload of the VEC servers was deeply saturated, the
significant performance improvement obtained by the proposed algorithm was greater than
5% compared with the traditional algorithms. This indicates that the proposed algorithm
based on MADQN in this paper is effective for VEC servers in peak traffic periods.

8 12 16 20 24 28

Number of computation tasks

75%

80%

85%

90%

95%

100%

S
u

cc
es

s
p

ro
ce

ss
in

g
 p

ro
b

ab
il

it
y

 MADQN

 SADQN

 ST

Figure 11. The effect of the number of computation tasks on the successful processing probability.

In order to demonstrate the superiority of the proposed algorithm based on MADQN,
we investigate the calculation performance of different algorithms with diversified com-
putation tasks (task types shown in Table 2), where task types 1, 2, and 3 represent the
scenarios of a light load, medium load and heavy load for the VEC servers, respectively.

Electronics 2023, 12, 1655 14 of 17

From Figure 12, we can clearly observe that the proposed MADQN-based algorithm can
significantly reduce the task processing delay for the different computing scenarios of VEC
servers with a light load, medium load or heavy load. Especially under the condition of a
heavy load, the total processing delay can be reduced by more than 20% compared with
the traditional algorithms. The reason behind the performance growth is the fact that the
proposed MADQN-based algorithm introduces a distributed implementation method and
parallel task processing. The experiment demonstrated that the proposed algorithm is
effective in enhancing the computing efficiency of VEC servers.

Table 2. Three different types of computing tasks.

Task Types The Number of Computing
Tasks

Data Size of Computing
Tasks (Uniform

Distribution)

Task type 1 10 U(5,6) MB

Task type 2 10 U(50,55) MB

Task type 3
5 and U(5,6) MB and

5 U(50,55) MB

Task type 1 Task type 2 Task type 3
0

0.05

0.1

0.15

0.2

0.25

T
o
ta

l
p
ro

ce
ss

in
g
 d

el
ay

 (
s)

 MADQN

 SADQN

 ST

Figure 12. The effect of different data sizes of computing tasks on the total processing delay.

In order to provide a design perspective for VEC server deployment, we investigated
the effect of different computing resource configurations of threads on the total processing
delay, where the configured computing resources are shown in Table 3. Thread type A
represents the most unbalanced computing resource configuration, and thread type D
represents that all thread resources are equal. The total processing delays for different
thread configurations are shown in Figure 13, where the total computing resources were
constant. We can note that thread type A, with the most unbalanced resource configuration,
required the minimum latency. This means that distinguished resource configurations for
different threads in the VEC servers is a better choice.

Table 3. The computing resource configuration for the threads.

Thread Types Computing Resources of Threads
Thread 1 Thread 2 Thread 3 Thread 4

Thread type A 0.5 GHz/s 1.5 GHz/s 2.5 GHz/s 3.5 GHz/s
Thread type B 1 GHz/s 1.5 GHz/s 2.5 GHz/s 3 GHz/s
Thread type C 1.5 GHz/s 2 GHz/s 2 GHz/s 2.5 GHz/s
Thread type D 2 GHz/s 2 GHz/s 2 GHz/s 2 GHz/s

Electronics 2023, 12, 1655 15 of 17

Thread type A Thread type B Thread type C Thread type D
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
o

ta
l

p
ro

ce
ss

in
g

 d
el

ay
 (

s)

Figure 13. The effect of different computing resources on the total processing delay.

7. Conclusions

In order to reduce the task processing delay of the VEC server and improve the service
quality of vehicular networks, the proposed MADQN-based algorithm was divided into
two stages: centralized training in a data training center and distributed implementation
on the VEC servers adjacent to the vehicular terminals. Our objective was to minimize the
task processing delay, especially during the peak period of traffic in vehicular networks.
The experiment results demonstrated that the proposed MADQN-based algorithm could
obtain significant performance gains compared with the traditional SADQN algorithm and
ST algorithm. We have illustrated the effectiveness of the proposed algorithm. Compared
with traditional algorithms, the total processing delay can be reduced by more than 5%
when the VEC servers are overloaded.

