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Abstract: Intelligent transportation systems (ITS) are pivotal to the development of smart cities, as
they aim to enhance traffic flow, reduce traffic congestion, improve road safety, and increase social
inclusion. Intelligent vehicles can sense, actuate, and process information that has been gathered
from the environment to provide reliable services. During communication, congestion is a major
issue that affects driving behaviour. This paper proposes a behaviour-based response model for
analysing the roadside traffic in a smart city environment. In this model, the vehicles leverage
the benefits of connected cloud technology and smart computational capabilities to analyse traffic
conditions and provide assisted driving to users. The proposed model employs a regression model
for computing and analysing the information that is gathered from the environment. It also generates
recommendations for its users and provides traffic congestion-free driving assistance, with a reduced
reaction time and improved driving efficiency. Lastly, the model also intends to provide real-time
information and actionable insights for drivers so that they can make informed decisions and improve
the road safety in smart environments. The performance of the proposed model is validated by using
the appropriate experiments, and the results are validated for the varying set of inputs and intervals
for the metrics response delay, processing time, and precision errors.

Keywords: driving assistance; intelligent transportation systems; intelligent vehicle; regression
analysis; smart city; traffic monitoring

1. Introduction

The development of smart cities represents a major shift in how cities are planned,
and has managed to enhance the quality of life for citizens and create more sustainable,
efficient, and liveable urban environments. Smart cities utilize the latest technologies and
data analyses to optimize the delivery of essential services such as energy, transportation,
health care, and education. They also aim to reduce waste and increase efficiency while en-
hancing the sustainability and liveability of urban environments. Integrating cutting-edge
technologies into city infrastructure and services, such as the Internet of Things, big data,
and cloud computing, is a key component of smart city development. These technologies
allow for the real-time monitoring and control of city systems, providing planners and
managers with valuable insights and information so that they can make more informed
decisions. Intelligent transportation systems (ITS) are critical for developing smart cities.
ITS technologies help to improve the efficiency, safety, and sustainability of the transporta-
tion network in a city, making it an essential component of the smart city infrastructure.
ITS technologies, such as connected vehicles, real-time traffic management systems, and
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advanced driver-assist systems, are integrated into the transportation network to provide a
more seamless, efficient, and safe travel experience for all road users. These systems include
using sensors, cameras, and other technologies to monitor the traffic flow and adjust the
real-time signal timings, reducing congestion and improving mobility. ITS technologies
also help to improve the transportation network’s efficiency by providing real-time in-
formation to travellers about road conditions, traffic delays, and public transportation
routes. This information can be used to adjust signal timings, reroute traffic, and provide
alternate modes of transportation, helping to alleviate congestion and improve mobility.
Furthermore, ITS technologies are also critical in helping to achieve the sustainability goals
of a smart city. By reducing congestion and improving the efficiency of the transportation
network, ITS technologies can help to reduce emissions and enhance air quality.

ITS are becoming integral to the smart city environment, due to their service-centric
design and support functions for various applications. ITS are reliable in scaling distance
and providing uninterrupted and pervasive communication and service access to their
driving users. The fundamental building blocks of ITS are vehicles that are equipped
with sensors, radios, and processing units for handling external information [1]. These
technologies provide drivers with real-time data and services, such as traffic updates,
emergency services, and in-vehicle infotainment and entertainment services, allowing for a
more seamless, efficient, and safe travel experience. The architecture of ITS encompasses
connected vehicles, wireless technologies, roadside infrastructures, distributed networks
such as the cloud, and communication protocols. These components work together to create
a smart transportation system that provides drivers with real-time information and services
and enables communication between vehicles, the central system, and other road users.
ITS include vehicle-to-vehicle (V2V) and vehicle-to-anything (V2X) communication modes,
with the support of their infrastructure [2,3]. V2V communication enables vehicles to
communicate directly with each other, exchanging data on road conditions, traffic flow, and
vehicle speed. “Anything” refers to the communication between roadside infrastructures,
cloud networks, gateways, and sensors, etc., which is an extension of V2V. Therefore, the
ability of ITS to provide V2V and V2X communication modes is a key part of their role
in creating a smart transportation system for smart cities. This interconnection between
heterogeneous devices and vehicles is made feasible through different standards, such as
dedicated short-range communication, wireless access in the vehicular environment, and
IEEE 802.11p. These communication standards are designed with the necessary technical
specifications to provide the optimal communication and information sharing between
vehicles and other road users, or distributed resources such as roadside infrastructure.
These standards ensure that this communication is not affected by the velocity and direction
of the vehicles, enabling a reliable and uninterrupted service delivery [4,5].

