
Citation: Duan, P.; Wang J.; Zhang Y.;

Ma, Z.; Luo, S. Policy-Based

Chameleon Hash with Black-Box

Traceability for Redactable

Blockchain in IoT. Electronics 2023, 12,

1646. https://doi.org/10.3390/

electronics12071646

Academic Editor: Keke Gai

Received: 18 February 2023

Revised: 18 March 2023

Accepted: 20 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Policy-Based Chameleon Hash with Black-Box Traceability for
Redactable Blockchain in IoT
Pengfei Duan * , Jingyu Wang, Yuqing Zhang, Zhaofeng Ma and Shoushan Luo

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
* Correspondence: pengfeiduan@bupt.edu.cn

Abstract: Blockchain has become an integral part of various IoT applications, and it has been
successful in boosting performance in various aspects. Applying blockchain as a trust solution for
Internet-of-Things is a viable approach. The immutability of blockchain is essential to prevent anyone
from manipulating registered IoT data transactions for illegitimate benefits. However, the increasing
abuse of blockchain storage negatively impacts the development of IoT blockchain and potential
stakeholders are discouraged from joining the IoT data sharing as the IoT data recorded on the
blockchain contains private information. Hence, it is crucial to find ways to redact data stored on the
IoT blockchain, which is also supported by relevant laws and regulations. Policy-based chameleon
hash is useful primitive for blockchain rewriting, allowing the modifier to rewrite the transaction if
they possess enough rewriting privileges that satisfy the access policy. However, this approach lacks
traceability, which can be exploited by malicious modifiers to grant unauthorized user modification
privileges for personal gain. To overcome this deficiency, we introduce a new design of policy-based
chameleon hash with black-box traceability (PCHT), which enables the authority to identify the
set of producers responsible for generating the pirate decoder. Specifically, PCHT is constructed
by practical attribute-based encryption with black-box traceability (ABET) and collision-resistant
chameleon hash with ephemeral trapdoor (CHET). After modeling PCHT, we present its concrete
instantiation and rigorous security proofs. Finally, a PCHT-based redactable transaction scheme
for IoT blockchain is given. Compared to the state-of-the-art mutable blockchain solutions, our
scheme provides fine-grained blockchain rewriting and black-box traceability. The evaluation results
demonstrate that our scheme is efficient and practical while still ensuring that no computational
overhead is placed on IoT devices with limited computing resources.

Keywords: IoT blockchain; blockchain rewriting; chameleon hash; black-box traceability; fingerprinting
code

1. Introduction

As a prevalent computing technology paradigm, the Internet of Things (IoT) is widely
utilized in various fields, including smart healthcare [1], smart grids [2], and smart cities [3,4].
However, with the rapid increase in IoT applications, they are confronted with numerous
security and privacy challenges. Common attack methods include data sniffing, data spoofing,
and malicious data injection [5,6]. It is evident that the target of these attacks is the data
stored on the IoT network [7]. Typically, a centralized database is used to process the collected
IoT data. Nevertheless, this approach has centralized drawbacks, and blockchain offers a
promising solution for achieving distributed data protection in IoT networks [8,9].

Blockchain has gained tremendous popularity and acceptance by a wider community
since Satoshi Nakamoto proposed Bitcoin in 2008 [10]. As a decentralized ledger technol-
ogy, blockchain can be an ideal solution for multicenter cooperation-based trust [11,12].
Nowadays, it has been widely applied in insurance [13,14], DRM [15,16], and IoT [17,18],
not just focusing on cryptocurrencies. For blockchain, it is well known that blocks are linked
by hash chain and immutability is one of its characteristics. Specifically, a block contains

Electronics 2023, 12, 1646. https://doi.org/10.3390/electronics12071646 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071646
https://doi.org/10.3390/electronics12071646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5565-1607
https://doi.org/10.3390/electronics12071646
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071646?type=check_update&version=3

Electronics 2023, 12, 1646 2 of 17

multiple transactions. Generally, any modification on a transaction is nearly impossible
since it would influence the continuity of the block.

With the progress of IoT technology, IoT data are now not confined to a singular closed
environment, but is distributed amongst various cooperative IoT system [19]. In order to
cater to intricate application requirements, sharing of data among different IoT systems is
becoming an inevitable trend. For an IoT data owner, it is reasonable to process their own
data, which is also supported by relevant laws and regulations. For example, the general
data protection regulation (GDPR) [20] gives data owners the right of alerting their data.
Additionally, the immutability of blockchain can lead to several challenges. On the one
hand, the increasing abuse of blockchain storage negatively impacts the development of
IoT blockchain. On the other hand, there is a risk of inappropriate content and sensitive in-
formation being permanently recorded on the blockchain, which may discourage potential
stakeholders from joining IoT data sharing. Hence, it is crucial to find ways to erase data
stored on the IoT blockchain.

To make data posted to a IoT blockchain redactable, there are several existing strate-
gies, which can be categorized into two types: hard fork and chameleon hash. The former
creates forked blockchain at the block where the data need to be changed and discards
the subsequent blocks. However, this method cannot achieve fine-grained data modifying.
The latter applies chameleon hash to achieve secure blockchain rewriting. Ateniese et al.
proposed a seminal block-level rewriting scheme by replacing the traditional hash function
with the chameleon hash, where the trapdoor owners could rewrite the block without break-
ing the link of each two adjacent blocks [21]. To make the modification more fine-grained
and achieve transaction-level rewriting, Derler et al. introduce attribute-based encryption
(ABE) into the chameleon hash called policy-based chameleon hash (PCH), in which a party
could create a modifiable transaction using PCH and only the specific modifier who has
the associated attributes could modify it. Compared to [21], here chameleon hashes are
used to hash the transaction in computing the Merkle root. PCH is derived from CHET [22]
and attribute-based encryption (ABE) [23]. Specifically, the long-term trapdoor in CHET is
generated by the central authority and will be issued to the modifier and the ephemeral
one is derived from the transaction owner for each transaction. The ephemeral trapdoor is
sealed by the ABE scheme.

There are multiple recipients in the ABE scheme and each one is assigned an attribute-
related key to modify the data recorded in a transaction. Generally, this key is not allowed
to be shared with others. However, this key management policy is invalid for the malicious
modifier. By constructing the pirate decoder with his decryption key, the malicious modifier
can issue his modification privileges to the unauthorized and gain certain benefits. In this
case, the holder of the pirate decoder can maliciously change shared data on the IoT
blockchain, e.g., tampering with original sensor data, for personal gain, thereby distributing
the normal operation of data modification on the IoT blockchain. Hence, it is necessary to
trace the corrupted modifier and then enforce the correct punishments.

Several redactable blockchain schemes with traceability have been proposed. Tian et al.
proposed the PCH-based redactable blockchain with accountability, which links the mod-
ified transaction to its modifier but not the key leakage [24]. Additionally, Panwar et al.
introduced a permissioned redactable blockchain with traceability and revocability by
combining dynamic group signature and FAME, but their solution only provides weak
accountability that links the modified transaction to its modifier but not producers of the
pirate decoder [25]. To achieve strong accountability, the traceability object in this paper is
the collude producers, named traitors, of the pirate decoder that allows the unauthorized
to rewrite transactions.

Based on ABET and CHET, policy-based chameleon hash with traceability, named
PCHT, is introduced in this paper. For constructing a practical ABET with black-box
traceability, we choose the efficient CP-ABE scheme [23] and robust fingerprinting code [26].
Moreover, PCHT has constant-size ciphertext. The major contributions are summarized
as follows.