In the future, we will consider the scenarios of joint wireless channels and vehicle
mobility to design a more realistic VEC environment. At the same time, we will further
investigate the application of other DRL algorithms, such as Duel DQN and D3QN, for
VEC networks.

Author Contributions: Conceptualization, X.N. and Y.Y.; methodology, Y.Y.; software, Y.Y.; validation,
X.N., X.C. and D.Z.; formal analysis, X.N. and Y.Y.; investigation, Y.Y.; resources, X.N.; data curation,
Y.Y.; writing—original draft preparation, Y.Y.; writing—review and editing, X.N., Y.Y. and T.Z.;
visualization, Y.Y.; supervision, X.N. and T.Z.; project administration, X.N.; funding acquisition, X.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(61961020, 62261020, and 61861017), the Natural Science Foundation of Jiangxi Province (20212BAB202004,
20212BAB202005, and 20224BAB202001), the Key Research and Research and Development Program of
Jiangxi Province (20202BBEL53014), and the Jiangxi Provincial Department of Education Science and
Technology Program Funding Project (GJJ180312).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1655 16 of 17

References
1. Zhao, J.; Sun, X.; Ma, X.; Zhang, H.; Yu, F.R.; Hu, Y. Online distributed optimization for energy-efficient computation offloading

in air-ground integrated networks. IEEE Trans. Veh. Technol. 2022. [CrossRef]
2. Aslam, N.; Wang, K.; Pan, C.; Aslam, N. Joint trajectory and passive beamforming design for intelligent reflecting surface-aided

UAV communications: A deep reinforcement learning approach. IEEE Trans. Mob. Comput. 2022. [CrossRef]
3. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward edge intelligence: Multiaccess edge computing for 5G and Internet of

Things. IEEE Internet Things J. 2020, 7, 6722–6747. [CrossRef]
4. Zhao, J.; Ni, S.; Gong, Y.; Zhang, Q. Pilot contamination reduction in TDD-based massive MIMO systems. IET Commun. 2019,

13, 1425–1432. [CrossRef]
5. Yang, M. Research on vehicle automatic driving target perception technology based on improved MSRPN algorithm.

J. Comput. Cogn. Eng. 2022, 1, 147–151.
6. Ji, L.; Guo, S. Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet Things J.

2018, 6, 4744–4754. [CrossRef]
7. Yang, L.; Zhang, H.; Li, M.; Guo, J.; Ji, H. Mobile edge computing empowered energy efficient task offloading in 5G.

IEEE Trans. Veh. Technol. 2018, 67, 6398–6409. [CrossRef]
8. Mustafa, E.; Shuja, J.; Bilal, K.; Mustafa, S.; Maqsood, T.; Rehman, F.; ur Khan, A.R. Reinforcement learning for intelligent online

computation offloading in wireless powered edge networks. Clust. Comput. 2022, 26, 1053–1062. [CrossRef]
9. Liu, J.; Ahmed, M.; Mirza, M.A.; Khan, W.U.; Xu, D.; Li, J.; Aziz, A.; Han, Z. RL/DRL meets vehicular task offloading using edge

and vehicular cloudlet: A survey. IEEE Internet Things J. 2022, 9, 8315–8338. [CrossRef]
10. Mustafa, E.; Shuja, J.; uz Zaman, S.K.; Jehangiri, A.I.; Din, S.; Rehman, F.; Mustafa, S.; Maqsood, T.; Khan, A.N. Joint wireless

power transfer and task offloading in mobile edge computing: A survey. Clust. Comput. 2022, 25, 2429-2448. [CrossRef]
11. Liu, Y.; Wang, S.; Zhao, Q.; Du, S.; Zhou, A.; Ma, X.; Yang, F. Dependency-aware task scheduling in vehicular edge computing.