ITS provide a wide range of services and applications in the smart city environment,
including safety driving assistance, navigation, traffic congestion reporting, and many
more. These services aim to enhance the driving experience and make the transportation
system safer, more efficient, and more sustainable. The information that is exchanged
by the in-position vehicle is useful for gaining knowledge about the environment from
the trailing vehicles. This information provides users with driving assistance and naviga-
tion [5,6]. The information exchange between these vehicles plays a crucial role in ITS and is
leveraged to offer various services, including driving support and navigation. By exchang-
ing information such as position, speed, and other attributes, vehicles can improve their
understanding of the road environment, including other vehicles, traffic conditions, and
road infrastructure. This information exchange helps drivers to make better decisions con-
cerning their route, speed, and driving behaviour, improving the transportation system’s
safety, efficiency, and sustainability. Navigation, routing applications, and services require
adequate information from multiple sources to provide precise user guidance. Therefore,
the accuracy of the information that is exchanged between vehicles is crucial for ensuring
the reliability of the navigation, routing applications, and services that are provided by ITS.
The information must be correct and consistent with the speed and distance of the vehicles



Electronics 2023, 12, 1644 3 of 19

to meet this requirement. The information attributes that are gathered from the monitoring
vehicle are the change in position, location, distance, speed, and trajectory, along with the
travel distance and road segment [7,8]. ITS process this information for navigation, traffic
congestion reporting, and safe driving assistance. The usability of this information depends
on how it is used to provide navigation or driving assistance to the user. The information
that is exchanged between vehicles and sensors is processed efficiently to improve driving
assistance [8,9].

The amount of information that is exchanged in the driving scenario is substantial
and is continuously updated as the vehicle travels. Processing such frequent information
is complex but is addressed through granular service provisioning to provide a precise
user service [10]. The processing systems that are designed for ITS must handle network
dynamics competently and efficiently process the large amounts of data that are frequently
exchanged in the driving scenario. Information processing, extraction, decision making,
and assistance are the major tasks of this computation and processing system [11]. The de-
velopment of various roadside service applications for driving users is constantly evolving
to meet the changing needs and requirements of these users. The precision of the analysis
and the correctness of the information can be verified through simple services such as
localization and distance prediction.

Similarly, the designed method for ITS must not increase the information overhead,
as this can lead to a malfunction of the applications. The design of the computation and
processing system for ITS requires exceptional and time-bound operational features to
ensure the optimal data extraction [9,10,12]. With an increasing number of vehicles on the
road, traffic congestion and accidents are becoming more common, leading to economic
and social costs. Traditional traffic monitoring systems rely on physical infrastructure such
as cameras and sensors, which can be expensive to install and maintain. Furthermore, these
systems often provide limited information about driving behaviour and are not able to
provide real-time feedback to drivers. To address these issues, there is a need for a more
advanced and intelligent traffic monitoring system that can provide real-time feedback
to drivers based on their behaviour. This system should be able to detect potentially
hazardous situations and provide appropriate alerts to drivers to prevent accidents. This
article proposes a solution for increasing this precision and better driving assistance by
assimilating improved learning features with roadside data analysis. Safe driving and
navigation assistance require multimodal data acquisitions and analyses. The problem
is the time-series dependency of the data and their volatile nature. Therefore, specific
decision/navigation assistance is short-lived. Despite these issues, the leveraging of this
behaviour is required, using detailed external and internal data modelling. Therefore, the
objectives of this research are listed as follows:

1. To propose and formulate a behaviour-based response model (BRM) for high-precision
assisted driving through an in-depth data analysis.

2. To introduce the assimilation of regression modelling for analysing a self-vehicle and
its neighbouring vehicle data to handle traffic congestion.

3. To conduct a comparative study to identify the advantages and limitations of the
proposed BRM using measured metrics.

This research paper is presented in five sections. Section 1 provides an overview of the
research background and sets the objectives for modelling the proposed behaviour-based
response model for traffic monitoring and driving assistance. The section also introduces
the significance of ITS in the development of smart cities and the role of vehicles with
smart computation capabilities. Section 2 focuses on the related work, provides an in-depth
analysis of roadside monitoring for vehicle safety systems and driving assistance technolo-
gies, and identifies the research gaps. Section 3 describes the proposed behaviour-based
response model, including its applications, information, and behaviour modelling. The
model uses the smart computation capabilities of connected vehicles to analyse the traffic
conditions and provide assisted driving recommendations to its users. Section 4 presents
the experimental results and an analysis of the proposed model, which are validated for the
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various inputs and intervals of the metrics, such as the detection accuracy, localization error,
and information overhead. Finally, the conclusion in Section 5 summarizes the key findings
and highlights the contribution of the proposed model to the field of ITS for smart cities.

2. Related Works
2.1. Roadside Monitoring for Vehicle Safety

Roadside monitoring for vehicle safety refers to a system that is installed along roads
that utilizes various sensors and technology to monitor the traffic and provide driver assis-
tance and safety warnings. This system aims to improve road safety by detecting potential
hazards and alerting drivers to take necessary actions in real-time. This system involves a
network of sensors, cameras, RADAR, LiDAR, and other advanced technologies that are
installed along the roads. The data that are collected track the vehicle’s position, speed,
and additional relevant information. This technology is especially useful for detecting
dangerous driving behaviours, such as reckless driving, tailgating, and lane departure. The
data that are collected are then processed by advanced algorithms to detect any potential
dangers or deviations from safe driving behaviour. The monitoring results are used to pro-
vide real-time alerts or notifications to the drivers and information to traffic management
centres for a proactive response. This system aims to improve road safety and reduce the
number of accidents and fatalities on the roads. Roadside monitoring plays a crucial role
in promoting road safety by identifying and addressing potential risks before they lead to
accidents, and improving overall driving safety. Numerous research papers on designing
and developing these roadside monitoring systems for vehicle safety, in the context of
ITS for smart cities, have been published. Some of these studies are discussed below as
background for this research.