Electronics 2023, 12, 1646 3 of 17

• Formal definition and security model. The formal definition and security model of
policy-based chameleon hash with traceability (PCHT) are introduced. The remarkable
feature of PCHT is that it enables the authority to trace the corrupt modifiers who
produce the pirate decoder that allows the unauthorized to rewrite data recorded in
IoT blockchain. Compared to the existing solutions, our solution achieves black-box
traceability while equipping security and performance advantages.

• Generic construction and practical instantiation. We begin by providing a detailed
explanation of the generic construction of PCHT. Following this, we present a PCHT-
based redactable transaction scheme for IoT blockchain. Finally, we describe a practical
instantiation of PCHT. Considering the limited computing resources of IoT devices,
the data sharing is conducted by the data owner and the transaction rewriting op-
erations are performed by full nodes on the IoT blockchain, which have sufficient
computational resources to execute the hashing and adaptation algorithms. Due to
the infrequent occurrence of transaction rewriting in the IoT system, it is not expected
to significantly impact the system’s performance in a negative way.

2. Overview

In the system model of PCHT-based redactable blockchain for IoT, there are three types
of entities, which are shown in Figure 1. Then, we introduce the cryptographic primitives
behind PCHT.

Block Bi-1 Block Bi Block Bi+1

header

body

header

body

header

body
1

rewritingtracing

Blockchain

IoT

data ownerPrivileges

issuing
Authority Modifier

appending

Figure 1. System model of PCHT-based redactable blockchain for IoT.

2.1. System Overview

First, we introduce a trusted authority to take charge of system initialization and traitor
tracing. Generally, the transactions are published by the IoT data owner and redacted by
the modifier. The blockchain data rewriting in blockchain for IoT could be performed by
the following steps.

• System initialization. The authority initializes the system by publishing the public
parameters and generating a secret key for each participant using their individual
attribute sets.

• Mutable transaction publication. The IoT data owner appends a mutable transaction to
the blockchain using the hash algorithm of PCHT. Then, they would check its validity
by the verify algorithm of PCHT to decide whether to record it in the local ledger.

• Mutable transaction rewriting. When the attribute set of modifier satisfies the modifica-
tion policy, he can rewrite this mutable transaction. After that, the modifier broadcasts
it, and the other participants would also check its validity.

• Traitor tracing. If there exists a pirate decoder for modifying the mutable transactions
illegally, the authority would trace the corrupted modifiers by the tracing algorithm
of PCHT.

2.2. Cryptographic Building Blocks

For PCHT, CHET and ABET are two critical components.

Electronics 2023, 12, 1646 4 of 17

• CHET. Blockchain rewriting is realized by CHET in this paper. There are two trapdoors
in CHET: the long-term and the ephemeral. The former is generated by the authority
in system initialization. The latter is computed by the IoT data owner during mutable
transaction publication. Only if the modifier has both of them could he succeed in
rewriting the mutable transaction.

• ABET. It is a key component to construct PCHT, which can achieve fine-grained
blockchain rewriting and offer black-box traceability in traitor tracing. The ephemeral
trapdoor encrypted with the encrypting algorithm of ABET could only be decrypted
by the modifier who has the proper attributes. Compared with traditional CP-ABE
schemes, ABET has an additional tracing algorithm that takes public parameters and
tracing key as input and outputs the identity set of traitors.

2.3. Instantiation and Implementation

According to the generic construction scheme of ABET introduced in [27], we choose
FAME [23] and robust fingerprinting code [26] to initiate it. In addition to this, we also
rely on the discrete logarithm-based CHET [22]. Moreover, the PCHT-based redactable
blockchain scheme for IoT is also built in the paper, which makes the pirate decoder-related
corrupted modifiers traceable.

3. Related Work

Traceable CP-ABE. Generally, the tracing algorithm of traceable CP-ABE scheme
has access to the pirate decoder DS and takes tracing key tk as input, outputs the index
i ∈ {1, . . . , k} that indicates a secret key ski was used to create the pirate decoder. It could
be divided into two categories: public tracing and secret tracing.

An augmented broadcast encryption with public traitor tracing was introduced in [28]
and the tracing algorithm can be executed by any public user. However, it has sub-linear
size ciphertext O(

√
k). Later, Ning et al. proposed a traceable CP-ABE scheme with

constant-size ciphertext O(1) where the construction is built on top of a CP-ABE [29] and
an anonymous HIBE [30]. Although it has impressive practicality in commercial [31], this
scheme only supports white-box traceability, i.e., its traceability property only works when
the malicious users leak the well-formed decryption keys directly. An expressive black-box
traceable CP-ABE was proposed in [32], while it has sub-linear size ciphertext O(

√
k) so

that the practicality is hindered seriously. Moreover, public tracing is not suitable for
the tracing of blockchain rewriting since the blockchain rewriting event happens infre-
quently and pirate tracing is the responsibility for the authority in order to force the key
management policy.

Secret tracing means the tracing algorithm treats tracing key tk as secret value and
tk is only hold by the authority. Fingerprinting code is usually used to construct secret
tracing scheme. Boneh and Naor proposed the public-key-based traitor tracing system
with constant-size ciphertext O(1) [33]. The proposed system relies on a fingerprinting
code [34]. The fingerprinting code includes a code generator algorithm and a tracing
algorithm which is used for traitor tracing. Recently, Lai et al. introduced a traceable
attribute-based encryption scheme with constant-size ciphertext, which is also based on
the fingerprinting code [27]. The proposed construction is built on an efficient CP-ABE
scheme [23], and a Tardos code [35]. In this paper, we construct a practical ABET scheme
with black-box traceability, while supporting constant-size ciphertext O(1) and secret
tracing. A difference comparison among the existing ABET schemes is shown in Table 1.

Electronics 2023, 12, 1646 5 of 17

Table 1. Comparison of traceable CP-ABE schemes.

CP-ABE Scheme Ciphertext Size Black-Box Secret Tracing

[32] ABE [29] O(
√

k)
√

×
[31] ABE [29] O(1) × ×
[24] FAME [23] O(1)

√
×

Ours FAME [23] O(1)
√ √

Redactable blockchain. To achieve blockchain redacting, many schemes were pro-
posed and they could be categorized into two types [36]. The non-cryptography-based
schemes realize blockchain rewriting by some mechanisms. Puddu et al. proposed µchain
and realized blockchain redacting by a voting-like approach where each participant was
assigned a key sharing by a dynamic proactive secret sharing scheme and the modifier
had to collect enough votes to achieve blockchain redacting [37]. The cryptography-based
schemes mainly adopted the chameleon hash to achieve blockchain redacting and a series
of notable works have been proposed.

The chameleon hashing and signatures were put forward by Krawczyk and Rabin [38].
In 2017, Ateniese et al. first introduced the concept of redactable blockchain where the
traditional hash function was replaced by a chameleon hash function to calculate the hash
and only the party who owns the trapdoor could efficiently find valid collisions to rewrite
the blockchain without changing the hash output [21]. To achieve blockchain redacting
in a fine-grained and controlled way, Derler et al. proposed a novel cryptographic prim-
itive, named policy-based chameleon hash (PCH), and introduced it into the blockchain
redacting [39]. Anyone who satisfies the policy embedded in the transaction could then
find arbitrary collisions for a given hash. The blockchain rewriting could be manipulated at
a transaction level when PCH is applied to the blockchain. After that, To achieve rewriting
authorization in a decentralized setting, Zhang et al. introduced a multi-authority policy-
based chameleon hash (MPCH) [40], while Ma et al. presented a decentralized policy-based
chameleon hash (DPCH) [41]. Both MPCH and DPCH utilize CHET to manage data rewrit-
ing, with multi-authority attribute-based encryption [42] being leveraged to handle the
rewriting privilege. However, neither of them considered tracing the malicious modifiers.