IEEE Internet Things J. 2020, 7, 4961–4971. [CrossRef]
12. Zhao, J.; Sun, X.; Li, Q.; Ma, X. Edge caching and computation management for real-time internet of vehicles: An online and

distributed approach. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2183–2197. [CrossRef]
13. Xu, X.; Xue, Y.; Li, X.; Qi, L.; Wan, S. A computation offloading method for edge computing with vehicle-to-everything.

IEEE Access 2019, 7, 131068–131077. [CrossRef]
14. Li, H.; Xu, H.; Zhou, C.; Lü, X.; Han, Z. Joint optimization strategy of computation offloading and resource allocation in

multi-access edge computing environment. IEEE Trans. Veh. Technol. 2020, 69, 10214–10226. [CrossRef]
15. Zheng, Z.; Song, L.; Han, Z.; Li, G.Y.; Poor, H.V. A stackelberg game approach to proactive caching in large-scale mobile edge

networks. IEEE Trans. Wirel. Commun. 2018, 17, 5198–5211. [CrossRef]
16. Zhao, J.; Nie, Y.; Zhang, H.; Yu, F.R. A UAV-aided vehicular integrated platooning network for heterogeneous resource

management. IEEE Trans. Green Commun. Netw. 2023, 7, 512–521. [CrossRef]
17. Qi, F.; Zhuo, L.; Xin, C. Deep reinforcement learning based task scheduling in edge computing networks. In Proceed-

ings of the IEEE International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020;
pp. 835–840.

18. Tang, C.; Wu, H. Joint optimization of task caching and computation offloading in vehicular edge computing.
Peer-to-Peer Netw. Appl. 2022, 15, 854-869. [CrossRef]

19. Tang, C.; Zhu, C.; Wu, H.; Li, Q.; Rodrigues, J.J.P.C. Toward response time minimization considering energy consumption in
caching-assisted vehicular edge computing. IEEE Internet Things J. 2022, 9, 5051–5064. [CrossRef]

20. Huang, T.; Lin, W.; Xiong, C.; Pan, R.; Huang, J. An ant colony optimization-based multiobjective service replicas placement
strategy for fog computing. IEEE Trans. Cybern. 2020, 51, 5595–5608. [CrossRef]

21. Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Edge intelligence for energy-efficient computation offloading and resource allocation
in 5G beyond. IEEE Trans. Veh. Technol. 2020, 69, 12175–12186. [CrossRef]

22. Ke, H.; Wang, J.; Deng, L.; Ge, Y.; Wang, H. Deep reinforcement learning-based adaptive computation offloading for MEC in
heterogeneous vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 7916–7929. [CrossRef]

23. Liang, L.; Ye, H.; Li, G.Y. Spectrum sharing in vehicular networks based on multi-agent reinforcement learning.
IEEE J. Sel. Areas Commun. 2019, 37, 2282–2292. [CrossRef]

24. Zhan, W.; Luo, C.; Wang, J.; Wang, C.; Min, G.; Duan, H.; Zhu, Q. Deep-reinforcement-learning-based offloading scheduling for
vehicular edge computing. IEEE Internet Things J. 2020, 7, 5449–5465. [CrossRef]

25. Luo, Q.; Li, C.; Luan, T.H.; Shi, W. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning.
IEEE Internet Things J. 2020, 7, 9637–9650. [CrossRef]

26. Tang, H.; Wu, H.; Qu, G.; Li, R. Double deep Q-network based dynamic framing offloading in vehicular edge computing. IEEE
Trans. Netw. Sci. Eng. 2022. [CrossRef]

27. Dai, Y.; Xu, D.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep reinforcement learning and permissioned blockchain for content caching
in vehicular edge computing and networks. IEEE Trans. Veh. Technol. 2020, 69, 4312–4324. [CrossRef]

28. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean field multi-agent reinforcement learning. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5571–5580.