Mfenjou et al. [13] proposed a communication network framework for ITS to provide
surveillance within inter-urban transport networks, especially for low-income countries.
The proposed architecture incorporates relay and treatment control points to form two
multi-objective optimization models to gain information on the roadside environment.
These optimization models focus on ensuring broad coverage, reducing installation costs,
and prioritizing areas with high accident rates. The deployment of these control points is
optimized by using a non-dominated sorted genetic algorithm II to identify the best possible
solutions. The simulation results demonstrate the proposed solution’s effectiveness. This
algorithm reduces the deployment costs and improves the coverage range. The study can
investigate the detection and diffusion of disturbances within the inter-urban transport
network and compare the performances of the implemented optimization algorithm with
other optimization algorithms, by using various performance indicators. Kong et al. [14]
designed a new traffic recommendation system for intelligent congestion and accident
avoidance, using a deep learning model (DL). Their proposed system interconnected the
Internet of Things and DL technology to predict the traffic parameters for designing their
traffic recommendation system. The system first processed the traffic flow data with
Internet of Things technology. Then, it utilized a long short-term memory (LSTM) neural
network to predict the traffic congestion duration and spatial diffusion trends. The authors
aimed to improve the practicality of traffic information services and increase the reliability
and predictability of decision making for traffic managers and travellers. The results of their
experiments demonstrated the effectiveness of their proposed recommendation system in
extending the prediction horizon for traffic congestion and improving its reliability. This
proposal is different from the communication network that forms the framework for the
transport network. Based on these networks, forecast and traffic analyses are needed when
using the method proposed below.

Wang et al. [15] employed a DL model using paths for the traffic speed forecasting in a
city transportation system. To do this, the road network was divided into critical paths for
an easier traffic flow analysis. A bi-directional LSTM neural network, followed by a fully
connected layer, was used for forecasting the traffic speed by analysing the spatiotemporal
features of the vehicles. Each critical path was processed using a bidirectional LSTM,
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and the stacking of multiple layers was performed to process the temporal features. The
resulting spatial–temporal features were fed into a fully connected layer for a network-wide
traffic speed prediction. The proposed framework was compared to multiple benchmark
models, and it exhibited a better performance in various prediction scenarios, with different
input and prediction horizons. The optimal hidden layer processing improved the qualita-
tive and visualized output of the traffic forecasting. In this study, selecting critical paths
is a crucial aspect of developing the model, and there is potential for a further analysis of
more selection criteria.

Additionally, enhancing the interpretability of DL models for transportation appli-
cations is still a challenge that requires further research. Exploring ways to utilize this
interpretability is also a promising area for future investigation. Event detection anal-
ysis requires a pre-classification and feature segregation to prevent additional layered
processing. The complexities are suppressed by using protocol control and the flexibility
that is provided in the upcoming proposal. Zhang et al. [16] proposed a discrete event
detection method and designed a hybrid simulation platform within a connected auto-
mated vehicle environment to test and evaluate the performance of the vehicles. This
framework permitted the user to test different control methods and communication proto-
cols, in order to detect events in the corresponding automated vehicle environment. The
simulation framework offered flexibility through various design paradigms, such as entity
flow, graphical programming, and object-oriented programming in MATLAB, allowing its
users to achieve complex goals. The framework’s flexibility was verified by incorporating
different modelling elements into it to achieve a better event detection. Regardless of its
flexibility, monitoring and extraction were prominent in deciding its accuracy factors. The
communication protocol determined the rate of the monitoring data input. This required a
pre-defined classifier with improved training, which was presented in the proposal [17].

In [17], a new classifier, TrafficNet, was created using convolutional neural networks
that were based on two well-known networks, AlexNet and VGGNet. A support vector
machine was used on top of the convolutional neural network architecture instead of
a fully connected layer. The model was trained and tested for the congestion and non-
congestion images that were extracted from surveillance videos and labelled manually.
TrafficNet employed residual learning for a road congestion estimation using a traffic
analysis. TrafficNet was modelled to scale a large region for traffic monitoring, using
inputs from conventional monitoring systems. The results exhibited that the proposed
method had an accuracy of up to 90%, much higher than traditional feature extraction
methods without the DL approach. This DL-based model could be integrated into the
current surveillance system to automatically detect and report traffic congestion. Almeida
et al. [18] proposed a decentralized and offline community-based traffic monitoring system
(DOCTraMS). This decentralized traffic monitoring system employed onboard and roadside
units to collect information and update their records on the traffic conditions for each road
segment. Through a seamless monitoring and information dissemination, this system
helped to gain knowledge of the road traffic and congestion for the onboard units. A traffic
validation was performed by partitioning the road into segments to identify the congestion
more accurately. The system was tested with a real prototype, based on standard IEEE
802.11 b/g at the Universidade Federal do Rio de Janeiro campus, and with simulations
that used traffic data from São Paulo, Brazil. The results showed that the system was 90%
more accurate compared to a global positioning system. This system could be tested with
the IEEE 802.11p standard and simulated for more traffic scenarios, in order to assess the
system’s network traffic and evaluate its loss rate.