Tian et al. were the first to consider accountability in PCH-based redactable blockchains.
However, their solution only provides weak accountability by linking the modified transac-
tion to its modifier without addressing the issue of key leakage [24]. Panwar et al. proposed
a permissioned redactable blockchain that provides traceability and revocability through
the use of dynamic group signature schemes (DGSS) and revocable FAME (RFAME). While
their solution links modified transactions to their modifiers and offers revocation of ma-
licious modification privileges, the traceability only offers weak accountability, and the
revocation mechanism has a linear complexity with the size of non-revoked modifiers [25].

To overcome the limitations of current mutable blockchain solutions, we have pro-
posed a PCHT-based blockchain rewriting scheme with black-box traceability, which en-
ables traitor tracing and effectively resolves the issue of key leakage. In Table 2, we compare
our scheme with existing mutable blockchain solutions.

Table 2. Comparison of mutable blockchain schemes.

Underlying Method Fine-Grained Traceability Traitor Tracing

[37] hard fork × × ×
[39] CHET

√
× ×

[24] CHET
√ √

×
Ours CHET

√ √ √

Electronics 2023, 12, 1646 6 of 17

4. Preliminary

In this section, several relevant cryptography fundamentals involved in PCHT are
presented and the important notations used in this paper are listed in Table 3.

Table 3. The notations used in this paper.

Notation Definition

DO the IoT data owner
TM the transaction modifier
skdo the secret key of IoT data owner
sktm the secret key of transaction modifier
A the access structure
M the matrix representing a MSP
ρ the mapping function
S the set of attributes
T the identity set of traitors

DS the pirate decoder for a set of attributes S

4.1. Chameleon Hash with Ephemeral Trapdoors

In CHET [22], the ephemeral trapdoor is chosen during hashing algorithm. It is
necessary to hold both the long-term and the ephemeral trapdoor to computing hash
collision successfully. This primitive includes the following five algorithms:

• CHET.Setup(1λ): It requires the security parameter λ as input, and outputs the public
parameter pp.

• CHET.KGen(pp): It requires pp as input, and outputs the key pair (pkCHET , skCHET)
where the skCHET is used as the long-term trapdoor.

• CHET.Hash(pkCHET , m): It requires pkCHET and a message m as input, and outputs
hash η, randomness r, and the ephemeral trapdoor etd.

• CHET.Veri f y(pkCHET , m, η, r): It requires pkCHET , m, η, and r as input, and outputs a
bit b ∈ {0, 1}.

• CHET.Adapt(skCHET , etd, m, m′, η, r): It requires skCHET , etd, m, m′, η, and r as input,
and outputs the new randomness r′.

Correctness: Note that the verifying algorithm would always verify if the given hash is
valid, and outputs ⊥ otherwise. Moreover, the correctness of CHET could be described as:

For all: λ ∈ Z,

pp← CHET.Setup(1λ),

(skCHET , pkCHET)← CHET.KGen(pp),

(η, r, etd)← CHET.Hash(pkCHET , m),

r′ ← CHET.Adapt(skCHET , etd, m, m′, η, r),

we have that:

CHET.Veri f y(pkCHET , m, η, r) = CHET.Veri f y(pkCHET , m′, η, r′) = 1.

For security, CHET is required to be indistinguishable, i.e., any adversary could not
distinguish the randomness generated in hashing step or adapting step. Moreover, CHET
also satisfies the collision-resistant (i.e., any adversary without holding both the long-term
and the ephemeral trapdoor simultaneously cannot find any hash collision).

4.2. Monotone Span Program (MSP)

Specifically, let {x1, x2, · · · , xn} be a set of boolean variables, the MSP is a labeled
matrix, denoted as M̂(M, ρ) where ρ is a mapping ρ : {1, · · · , n1} → U and ρ(i) = xi (i.e.,
the ith row of M is marked as xi).

Electronics 2023, 12, 1646 7 of 17

Suppose δ ∈ {0, 1}n is the input of boolean function f , the sub matrix Mδ consists of
d rows of M that satisfies the following condition: the label of row is xi and δi = 1. We
say that the (M, ρ) accepts δ iff ~1 ∈ span(Mδ) where~1 = (1, 1, · · · , 1) and span(Mδ) is a
certain linear combination of all rows in Mδ.

The linear secret-sharing scheme could be built on MSP. First, suppose {P1, P2, · · · , Pn}
is the set of participants and for G ∈ {P1, P2, · · · , Pn}, δG ∈ {0, 1}n is the feature vector
of G, which means the ith coordinate is 1 only if Pi ∈ G. We consider the column vector
~r = (r1, r2, · · · , rn2)

> and~1 ·~r = ∑n2
i=1 ri = s where r1, r2, · · · , rn2 are chosen at random

from Zq, and s is the shared secret. M~r ∈ Zn1×1
q is the vector of n1 shares of s and each one

is labeled according to M̂.
The reconstruction of secret could be described as below: suppose G∗ ∈ A is an

authorization set and δG∗ is the feature vector of G∗, we obtain~1 ∈ span(Mδ), which means
there exists a constant set {βu}u∈n1 such that

n1

∑
i=1

βiMi =~1, (1)

and then ∑n1
i=1 βiMi ·~r = ~1 ·~r = s. Note that these constants {βu}u∈n1 could be found in

polynomial time.

4.3. Robust Fingerprinting Code

To address the problem of watermarking digital content, Boneh et al. introduced
fingerprinting codes, which are a pair of the following two algorithms [34]:

• FC.Gen(n, a): On input the number of users and security parameter a, output a tracing
key α and a codebook C ∈ {0, 1}n×` where each row ci is the codeword for user i and
` is the fingerprinting code.

• FC.Trace(tk, C∗): It requires tk and a collusion codeword C∗ as input, outputs the
identity set T of accused users Uacc.

A fingerprinting code is t-collusion resistant means that there are t corrupted users
Ucor and their pirate codeword C∗ generated by pooling their codewords together, such that:

Pr[Uacc = ∅ or Ucor 6⊇ Uacc : Uacc ← FC.Trace(tk, C∗)] ≤ a

A fingerprinting code is δ-robust means that there exists at most δ` symbols ‘?’
in codeword.

4.4. ABET

An ABET scheme consists of the following five algorithms:

• ABET.Setup(n, 1λ): It requires the security parameter λ and the number of partici-
pants n as input, outputs key pair (mpk, msk) and tracing key tk.

• ABET.KGen(mpk, msk, Si): It requires (mpk, msk) and the attribute set Si of participant
i as input, outputs the individual secret key ski.

• ABET.Encrypt(mpk,A, m): It requires mpk, access structure A, and message m as
input, outputs the ciphertext CT.

• ABET.Decrypt(mpk, CT, ski): It requires mpk, CT, and ski as input, outputs m or ⊥.
• ABET.TraceDS(mpk, tk, S): It requires a pirate decoder DS (associated with a set of

attributes S), mpk and tk as input, outputs the identity set T of traitors.

5. Policy-Based Chameleon Hash with Traceability

In this section, we give the formal definition and security model of PCHT.

Electronics 2023, 12, 1646 8 of 17

5.1. Formal Definition

We consider three entities in PCHT: an authority auth, an IoT data owner DO, and a
transaction modifier TM. Specifically, it includes the following algorithms:

• PCHT.Setup(n, 1λ): It requires the security parameter λ and the number of partici-
pants n as input, outputs the key pair (pk,sk).