http://doi.org/10.1109/TVT.2022.3224765
http://dx.doi.org/10.1109/TMC.2022.3200998
http://dx.doi.org/10.1109/JIOT.2020.3004500
http://dx.doi.org/10.1049/iet-com.2018.5557
http://dx.doi.org/10.1109/JIOT.2018.2880812
http://dx.doi.org/10.1109/TVT.2018.2799620
http://dx.doi.org/10.1007/s10586-022-03700-5
http://dx.doi.org/10.1109/JIOT.2022.3155667
http://dx.doi.org/10.1007/s10586-021-03376-3
http://dx.doi.org/10.1109/JIOT.2020.2972041
http://dx.doi.org/10.1109/TITS.2020.3012966
http://dx.doi.org/10.1109/ACCESS.2019.2940295
http://dx.doi.org/10.1109/TVT.2020.3003898
http://dx.doi.org/10.1109/TWC.2018.2839111
http://dx.doi.org/10.1109/TGCN.2023.3234588
http://dx.doi.org/10.1007/s12083-021-01252-w
http://dx.doi.org/10.1109/JIOT.2021.3108902
http://dx.doi.org/10.1109/TCYB.2020.2989309
http://dx.doi.org/10.1109/TVT.2020.3013990
http://dx.doi.org/10.1109/TVT.2020.2993849
http://dx.doi.org/10.1109/JSAC.2019.2933962
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2983660
http://dx.doi.org/10.1109/TNSE.2022.3172794
http://dx.doi.org/10.1109/TVT.2020.2973705

Electronics 2023, 12, 1655 17 of 17

29. Tang, F.; Mao, B.; Kato, N.; Gui, G. Comprehensive survey on machine learning in vehicular network: Technology, applications
and challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2024–2057. [CrossRef]

30. Li, T.; Zhu, K.; Luong, N.C.; Niyato, D.; Wu, Q.; Zhang, Y.; Chen, B. Applications of multi-agent reinforcement learning in future
internet: A comprehensive survey. IEEE Commun. Surv. Tutor. 2022, 24, 1240–1279. [CrossRef]

31. Zhu, X.; Luo, Y.; Liu, A.; Bhuiyan, M.Z.A.; Zhang, S. Multiagent deep reinforcement learning for vehicular computation offloading
in IoT. IEEE Internet Things J. 2020, 8, 9763–9773. [CrossRef]

32. Qiao, G.; Leng, S.; Zhang, K.; He, Y. Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag.
2018, 56, 48–54. [CrossRef]

33. Qi, Q.; Zhang, L.; Wang, J.; Sun, H.; Zhuang, Z.; Liao, J.; Yu, F.R. Scalable parallel task scheduling for autonomous driving using
multi-task deep reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 13861–13874. [CrossRef]

34. Ye, H.; Li, G.Y.; Juang, B.H.F. Deep reinforcement learning based resource allocation for V2V communications.
IEEE Trans. Veh. Technol. 2019, 68, 3163–3173. [CrossRef]

35. Singh, K.; Alam, M.; Sharma, S.K. A survey of static scheduling algorithm for distributed computing system. Int. J. Comput. Appl.
2015, 129, 25–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/COMST.2021.3089688
http://dx.doi.org/10.1109/COMST.2022.3160697
http://dx.doi.org/10.1109/JIOT.2020.3040768
http://dx.doi.org/10.1109/MCOM.2018.1701130
http://dx.doi.org/10.1109/TVT.2020.3029864
http://dx.doi.org/10.1109/TVT.2019.2897134
http://dx.doi.org/10.5120/ijca2015906828

	Introduction
	Related Work
	System Model
	Task Computing Model
	Problem Statement

	Multi-Agent DQN-Based Task Scheduling
	State and Observation Space
	Action Space
	Reward Design

	MADQN-Based Task Scheduling Algorithm
	Training Process
	 Distributed Implementation

	Simulation Results
	Conclusions
	References