Arguedas et al. [19] presented a new approach to creating synthetic models of maritime
traffic using self-reported positioning data. This historical data-based traffic representa-
tion model assisted in real-time monitoring. The method involved building a two-layer
network that offered a fine-grained and accurate representation of traffic patterns. This
representation network consisted of monitoring and an inner layer for providing infras-
tructure support and a precision analysis. The method was tested in a high-traffic density
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scenario in the Baltic Sea and showed a significant reduction in the storage data, with only
a slight decrease in the precision. The resulting representation of maritime traffic lay the
foundation for real-time traffic monitoring, anomaly detection, and situation prediction.
Irrespective of the density of the vehicles and road conditions, this representation relied
on self-organized data to achieve a high level of precision. Finogeev et al. [20] proposed
an intelligent road monitoring system that assimilated fog, cloud, and mobile computing
paradigms. This multi-agent system relied on the sensor data that were gathered from the
environment. With the help of data gathering, clustering, and dissemination functions,
the environment’s information was analysed optimally to provide smart road surveillance.
The data processing results showed a comparison of traffic accidents and meteorological
factors, which revealed the impact of meteorological conditions on the traffic in controlled
areas. Gohar et al. [21] proposed a transport behaviour modelling model for ITS based on a
big data analytics architecture in a smart city environment. The proposed model comprised
four data acquisition, processing, analysis, and visualization modules. This modelling
relied on self-storage and analytics functions to disseminate the appropriate controls for
ITS efficiency. This method employed different processing and visualizing units to improve
the vehicle throughput and speed detection. The architecture was validated using Hadoop
for the storage and analysis of the ITS data and provided a detailed analysis of the vehicle
speed over time. The results were promising, providing opportunities for further research.

Safety driving requires multi-data from the external environment at different intervals
for adjusting and streamlining self-safety. This requires speed- or event-based data, as seen
in [15,16,21], for precise traffic and travel condition monitoring, as seen in [17–20]. However,
the recommendation for safe driving relies on external sorting and control relays for data
handling and dissemination. This identifies the diverse data handling and processing level
with various analytical procedures. Therefore, a fluctuation in the precision occurs due to
common abnormal events. Different from the above discussion, the concepts for driving
assistance are presented in the following subsection.

2.2. Driving Assistance

Driving assistance refers to the use of various systems and technologies to enhance
road safety and the convenience of driving. These systems can be integrated into the
vehicle or provided as road infrastructure. They provide drivers with warnings, alerts, or
automated actions to help prevent accidents and ensure the vehicle’s safe operation. This
can be achieved through various means, such as systems that assist with parking, lane
departure warnings, adaptive cruise control, and other advanced driver assistance systems
(ADASs). These systems aim to support the driver in making driving tasks easier and safer,
reducing the risk of accidents and improving the overall driving experience. The concept
of driving assistance has been the focus of much research and development in recent
years, intending to make driving safer and more enjoyable for drivers and passengers. We
reviewed multiple studies on designing and implementing these driving assistance systems
using diverse technologies. These studies are presented and discussed in the context of the
research background below.

In [22], the authors presented a position broadcasting application that was supported
by ITS, for route discovery in smartphones. The authors created an Android app to alert
regular vehicles about nearby emergency vehicles such as ambulances, police cars, and
fire trucks. The application created a network of vehicles that could directly communicate
with each other to allow drivers to make timely decisions. The application was tested in
various scenarios and was found to provide alerts up to 300 m, within less than a second.
This application was useful in assisting driving decisions by integrating the advantages of
vehicular networks and connected vehicles. The application was reliable in determining
the routes for evading obstacles, vehicle failures, and traffic congestion. This application
could be incorporated with infrastructure and the internet, making it better suited for V2X
communications. Curiel-Ramirez et al. [23] investigated the performance of a modular
framework that assisted drivers in semi-automated driving. This research focused on
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developing an affordable driver assistance system to deal with issues such as congested
traffic, self-parking, and detecting obstacles. The aim was to create a user-friendly system
that people could easily adopt without technical knowledge. The growing availability of
low-priced cameras and processing equipment makes building a cost-effective and power-
ful system possible. The authors demonstrated this concept by creating a hardware and
software solution that employed a stereoscopic camera sensor for steering-wheel control in
an autonomous manner. Regardless of the dissemination process, the assistance-based rec-
ommendations were presented using single and multi-vehicle platoons. Service discovery
and communication were pursued using distinct vehicles and their dissemination.