• PCHT.KGen(pk, sk, Si): It requires (pk,sk) and attribute set Si ∈ U as input, outputs
the secret key ski.

• PCHT.Hash(pk, m,A): It requires pk, message m, and A as input, outputs randomness
r, chameleon hash η, and ciphertext CT.

• PCHT.Veri f y(pk, m, η, r): It requires pk, m, η, and r as input, outputs a bit b ∈ {0, 1}.
• PCHT.Adapt(sktm, m′, m, η, r, CT): It requires sktm, new message m′, m, η, r, and CT

as input, outputs the new randomness r′, chameleon hash η, and ciphertext CT′.
• PCHT.TraceDS(pk, sk, S): It requires a pirate decoder DS associated with a set of at-

tributes S, (pk,sk) as input, outputs an index set T ⊆ {1, . . . , n} of corrupted modifiers.

Correctness: The PCHT is correct if for all:

(pk, sk)← PCHT.Setup(n, 1λ), λ ∈ Z,

ski ← PCHT.KGen(pk, sk, Si), Si ∈ U ,

(r, η, CT)← PCHT.Hash(pk, m,A, skdo), m ∈ M,

(r′, η, CT′)← PCHT.Adapt(sktm, m′, m, r, η, CT),

we have that:

PCHT.Veri f y(pk, m, η, r) = PCHT.Veri f y(pk, m′, η, r′) = 1.

5.2. Security Model

This section considers two security models of PCHT: indistinguishability and collision
resistance.

Indistinguishability. Informally, the indistinguishability requires that the adversary
can not be sure if the randomness of the chameleon hash was generated by the hashing or
adapting algorithm. The security experiment is shown below.

ExpIND
PCHT,A(1

λ) :

(sk, pk)← PCHT.Setup(n, 1λ); b← {0, 1}

b′ ← AOHashOrAdapt(sk,·,·,·,·,b)(pk)

return 1, i f b′ = b; else, return 0

Oracle OHashOrAdapt(sk, Si, m, m′,A, b) :

ski ← PCHT.KGen(pk, sk, Si)

(r0, η0, CT0)← PCHT.Hash(pk, m′,A)
(r1, η1, CT1)← PCHT.Hash(pk, m,A)
r1 ← PCHT.Adapt(ski, m′, m, η1, r1, CT1)

return (rb, ηb, CTb)

If the following advantage for any PPT adversary A is negligible, PCHT scheme is
indistinguishability secure:

AdvIND
PCHT ,A(1

λ) = |Pr[ExpIND
PCHT ,A(1

˘) = 1]− 1/2|.

Electronics 2023, 12, 1646 9 of 17

Collision resistance. Informally, the collision resistance requires that the adversary
could not find collisions for hashes computed with the access policies they are not satisfied
with. The security experiment is shown below.

ExpCR
PCHT,A(1

λ) :

(sk, pk)← PCHT.Setup(n, 1λ);L1,L2,L3 ← ∅

(m∗, r∗, m∗′, r∗′, η∗)← AO(pk),

where O ← {OKGen,OKGen′ ,OHash,OAdapt}.
return 1, i f 1 = PCHT.Veri f y(pk, m∗, η∗, r∗)

= PCHT.Veri f y(pk, m∗′, η∗, r∗′) ∧ (η∗, ·,A) ∈ L3,

f or some A∧m∗ 6= m∗′ ∧A∩ L1 = ∅ ∧ (η∗, m∗, ·) /∈ L3

else, return 0

Oracle OKGen(pk, sk, Si) :

ski ← PCHT.KGen(pk, sk, Si);L1 ← L1 ∪ {Si}
return ski

Oracle OKGen′(pk, sk, Si) :

ski ← PCHT.KGen(pk, sk, Si);L2 ∪ {i, ski}
i← i + 1

Oracle OHash(pk, m,A)
(η, r, CT)← PCHT.Hash(pk, m,A)
L3 ← L3 ∪ {(η, m,A)}
return (η, r, CT)

Oracle OAdapt(m, m′, η, r, j, CT, sktm) :

return ⊥ , i f (j, sktm) /∈ L2 f or some sktm

r′ ← PCHT.Adapt(pk, sktm, m, m′, η, r, CT)

i f (η, m,A) ∈ L3 f or some A,

let L3 ← L3 ∪ {(η, m′,A)}
return r′

If the following advantage is negligible, PCHT scheme is collision resistant:

AdvCR
PCHT ,A(1

λ) = Pr[ExpCR
PCHT ,A(1

λ) = 1].

6. Security Analysis and Instantiation
6.1. Security Analysis

The construction of PCHT involves two cryptographic building blocks: chameleon
hash with ephemeral trapdoor scheme with indistinguishability as well as collision resis-
tance, and a traceable CP-ABE scheme with traceability. The security results of PCHT are
shown below and the detailed proofs are also given.

Theorem 1. If the underlying CHET is indistinguishable, PCHT scheme has indistinguishabil-
ity secure.

Proof. Let A be a PPT adversary who can break the indistinguishability of PCHT with
considerable advantage and B be a PPT distinguisher that can break the indistinguishability
of CHET with the following advantage: AdvIND

PCHT,A(1
λ) = AdvIND

CHET,B(1
λ). Moreover, B is

given a HashOrAdapt oracle.

Electronics 2023, 12, 1646 10 of 17

Setup. At the beginning, B creates n participants for A and honestly generates a secret
key for each one.

Query. If A queries (Si, m, m′,A), then B obtains (rb, ηb, CTb) from his HashOrAdapt
oracle. Finally, B returns (rb, ηb, CTb).

Guess. Both of A and B output a bit b. If A guesses correctly, then B can break the
indistinguishability of CHET.

Theorem 2. The PCHT scheme is collision-resistant if the traceable CP-ABE scheme is adaptive
secure, and the underlying chameleon hash with ephemeral trapdoor is collision resistant.

Proof. A sequence of games Gi (i = 0, . . . , 3) are defined.
G0: The original game for collision resistance.
G1: Let q be an upper bound of the queries to Hash oracle. All queries are answered

as in G0, but the g-th one. In the g-th query, the encrypted message etd∗ in CT∗ is replaced
by 0. First, two messages M0 = etd∗, M1 = 0 are submitted to the challenger by S . Then,
A obtains the tuple (η∗, m∗, r∗, CT∗) from S . If A behaves significantly different in G0 and
G1, S can use A to break the semantic security of the traceable CP-ABE. Hence, we have

|Pr[S0]− Pr[S1]| ≤ AdvABET
S (λ).

G2: As G1 except that in the g-th query, if a valid collision is given by A which was
not previously returned by the Adapt oracle, S outputs a random bit. First, all public
parameters are honestly returned by S . Then, S obtains a randomness r from the Adapt
oracle if A submits an adapt query. If A gives a collision (η∗, m∗, r∗, CT∗, m∗

′
, r∗

′
, CT∗

′
)

in the g-th query and all the verifications hold, then a valid collision (h∗, m∗
′
, r∗

′
, CT∗

′
) is

given to CHET by S . Therefore, we have

|Pr[S1]− Pr[S2]| ≤ AdvCHET
S (λ).

Combining the above results, we have

AdvPCHT
A (λ) ≤ n(λ) · (AdvABET

S (λ) + AdvCHET
S (λ)).