Zhang et al. [24] analysed the effects of safety assistance driving systems on the oscil-
lation magnitude, fuel consumption, and emissions in a car platoon, which was modelled
by using an improved two-dimensional intelligent driver model. The classification of the
driving conditions, which were based on the road conditions and information fetched
that was from the environment, was used to model the safety assistance driving system.
The classification of the dangerous and safety applications within the modelled system
improved the driving reliability and vehicle management. Arbabzadeh and Jafari [25]
proposed a new data-driven method to improve the performance of ADAS (DD-ADAS),
which predicteds traffic safety risks based on individual driver characteristics and roadside
information. The approach used an elastic net regularised multinomial logistic regression
and naturalistic driving study data to create predictive models. The study included an
examination of the variables and data preparation to enhance the prediction accuracy. This
was a data-driven prediction method that independently customized safety conditions. The
data dissemination relied on the vehicle and behaviour of the drivers for precise detection
and safe driving. Therefore, a controlled steering environment was required to improve
the driving assistance.

Zhao et al. [26] proposed a control method for hybrid vehicles during emergency
steering evasions based on the driver’s behaviour. A CarSim model and a driving simulator
analysed emergency steering evasion behaviours and defined the trigger for the assistance.
A driver steering model was created to calculate the desired steering angle and yaw rate,
and a yaw rate tracking controller and a steering torque assistance fuzzy controller were
designed. The optimized preview distance improved the path-tracking accuracy and
vehicle stability, and the results showed that the proposed assistance controller, which
considered the driving behaviours, was effective. This method was designed for electric
power steering vehicles to control and assist driving, and to prevent abnormal events. The
tracking and torque monitoring controller information was fed to the proposed module to
improve the driving safety. In the proposed framework, the driver behaviour and vehicle
trajectory could be analysed in detail for more control and safety conditions. Yin et al. [27]
introduced a new concept of dangerous driving intensity to improve driving safety and
presented a framework to estimate this accurately. The framework involved optimizing
fuzzy sets using a particle swarm optimization to model the attributes of drivers, vehicles,
and lanes. The results were compared with the opinions of experienced drivers, who
labelled the dangerous driving intensity. The findings demonstrated that the framework,
which considered the driver, vehicle, and lane attributes, provided an accurate dangerous
driving intensity estimation and could significantly improve the driving safety of intelligent
vehicles, where the driver has a large role in driving risk. The proposed system was
incorporated into ADASs to effectively enhance driving safety by identifying dangerous
driving conditions for the driver. In [28], the authors presented an extensive, state-of-the-art
review of the resource allocation of Cellular Vehicle-to-Everything, including a technical
overview, the related works, and the differences, advantages, and challenges.

Based on the literature analysis, it was identified that driving assistance is provided
through dedicated applications and steering recommendations, as seen in [22,26]. Such ap-
plications require self-assisted classifications for driving down the danger intensity [27,28].
Additionally, there is limited research on integrating behavioural attributes, such as driving
time, localization errors, and trajectory conditions, into the analysis of driving assistance
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information. The problem is the dissimilar vehicle behaviour and the adaptable classifi-
cation due to the interval data. These issues are the driving force in developing a robust
and adaptable model that can effectively classify driving behaviour and provide accurate
recommendations in real-time. Therefore, the authors propose a BRM to address the above-
mentioned issues, by identifying the precise data and best-fitting classification. However,
several research gaps still need to be discussed in this area. One key gap is the lack of
standardized approaches for modelling in-vehicle behaviour and responses. The existing
models are context-specific and lack scalability across different cities and regions. Another
gap is the limited use of real-time data in these models. Most existing models rely on
historical data or fixed parameters, which may not accurately reflect the dynamic nature of
traffic and driving behaviour.

Furthermore, there is a need for a better integration of these models with other ITS
components, such as traffic management systems and intelligent infrastructure. This will
require a greater collaboration between researchers, policymakers, and industry stakehold-
ers to develop a comprehensive and integrated approach to ITS. Finally, there is a need to
evaluate the effectiveness of in-vehicle behaviour-based response models for real-world
settings. While there is growing evidence for the potential benefits of these models, fur-
ther research is needed to validate their efficacy and identify any potential limitations
or unintended consequences. Overall, addressing these research gaps will be critical for
advancing the development and implementation of in-vehicle behaviour-based response
models for traffic monitoring and driving assistance in smart cities. Therefore, the authors
propose a BRM to address the abovementioned issues by identifying the precise data and
best-fitting classification.

3. Proposed Behaviour-Based Response Model

The BRM is employed for detecting roadside incidents to provide better driving
assistance for connected vehicles. The widespread cloud and the traffic safety applications
within the smart city environment are exploited for this purpose. To improve its reliability,
driving assistance, for location and incident accuracy, must be shared with fewer errors.
Therefore, the physical attributes of the vehicles, in connection to their mobility and location
patterns, are analysed to provide consistent and precise driving assistance using the BRM.

3.1. Application Modelling

The application model for real-time ITS scenarios consists of a digital interface that is
equipped in the vehicle. This digital device (such as a touch screen, minicomputer, or digital
device assistance) is connected to the vehicle’s radio and power unit. The digital device can
receive radio signals and project them into visualizing images or message alerts. The device
can communicate with the cloud and other networks using radio units. This communication
is served using the existing roadside infrastructure units. The service availability, amid the
change in the vehicle’s position, is ensured by the roadside infrastructure for retaining the
service quality. The digital device interacts through an application and system software for
information exchange.

3.2. Information Modelling

The information in the BRM relies on the environmental conditions and the response of
the vehicles to these conditions. This is recorded as the incident from which the assistance
is processed. The relating factor between the vehicle and roadside environment determines
the incidents that are experienced for the following vehicles. The precision of the informa-
tion processing must be high to prevent information falsification or misguided assistance.
The input is expected to be quantized for a high level of information processing, which
must meet the quality requirements. This means that the accountable inputs must provide
the extraction of useful information. The usefulness of this information is verified based
on the driving assistance that is provided to the user. Let d represent the road segment
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distance that connects the driving user and the fixed destination. This distance is computed
using Equation (1).

d =


√
(xv − xD)

2 + (yv − yD)
2, i f there is no trajectory√

(xv − xD)
2cosθ + (yv − yD)

2sinθ, i f there is a trajectory
(1)

Here, (xv, yv) and (xD, yD) stand for the position coordinates of the vehicle v and
destination D. The variable θ denotes the angle of deviation between the two vehicles.
The conditions “if there is no trajectory” and “if there is a trajectory” indicate the vehicle
movement pursuing the same or different directions. In particular, the moving speed of
the vehicle for the turn around the new vehicle is considered in this trajectory. The time
required to travel the distance, d(i.e) td, is computed in Equation (2).

td =
t̂d

∑i∈d t∗di

tai (2)

where, t̂d, t∗di
and tai are the previous last known travel time of v, the current expected time

of the previous distance, and the time information of the vehicle, which is stored in the
cloud, from which the expected times (t∗di

) and tai are zero, meaning the velocity of the
vehicle is constant. On the other hand, if there is a variation in these factors, in particular, if
(t∗di

< tai), then the incident is experienced by the vehicle. This incident can be a road traffic
or intersecting traffic signal, etc. However, if there is an adverse identification, driving
assistance must be invoked to provide knowledge of the road scenario. If the length of
the road is L, and the radio coverage range of the vehicle is rc, then (L/rc) is the available
partitions in d. The t̂d that is computed in any of (L/rc) is computed as:

t̂d =
∑i∈d tdi ∗ 1/tai

∑i∈d,j∈(L/rc) 1/taij
(3)

The time that is computed using Equation (3) validates the segment/partition of the
road that is covered by the vehicle. Equation (1) is revisited for the trajectory of the vehicle,
because the above time is not a constant where the angle of deviation (θ) is observed. The
angle of deviation determines the moving direction and trajectory that is experienced by
the vehicle. The angle of deviation, (θ), is estimated using Equation (4), as

θ = cos−1
(
∇xv +∇yv√
∇x2v

)
(4)

where,∇xv and ∇yv are the changes in the coordinate positions of the vehicle for the x and
y axis representations. The road segment L encompasses multiple intersections that cause
the change in d and td. In such a case, the precision error η is computed using Equation (5).

η =


1−

(
rc−∇xv

rc

)
, i f the vehicle is moving along x− axis

1−
(

rc−∇yv
rc

)
, i f the vehicle is moving along y− axis

(5)

In Figure 1a,b, the illustrations of ∇xv and ∇yv are displayed.
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Figure 1. (a) ∇xv change, and (b) ∇yv Change.

As per the representation in Figure 1a,b, t̂d = ∇xv or ∇yv if the vehicle moves along
the x or y− axis, respectively. Now, the set of inputs that are analysed are (td, η and θ).

Let B denote the behaviour attributes of a vehicle that is denoted as B(td, η, θ)∀v with
rc and d 6= 0 conditions. These behaviour attributes are classified using the regression
learning model, as discussed in the next section.

3.3. Behaviour Modelling

The behaviour modelling follows a step-by-step procedure using regression learning
to estimate the incident, location, and cause, which are reported to the pursuing connected
vehicle to assist the driving users. The members of B are independently analysed, and then
the constraints due to the joint validation are analysed to provide a granular information
extraction. The application model and user experience rating verify the usefulness of the
information. This fact is applicable in a real-time scenario for estimating the information
usefulness. Depending on the available information, the utilization determines its useful-
ness. This usefulness is decided using the vehicle behaviour, assistance, and safe driving
attributes. The data analysis requires intense training and verification for validity across
multiple intervals. Therefore, the behaviour model design relies on previous user experi-
ences. The regression-based analysis for incident detection is pursued in the same order
as td, η, and θ. This learning analysis exploits the relationship between the independent
attributes to improve its reliability in information extraction. The analysis is presented
below, along with the explanation.

3.4. Analysis 1: Conditions for td Validation

The driving time towards a fixed D reduces as the segment count decreases. This
is observed for a non-intersecting road. Let atd represent the additional time that is
experienced in reaching D. This can be because of a traffic signal or congestion that
is experienced in L. Therefore, the regression analysis is modelled in Figure 2 for an
intersecting and non-intersecting L.
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The non-intersecting L causes no change in td, whereas the intersecting L experiences
some delay in covering the distance d. Therefore, the location precision for the time (ηt) is
computed as

ηt =

{
η + d×td

atd×∇xv
, i f moving in x− axis

η + d×td
atd×∇yv

, i f moving in y− axis
(6)

In the estimation of ηt, as in Equation (6), the arrival time of the vehicle is postponed
by atd, which is verified as ηt − η)×∇xv = d. If this condition is experienced, the incident
is reported as a delay in the time that is experienced by the predecessor vehicle to the
pursuing vehicle.