Traceability. The PCHT scheme is traceable since the underlying fingerprinting code
is δ-robust. In the case that δ = 1, DS will decrypt correctly if all ω

(j)
i = 0 or all ω

(j)
i = 1

for j ∈ Ucor. The complex case is that it can be either 1 or 0 for the position i. In summary,
the traceability of fingerprinting code will return the indices set of traitors. For an imperfect
decoder, it can also achieve traceability by the robustness of the fingerprinting codes. Since
DS has δ-correctness, it still works properly for many positions.

6.2. Instantiation

In this section, a practical instantiation of PCHT is given. First, we combine the
efficient CP-ABE scheme [23] with Tardos code [35] (a robust fingerprinting code) to initiate
a traceable CP-ABE scheme with traceability. Based on the asymmetric prime-order Type-III
pairing, the chosen CP-ABE scheme in [23] is adaptively secure under the standard decision
linear assumption and equips the characteristics such as unbounded ABE universes and
constant decryption time. Then, the discrete logarithm-based CHET [22] is chosen to initiate
CHET. The instantiation of the PCHT scheme is shown below.

• PCHT.Setup(n, 1λ): It takes a security parameter λ and the number of users n as input.

– Consider a bilinear pairing: ê : G×H→ GT, where g and h are the generators G
and H, respectively.

– Run CHET.KGen(pp) to obtain the long-term secret/public key pair: (k, hk),
where k ∈ Z∗p and pp← CHET.Setup(1λ).

Electronics 2023, 12, 1646 11 of 17

– Let ε = 1/2λ and run FC.Gen(n, ε) to obtain the tracing wordcode set codebook
Φ and tracing key tk: FC.Gen(n, ε)→ {tk, Φ}, where Φ := {φ1, · · · , φn}.

– Pick (a1, a2, b1, b2)←R Z∗p, (w1, w2, w3)←R Zp, compute: A1 :=ha1 , A2 :=ha2 , H1 :
{0, 1}∗→G, H2 :{0, 1}∗→Zq, T1 := ê{g, h}w1a1+w3 , T2 := ê{g, h}w2a2+w3 .

– Choose the dummy attributes {Charu}u∈{0,1}, {Charj}j∈{`} and return:
pk := {hk, g, h, A1, A2, T1, T2, H1, H2, {Charu}u∈{0,1}, {Charj}j∈{`}},
sk := {k, a1, a2, b1, b2, gw1 , gw2 , gw3 , Φ, tk}.

• PCHT.KGen(pk, sk, Si): It takes pk, sk, and attribute set Si of participant i as input:

– Pick (d1, d2) ∈ Z∗p, d = d1 + d2, compute: sk0 := (hb1d1 , hb2d2 , hd).

– For j ∈ {1, . . . , `} (` is the code length), let φ
(j)
i ∈ {0, 1} be the j-th bit of φi and

set Si,j = Si ∪Charφ
(j)
i ∪Charj, for all s ∈ Si,j and t = {1, 2}, compute:

sks,t := H1(s1t)b1d1/at ·H1(s2t)b2d2/at ·H1(s3t)d/at ·gυs/at ,

where υs ∈ Zq. Set sks := {sks,1, sks,2, g−σs}.
– Pick υ′ ∈ Zq, for t = {1, 2}, compute:

sk′t := gwt ·H1(011t)b1d1/at ·H1(012t)b2d2/at ·H1(013t)d/at ·gυ′/at .
– Then set: sk′ := (sk′1, sk′2, gw3 ·g−υ′). Finally, the decryption key for Si,j is:

ski,j := (sk0, {sks}s∈Si,j , sk′).
– Return the secret key ski of participant i: ski := ({k}, {ski,j}j∈{`}).

• PCHT.Hash(pk, m,A, skdo): It takes the master public key pk, message m, access
structure A, secret key of IoT data owner skdo as input:

– Pick a randomness r ∈ Z∗p and a short bit-string etd as ephemeral trapdoor to
obtain a chameleon hash η: h′ = hH2(etd), η = hk·r · h′m.

– Pick τ1, τ2 ← Zp and τ = τ1 + τ2, compute: ct0 := (Aτ1
1 , Aτ2

2 , hτ).
– Choose a random position pos ∈ {`} and set Āu = A ∧ {Charu} ∧ {Charpos},

where u ∈ {0, 1}.
– Let z = 1, 2, 3 and u = 0, 1, suppose Āu has n1 rows and n2 columns, for ∀v ∈

{1, . . . , n1}, compute:
ctu,v,z := H1(π(v)z1)x1 ·H1(π(v)z2)x2 ·∏n2

j=1[H1(0jz1)x1 ·H1(0jz2)x2]Āu,v,j ,
where Āu,v,j denotes the (v, j)th element of Āu. Set ctu,v := (ctu,v,1, ctu,v,2, ctu,v,3).

– Generate a ciphertext on message msg := {r, etd} and compute: ct′ := Tτ1
1 ·T

τ2
2 ·msg.

– Finally, it outputs CTu = (ct0, {ctu,v}v∈n1 , ct′). Return (pos, CT0, CT1, r, h′, η).

• PCHT.Veri f y(m, η, r, h′): It takes message m, chameleon hash η, r, h′ as input. Return
1 if η = hk·r · h′m; otherwise, return 0.

• PCHT.Adapt(sktm, m′, m, pos, CT0, CT1, r, h′, η,): It takes the secret key of modifier
sktm, new message m′, message m, ciphertext CT, randomness r, h′, chameleon hash η
as input:

– Check 1 ?
= PCHT.Veri f y(m, η, r, h′).

– If φ
pos
i = 0, then pick CT0 to perform the following using decryption key sktm,pos;

otherwise (i.e., φ
pos
i = 1), the same for CT1.

– Recall that the set of attributes in sktm,pos satisfies the MSP (Ā0, ρ), then there
exist constants {γi}i∈I that satisfies the Equation (1) in Section 1, compute:
A := ct′ · ê(∏i∈I ctγi

i,1, sk0,1) · ê(∏i∈I ctγi
i,2, sk0,2) · ê(∏i∈I ctγi

i,3, sk0,3),
B := ê(sk′1·∏i∈I skπ(i),1, ct0,1) · ê(sk′2 ·∏i∈I skπ(i),2, ct0,2) ·
ê(sk′3 ·∏i∈I skπ(i),3, ct0,3), where sk0,1, sk0,2, sk0,3 denote the first, second, and third
element of sk0; the same rule applies to ct0.

– Derive the ephemeral trapdoor etd and randomness r from A/B, and then com-
pute: r′ := r + (m−m′) · H2(etd)/k.

Electronics 2023, 12, 1646 12 of 17

– Run PCHT.Hash(pk, m′,A, sktm) to obtain position pos′, ciphertext CT′0, and CT′1
on msg′ := (r′, etd) and return (pos′, CT′0, CT′1, r′, h′, η).

• PCHT.TraceDS(pk, sk, S): Suppose the trace algorithm has black-box access to pirate
decoder DS. The authority takes (pk, sk) as input:

– To obtain the identity set T of traitors, the auth performs as follows for each j
in {`}:

* Choose an access policy B which is only satisfied by S and not satisfied by
any subset of S;

* Set B̄u := B∧ {Attrj} ∧ {Attru}, where u ∈ {0, 1};
* Let N = O(λ2ln`) and repeat the following steps for N times: pick two

random message m, m′, compute:

CT0 ← PCHT.Hash(pk, m, B̄0),

CT1 ← PCHT.Hash(pk, 0, B̄1),

CT′0 ← PCHT.Hash(pk, m′, B̄0),

CT′1 ← PCHT.Hash(pk, m′, B̄1).