3.5. Analysis 2: Validation of η

The error in determining the position of the vehicle is based on the velocity and time
in (L/rc). This error misguides the incident update by falsifying the location to the user in
the driving assistance. Therefore, in the regression process, the analysis of η is performed
linearly. If x denotes the input constraint for η, then the validating input is ηv = α1 + α2x,
where α1 and α2 are the input co-efficients in correspondence with the η that is observed
in t̂d and atd. Now, the objective of the regression is to achieve the min{α2} as α1 → 0 if
td = tai. Therefore, the variation of ηv for η (i.e.,) ∇η is computed using Equation (7), as:

∇η =
1

(L/rc)

L/rc

∑
i=1

(ηi − ηvi) (7)

The variation that is observed using Equation (6) changes with the vehicle’s velocity.
The chance of an error in the above analysis varies due to neighbouring vehicles and road
conditions. Therefore, the boundary for differentiating η and ηv is defined for the varying
∇η due to different velocities and densities. This boundary is useful in validating η across
all the road segments; if the value of ∇η lies within the boundary, then the location error is
less, and the incident is of the normal clause. Instead, if ∇η is found to lie behind or above
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the boundary, then the localization error is high, for which a notification is necessary. The
boundary between ∇η and η (i.e.,) b∇η−η is computed using Equation (8).

b∇η−η =

[
1
η
+

(
L− L

rc

)
(η −∇η)

L
,

L(η −∇η)

rc

]
(8)

The boundary that is defined in Equation (7) specifies a minimum value of[
1
η +

(
L− L

rc

)
(η−∇η)

L

]
and a maximum value of

[
L
rc
(η −∇η)

]
for the (xv, yv) of a vehicle

that is located during td. From here, the relationship analysis is performed. Before this
analysis, a representation of the regressive processes for the boundary and relationship
conditions is illustrated in Figure 3a,b, respectively.
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In Figure 3a, the position of the vehicle and its corresponding boundary failing condi-
tion generates notifications (report incident). This case is analysed as the joint processing
using atd and ∇η in Figure 3b, where the condition of the η ∈ boundary is split into
η > boundary and η < boundary for an independent analysis. This validates the condition
that does not require a notification (incident reporting), but a localization error exists. This
means that the availability of the vehicle is true and its driving time is some, whereas
the location (positioning) error is observed due to the ∇xv or ∇yv being changed, which
results in η in this case.

3.6. Relation Modelling (Analysis 1: Analysis 2)

The change in td that is observed due to the η in any L/rc causes additional driving
time atd. The vehicle’s location that is estimated in this condition is unsatisfactory, and
the vehicle detects an incident to be reported. This reporting is reflected in the navigation
and driving assistance process that is adopted by the pursuing vehicle. For the L/rc, the
segment along distance d and the boundary using the td and η are modelled as follows.

(b∇η−η)1 = 1
η +

(
L− L1

rc

)(
η
L1

)
, as∇η = 0 f or the f irst segment

(b∇η−η)2 = 1
(b∇η−η)1

+
(

L2 − L2
rc

)(
η−(b∇η−η)1

L2

)
,

...

(b∇η−η)2 = 1
(b∇η−η)d−1

+
(

Ld−1 −
Ld−1

rc

)(
η−(b∇η−η)d−1

Ld−1

)


(9)

From Equation (9), the range of b∇η−η is 1 to d, and the distance is scaled between[(
L− L1

rc

)( η
L
) ( 1

η

)]
to
(

1
η

)
+
[ (

L− L1
rc

) (
η−∇η

L

)]
for the independent metric η. For
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a time, this range is valid from td to [td + atd], which provides (ηt−η)
td

= d
velocity as the

satisfying condition. Therefore, the required time for achieving less η is ∑
(

L
rc

)
tai = atd + td,

where the velocity of the vehicle is constant. If there is a change in the velocity, then
t̂d 6= td and therefore, ∑

(
L
rc

)
tai = atd + t̂d is the expected time delay for balancing η in the

abovementioned range.

3.7. Analysis 3: Evaluation of θ

The change in the angle of deviation determines the trajectory of a vehicle. The
trajectory of the vehicle is used to identify the moving directions and changes in the route
plan. A change in the route plan is notified to the pursuing user. Therefore, the trajectory
information is to be analysed for the pursuing vehicle. The vehicle moving before is the
reference for the trailing vehicle to identify the direction of movement. Instead, the moving
vehicle is dependent on the road segment and L to change its direction. The angle of
trajectory along the road segment does not need to be notified. On the other hand, if there
is a change in the driving plan due to abnormal events (such as accidents or congestion),
then this variation is to be reported to the trailing vehicle as a notification. The error is
computed for the deviation/miscomputation of the position. The error with ‘o′ is given by
Equation (10).