Set CT := (j, CT0, CT1) and CT′ := (j, CT′0, CT′1). If DS(CT) = m, set φj = 0;
else if DS(CT′) = m′ for more than

√
λ times, set φj = 1; else, set φj = ‘?′.

* Set the unauthorized codeword φ∗ = {φ1 · · · φ`}, and run FC.Trace(tk, φ∗)
to obtain the identity set T of traitors:

T ← FC.Trace(tk, φ∗).

7. PCHT-Based Blockchain Rewriting Scheme for IoT

In this section, we first introduce the application of PCHT for blockchain rewriting
and then present a PCHT-based blockchain rewriting scheme for IoT.

7.1. Application for Blockchain Rewriting

We give an application of PCHT for blockchain rewriting, which makes the blockchain
remain intact even if certain mutable transactions have been modified. As Figure 2 shows,
there are four transactions in the block Bi and their hash values are the leaf nodes of a Merkle
tree rooted at txroot. Among them, T(i,1) and T(i,3) are mutable transactions associated with
different access structures, T(i,2) and T(i,4) are immutable transactions. When the mutable
transaction needs to be modified, a transaction modifier could compute valid randomness
r without changing its hash value and txroot as long as the attributes Si embedded in his
PCHT-based decryption key skdm are accepted by the access structure A of this mutable
transaction. After modifying, the transaction modifier broadcasts this transaction and
randomness r to the network. Each participant could validate the correctness of this
mutable transaction and then update its local ledger of the blockchain with new content
and randomness.

header

body

prehash

itxroot inonce

1 iBlock B  iBlock B

(||)H A B

(, 2)T i
A B

1 iBlock B 

itime header

body

1(,1) . (, , ,) doT i Hash pk m sk 

(||)H C D

C D
(,1)T i (, 4)T i(,3)T i 3(,3) . (, , ,) doT i Hash pk m sk 

Figure 2. PCHT-based blockchain rewriting.

Electronics 2023, 12, 1646 13 of 17

7.2. System Model

As shown in Figure 1, we consider three types of entities for PCHT-based blockchain
rewriting: the authority auth, the IoT data owner DO, and the transaction modifier TM.
To clearly describe the PCHT-based blockchain rewriting scheme, we introduce each step
in detail as follows.

• System initialization. There are two phases in system initialization:

– Master key pair generation: the auth obtains (pk, sk) by running PCHT.Setup(n, 1λ),
and only publishes pk to participants in the IoT blockchain.

– Member key generation: the auth generates individual secret key ski for each
participant with their own attributes set Si by running PCHT.KGen(pk, sk, Si).

• Mutable transaction publication. It consists of the two following phases:

– Mutable transaction generation: DO generates a mutable transaction that includes
the message m, chameleon hash η, randomness r, and ciphertext CT by running
PCHT.Hash(pk, m,A). Then, DO broadcasts this transaction to other participants
in the blockchain for IoT.

– Mutable transaction verification: each participant could validate the transaction
by running the verifying algorithm. If the verification algorithm returns 1, this
participant could append it to its local ledger and broadcast it continually.

• Mutable transaction rewriting. There are two following phases:

– Mutable transaction rewriting: To rewrite the transaction content from m to m′,
the transaction modifier TM whose attributes are accepted by the access structure
A could run PCHT.Adapt(sktm, m, m′, CT, η, r) to compute a valid hash collision
and rewrite the transaction successfully. Then, the TM broadcasts the modified
transaction publicly.

– Mutable transaction verification: Each participant could validate the new trans-
action by running PCHT.Veri f y(m′, η, r′). He would update his local copy with
the message m′ if the transaction is valid and broadcast it to other participants
continually.

• Traitor tracing. It could be completed by the following step:

– Corrupted modifiers tracing: The auth could obtain the identity set T of corrupted
modifiers who produce the pirate decoder by running PCHT.TraceDS(pk, sk, S).

7.3. Threat Model

In this context, we assume the authority auth would honestly generate the secret key
ski for participant i and perform his traceability duties honestly during traitor tracing.
Moreover, the IoT data owner DO would honestly publish the mutable transaction.

Our main security goals are to guarantee indistinguishability of randomness r and
chameleon hash η, protect against adversaries who try to update m without the long-term
and/or ephemeral trapdoor and ensure the traceability of auth. The corrupted modifiers
may launch the following various types of attacks. In this paper, we do not consider
network attacks in the permissioned blockchain (e.g., replay attacks, denial of service, etc.),
existing works have already focused on them [43].

Indistinguishability. In reality, the adversary could identify chameleon hash has been
modified or not to learn the additional knowledge. To avoid this, this property has been
formalized by introducing the security model of indistinguishability and a chameleon hash
with ephemeral trapdoor scheme with indistinguishability is used to construct the PCHT.

Collision resistance. This property ensures the security of the mutable transaction.
The adversary may want to rewrite the mutable transaction when they are not satisfied with
the access policies embedded in the transaction. Therefore, we formalize this property by
introducing the security model of collision resistance. Moreover, a traceable CP-ABE scheme
with adaptive security and a collision-resistant CHET scheme are chosen to construct
the PCHT.

Electronics 2023, 12, 1646 14 of 17

Traceability. The corrupted modifiers may collude to produce the pirate decoder by
abusing their decryption keys. To solve this, we use a traceable CP-ABE scheme with
traceability as well as δ-robust fingerprinting code to construct PCHT.

8. Implementation and Evaluation

In this section, we first implement the proposed instantiation of PCHT using Charm
framework [44] and evaluate its performance on a personal computer with Ubuntu 18.04,
Intel Core i7-8700@3.20 GHz, and 4 GB RAM. Based on hyperledger fabric v1.4, the PCHT-
based redactable blockchain platform has also been implemented using java-1.8.0, go-1.15.6,
docker-20.10, docker-compose-2.3.4, vue-2.9.6, including one CA peer, one ordering peer,
and seven committing peers.

In the implementation of PCHT, we use the MNT224 curve for pairing, which is the
Type-III curve in PBC and offers a 96-bit security level [23]. The experimental performance
of key generation, hashing, and adaption algorithms compared with the PCHBA scheme
in [24] is present in Figure 3. Overall, the runtime of these algorithms is proportional to
the number of attributes or the size of policies. Since we set the code length ` = 5 in the
test, the runtime of the key generation algorithm in PCHT is about five times as long as it
in PCHBA, which is because the auth needs to generate the decryption key for each code
and the runtime of key generation algorithm would increase with the length of code length.
In our opinion, the key generation phase only takes place during system initialization and it
is critical to the traceability of PCHT. Hence, the reasonable time cost is acceptable. For the
hashing and adaption algorithms, the number of attributes ranges from 10 to 100 and the
runtime of PCHT is about twice that in PCHBA, which is because there are two ciphertexts
that need to be generated and the time cost is moderate. Given the restricted computing
power of certain IoT devices, IoT data sharing is collected by data owners while transaction
rewriting operations are carried out by full nodes on the IoT blockchain, which possess
adequate computational resources for executing the hashing and adaptation algorithms.
The rare occurrence of transaction rewriting in the IoT system means that it is unlikely to
have any significant detrimental effect on the system’s performance.

10 20 30 40 50 60 70 80 90 100
Number of attributes

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

(m
s)

key generation
PCHBA
Ours

10 20 30 40 50 60 70 80 90 100
Size of policies

0

250

500

750

1000

1250

1500

1750

2000

Ru
nt

im
e

(m
s)

hashing
PCHBA
Ours

10 20 30 40 50 60 70 80 90 100
Size of policies

0

250

500

750

1000

1250

1500

1750

2000

Ru
nt

im
e

(m
s)

adaption
PCHBA
Ours

Figure 3. Experimental performance.

Electronics 2023, 12, 1646 15 of 17

The PCHT-based redactable blockchain platform has also been deployed in this paper.
To evaluate its performance, we use Tape as the throughput testing tool and the number
of transactions included in each block is set to 160. Moreover, the runtime of hashing and
adaption algorithms in this test is about 200 ms. Set the proportion of mutable transaction
volume to the total transaction volume is 5%, 10%, 15%, 20%, respectively, and we obtain
the following test results. As shown in Figure 4, the transaction throughput decreases
as the mutable transaction ratio increases, which means the runtime of PCHT imposes
a non-negligible impact on system performance. Considering the fact that the mutable
transactions happen infrequently in the IoT blockchain, the lower transaction throughput
compared with a single application blockchain is reasonable and acceptable.

250 500 750 1000 1250 1500 1750 2000
Number of transactions

10

20

30

40

50

60

70

80

90

Tr
an

sa
ct

io
n

th
ro

ug
hp

ut

5%
10%
15%
20%

Figure 4. The transaction throughput under different transaction volume.

9. Conclusions

The Internet of Things (IoT) enables the collection of data from multiple parties
through sensors, and blockchain technology can serve as an ideal solution for establishing
trust in a multi-center cooperation framework. In order to ensure the redaction of data and
traceability of any malicious transaction tampering, we propose a policy-based chameleon
hash with traceability, known as PCHT, and introduce a PCHT-based blockchain rewriting
scheme. Our experimental analysis demonstrates that this scheme does not impose a
computational burden on IoT devices. Future work could focus on decentralizing the
authority and extending our generic construction to support authority accountability.

Author Contributions: Conceptualization, P.D.; formal analysis, P.D.; funding acquisition, Z.M.;
methodology, P.D.; project administration, Z.M.; software, P.D. and J.W.; supervision, Y.Z., Z.M. and
S.L.; validation, P.D., J.W. and Y.Z.; writing—original draft, P.D.; writing—review and editing, J.W.,
Y.Z., Z.M. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Plan in China
of funder grant number 2020YFB1005500 and Beijing Natural Science Foundation of funder grant
number M21034. The APC was funded by the National Key Research and Development Plan in
China of funder grant number 2020YFB1005500.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The research work is supported by the National Key Research and Develop-
ment Plan in China (Grant No. 2020YFB1005500) and Beijing Natural Science Foundation (Grant
No. M21034).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, S.; Rathore, S.; Alfarraj, O.; Tolba, A.; Yoon, B. A framework for privacy-preservation of IoT healthcare data using

Federated Learning and blockchain technology. Future Gener. Comput. Syst. 2022, 129, 380–388. [CrossRef]
2. Mall, P.; Amin, R.; Das, A.K.; Leung, M.T.; Choo, K.K.R. PUF-based authentication and key agreement protocols for IoT, WSNs,

and Smart Grids: A comprehensive survey. IEEE Internet Things J. 2022, 9, 8205–8228. [CrossRef]

http://doi.org/10.1016/j.future.2021.11.028
http://dx.doi.org/10.1109/JIOT.2022.3142084

Electronics 2023, 12, 1646 16 of 17

3. Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A review and state of art of Internet of Things (IoT). Arch. Comput.
Methods Eng. 2022, 29, 1395–1413. [CrossRef]

4. Laghari, A.A.; Khan, A.A.; Alkanhel, R.; Elmannai, H.; Bourouis, S. Lightweight-BIoV: Blockchain Distributed Ledger Technology
(BDLT) for Internet of Vehicles (IoVs). Electronics 2023, 12, 677. [CrossRef]

5. Waqas, M.; Kumar, K.; Laghari, A.A.; Saeed, U.; Rind, M.M.; Shaikh, A.A.; Hussain, F.; Rai, A.; Qazi, A.Q. Botnet attack detection
in Internet of Things devices over cloud environment via machine learning. Concurr. Comput. Pract. Exp. 2022, 34, e6662.
[CrossRef]

6. Ahanger, T.A.; Aljumah, A.; Atiquzzaman, M. State-of-the-art survey of artificial intelligent techniques for IoT security. Comput.
Netw. 2022, 206, 108771. [CrossRef]

7. Rehman Javed, A.; Jalil, Z.; Atif Moqurrab, S.; Abbas, S.; Liu, X. Ensemble adaboost classifier for accurate and fast detection of
botnet attacks in connected vehicles. Trans. Emerg. Telecommun. Technol. 2022, 33, e4088. [CrossRef]

8. Li, R.; Song, T.; Mei, B.; Li, H.; Cheng, X.; Sun, L. Blockchain for large-scale internet of things data storage and protection. IEEE
Trans. Serv. Comput. 2018, 12, 762–771. [CrossRef]

9. Wang, C.; Cai, Z.; Li, Y. Sustainable blockchain-based digital twin management architecture for IoT devices. IEEE Internet Things
J. 2022. [CrossRef]

10. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing List. 2008. Available online: https:
//metzdowd.com (accessed on 31 October 2008).

11. Cao, B.; Zhang, Z.; Feng, D.; Zhang, S.; Zhang, L.; Peng, M.; Li, Y. Performance analysis and comparison of PoW, PoS and DAG
based blockchains. Digit. Commun. Netw. 2020, 6, 480–485. [CrossRef]

12. Liu, Y.; Zhang, C.; Yan, Y.; Zhou, X.; Tian, Z.; Zhang, J. A semi-centralized trust management model based on blockchain for data
exchange in iot system. IEEE Trans. Serv. Comput. 2022. [CrossRef]

13. Zhang, G.; Zhang, X.; Bilal, M.; Dou, W.; Xu, X.; Rodrigues, J.J. Identifying fraud in medical insurance based on blockchain and
deep learning. Future Gener. Comput. Syst. 2022, 130, 140–154. [CrossRef]

14. Elhence, A.; Goyal, A.; Chamola, V.; Sikdar, B. A Blockchain and ML-Based Framework for Fast and Cost-Effective Health
Insurance Industry Operations. IEEE Trans. Comput. Soc. Syst. 2022. [CrossRef]

15. Ma, Z.; Jiang, M.; Gao, H.; Wang, Z. Blockchain for digital rights management. Future Gener. Comput. Syst. 2018, 89, 746–764.
[CrossRef]

16. Florea, A.I.; Anghel, I.; Cioara, T. A Review of Blockchain Technology Applications in Ambient Assisted Living. Future Internet
2022, 14, 150. [CrossRef]

17. Wei, X.; Yan, Y.; Guo, S.; Qiu, X.; Qi, F. Secure Data Sharing: Blockchain-Enabled Data Access Control Framework for IoT. IEEE
Internet Things J. 2022, 9, 8143–8153. [CrossRef]

18. Weerapanpisit, P.; Trilles, S.; Huerta, J.; Painho, M. A Decentralized Location-Based Reputation Management System in the IoT
Using Blockchain. IEEE Internet Things J. 2022, 9, 15100–15115. [CrossRef]

19. Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A survey on access control in the age of internet of things. IEEE Internet Things J.
2020, 7, 4682–4696. [CrossRef]

20. Voigt, P.; Von dem Bussche, A. The EU general data protection regulation (GDPR). In A Practical Guide, 1st ed.; Springer
International Publishing: Cham, Switzerland, 2017; Volume 10, pp. 10–5555.

21. Ateniese, G.; Magri, B.; Venturi, D.; Andrade, E. Redactable Blockchain—or—Rewriting History in Bitcoin and Friends. In
Proceedings of the IEEE European Symposium on Security and Privacy, Paris, France, 26–28 April 2017; pp. 111–126.

22. Camenisch, J.; Derler, D.; Krenn, S.; Pöhls, H.C.; Samelin, K.; Slamanig, D. Chameleon-Hashes with Ephemeral Trapdoors. In
Proceedings of the Public-Key Cryptography, Amsterdam, The Netherlands, 28-31 March 2017; pp. 152–182.

23. Agrawal, S.; Chase, M. FAME: Fast Attribute-Based Message Encryption. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; Association for Computing Machinery:
New York, NY, USA, 2017.

24. Tian, Y.; Li, N.; Li, Y.; Szalachowski, P.; Zhou, J. Policy-based chameleon hash for blockchain rewriting with black-box
accountability. In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020;
pp. 813–828.

25. Panwar, G.; Vishwanathan, R.; Misra, S. ReTRACe: Revocable and traceable blockchain rewrites using attribute-based cryp-
tosystems. In Proceedings of the 26th ACM Symposium on Access Control Models and Technologies, Virtual, 16–18 June 2021;
pp. 103–114.

26. Boneh, D.; Kiayias, A.; Montgomery, H.W. Robust fingerprinting codes: A near optimal construction. In Proceedings of the Tenth
Annual ACM Workshop on Digital Rights Management, Chicago, IL, USA, 4 October 2010; pp. 3–12.

27. Lai, J.; Tang, Q. Making any attribute-based encryption accountable, efficiently. In Proceedings of the European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona, Spain, 3–7 September 2018; Springer: Cham, Switzerland, 2018;
pp. 527–547.

28. Boneh, D.; Waters, B. A fully collusion resistant broadcast, trace, and revoke system. In Proceedings of the 13th ACM conference
on Computer and Communications Security, Alexandria, VA, USA, 30 October–3 November 2006; pp. 211–220.

http://dx.doi.org/10.1007/s11831-021-09622-6
http://dx.doi.org/10.3390/electronics12030677
http://dx.doi.org/10.1002/cpe.6662
http://dx.doi.org/10.1016/j.comnet.2022.108771
http://dx.doi.org/10.1002/ett.4088
http://dx.doi.org/10.1109/TSC.2018.2853167
http://dx.doi.org/10.1109/JIOT.2022.3153653
https://metzdowd.com
https://metzdowd.com
http://dx.doi.org/10.1016/j.dcan.2019.12.001
http://dx.doi.org/10.1109/TSC.2022.3181668
http://dx.doi.org/10.1016/j.future.2021.12.006
http://dx.doi.org/10.1109/TCSS.2022.3219256
http://dx.doi.org/10.1016/j.future.2018.07.029
http://dx.doi.org/10.3390/fi14050150
http://dx.doi.org/10.1109/JIOT.2021.3111012
http://dx.doi.org/10.1109/JIOT.2022.3147478
http://dx.doi.org/10.1109/JIOT.2020.2969326

Electronics 2023, 12, 1646 17 of 17

29. Lewko, A.; Waters, B. New proof methods for attribute-based encryption: Achieving full security through selective tech-
niques. In Proceedings of the 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 180–198.

30. Seo, J.H.; Cheon, J.H. Fully secure anonymous hierarchical identity-based encryption with constant size ciphertexts. Cryptol.
ePrint Arch. 2011, 21. Available online: https://eprint.iacr.org/2011/021 (accessed on 17 February 2023).

31. Ning, J.; Dong, X.; Cao, Z.; Wei, L.; Lin, X. White-box traceable ciphertext-policy attribute-based encryption supporting flexible
attributes. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1274–1288. [CrossRef]

32. Liu, Z.; Cao, Z.; Wong, D.S. Blackbox traceable CP-ABE: How to catch people leaking their keys by selling decryption devices on
eBay. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8
November 2013; pp. 475–486.

33. Boneh, D.; Naor, M. Traitor tracing with constant size ciphertext. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, Alexandria, VA, USA, 27–31 October 2008; pp. 501–510.

34. Boneh, D.; Shaw, J. Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 1998, 44, 1897–1905. [CrossRef]
35. Tardos, G. Optimal probabilistic fingerprint codes. J. ACM 2008, 55, 1–24. [CrossRef]
36. Wu, C.; Ke, L.; Du, Y. Quantum resistant key-exposure free chameleon hash and applications in redactable blockchain. Inf. Sci.

2021, 548, 438–449. [CrossRef]
37. Puddu, I.; Dmitrienko, A.; Capkun, S. µchain: How to Forget without Hard Forks. Cryptol. ePrint Arch. 2017, 2017, 106.
38. Krawczyk, H.; Rabin, T. Chameleon hashing and signatures. IACR Cryptol. ePrint Arch. 1998, 1998, 10.
39. Derler, D.; Samelin, K.; Slamanig, D.; Striecks, C. Fine-grained and controlled rewriting in blockchains: Chameleon-hashing gone

attribute-based. NDSS 2019. [CrossRef]
40. Zhang, Z.; Li, T.; Wang, Z.; Liu, J. Redactable transactions in consortium blockchain: Controlled by multi-authority CP-ABE. In

Proceedings of the Information Security and Privacy: 26th Australasian Conference, Virtual Event, 1–3 December 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 408–429.

41. Ma, J.; Xu, S.; Ning, J.; Huang, X.; Deng, R.H. Redactable blockchain in decentralized setting. IEEE Trans. Inf. Forensics Secur.
2022, 17, 1227–1242. [CrossRef]

42. Chase, M. Multi-authority attribute based encryption. In Proceedings of the Theory of Cryptography: 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, 21–24 February 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 515–
534.

43. Altarawneh, A.; Sun, F.; Brooks, R.R.; Hambolu, O.; Yu, L.; Skjellum, A. Availability analysis of a permissioned blockchain with a
lightweight consensus protocol. Comput. Secur. 2021, 102, 102098. [CrossRef]

44. Akinyele, J.A.; Garman, C.; Miers, I.; Pagano, M.W.; Rushanan, M.; Green, M.; Rubin, A.D. Charm: A framework for rapidly
prototyping cryptosystems. J. Cryptogr. Eng. 2013, 3, 111–128. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2011/021
http://dx.doi.org/10.1109/TIFS.2015.2405905
http://dx.doi.org/10.1109/18.705568
http://dx.doi.org/10.1145/1346330.1346335
http://dx.doi.org/10.1016/j.ins.2020.10.008
http://dx.doi.org/10.14722/ndss.2019.23066
http://dx.doi.org/10.1109/TIFS.2022.3156808
http://dx.doi.org/10.1016/j.cose.2020.102098
http://dx.doi.org/10.1007/s13389-013-0057-3

	Introduction
	Overview
	System Overview
	Cryptographic Building Blocks
	Instantiation and Implementation

	Related Work
	Preliminary
	Chameleon Hash with Ephemeral Trapdoors
	Monotone Span Program (MSP)
	Robust Fingerprinting Code
	ABET

	Policy-Based Chameleon Hash with Traceability
	Formal Definition
	Security Model

	Security Analysis and Instantiation
	Security Analysis
	Instantiation

	PCHT-Based Blockchain Rewriting Scheme for IoT
	Application for Blockchain Rewriting
	System Model
	Threat Model

	Implementation and Evaluation
	Conclusions
	References