ηθ =

(xv − xD)cosθ − 1
∇x , i f the vehicle changes to horizontal plane

(yv − yD)sinθ − 1
∇y , i f the vehicles changes to vertical plane

(10)

The change in the plane for validating ηθ is represented in Figure 4a,b, respectively.
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However, the regression process is the same, where the distance error is computed
using Equation (11).

ηd1 = (xv1 − xD)cosθ1 − (yv1 − yD)

ηd2 = (xv2 − xD)cosθ2 − (yv2 − yD)− ηd1
...

ηdL =
(
xvL−1 − xD

)
cosθL−1 − (yvL−1 − yD)− ηdL−1

 (11)

The error that is observed in this case is considered for all the L
rc

in d to verify if the
vehicle has settled its position in the horizontal/vertical plane. The displacement distance
is also augmented to the travel time of the vehicle to estimate atd.



Electronics 2023, 12, 1644 14 of 19

3.8. Relation Modelling (Analysis 1, 2, 3)

The relationship between ηθ and
(
b∇η−η

)
d for td and η is given as

td = [tai + ηdL × atd) +
(
ηθ × b∇η−η × t̂d

)
] (12)

In Equation (12), td is modelled based on θ and η to estimate the delay time in reaching
the destination. The notification here is confined to the basis of

(
b∇η−η

)
d and ηθ to reduce

unnecessary event detection. This improves the accuracy of the driving assistance by
suppressing the localization errors. The notification is followed for precise event detection,
and driving assistance is ensured with this non-overloaded formation. Figure 5 represents
the comparative analysis of the generated detection and refined messages through analyses
1, 2, and 3.
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As discussed above, the reported messages are classified in each analysis step by
using different conditional verifications. In the above illustration, analysis 1 to analysis 3
corresponds to td,η and θ validation in the process of identifying prompt messages. The
values of the above illustration are presented in Table 1.
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4. Experimental Result and Analysis

The proposed behaviour model for ITS is verified using experiments that are carried
out using the OPNET modeller. In an open scenario of the modeller, 16 vehicles are initially
set to provide navigation and incident detection, with the help of an information exchange.
In this scenario, five roadside units and one cloud storage are deployed. The vehicles
communicate through a range of a 512 Kbps–1024 Kbps bandwidth that is shared by the
roadside units. A region with dimensions of 4000 m × 4500 m bounds the open scenario.
There are seven intersections in the driving scenario where the vehicles exchange more
information through V2V and vehicle-to-infrastructure communication modes. The vehicles
are permitted to exchange information at regular intervals of 2 min. With this detailing in
the experimental setup, the event detection accuracy, localization error, and information
overhead are compared with the existing results on DD-ADAS [25], DOCTraMS [18], and
TrafficNet [17].

4.1. Detection Accuracy

The detection accuracy for the varying reporting intervals is compared in Figure 6
for the different road segments. The detection of the incident is identified based on the
useful information that models B. In the estimated td along

(
L
rc

)
, the incident detection

notification is filtered based on the relationship that is modelled between td η and θ. The
regression analysis model exploits the relationship between td and η to identify the events
based on atd. In the second relationship modelling, the incident is classified based on error.
This means the incident is negligible, with an information error where η > boundary, but
tai = atd + td. Similarly, the number of notifications due to the η /∈ boundary originated as
accuracy in the η validation. Considering the relationship between td, η, and θ as whole,
the factor b∇η−η serves as the refining condition. Therefore, the accuracy is computed as
information and ∈ {B ∩ td, B ∩ η, B ∩ θ} is disseminated as the report for the navigation.
The actual generated information, i.e., {B ∪ td, B ∪ η, B ∪ θ}, is refined to improve the
accuracy of the incident detections in all the

(
L
rc

)
. The comparative analysis results for the

detection accuracy are presented in Table 2.
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Table 2. Detection accuracy comparisons.

Metric Road Segment DD-ADAS DOCTraMS TrafficNet BRM

Detection
Accuracy (%)

5 75.09 81.24 85.6 92.49

10 67.28 70.21 74.19 83.26

15 55.27 72.49 73.43 84.39

20 57.72 76.28 84.39 89.93

4.2. Localization Error

The localization error in the proposed behaviour modelling is less, irrespective of
the distance and road segments. The

(
L
rc

)
-divided road segments are analysed using the

relationship of analyses 1, 2, 3, using ηθ and b∇η−η . The d varies with the change in the

road segment and (∇xv,∇yv) also varies, resulting in a
(

1− ∇xv
xv

)
error at the time of

localization. In the existing methods, the vehicles’ trajectory is not accounted for, whereas
the previously stored information is accounted for when estimating the localization error.
Instead, in the BRM, d is validated for the change in the plane (vertical or horizontal)
and ηθ where η > boundary conditions. In these violating conditions, the deviation in ηθ

is high, resulting in a misguided notification (navigation/driving assistance). For these
conditions where η /∈ boundary, the θ is validated to find the precise location of the vehicles,
i.e., (xv − xd)cosθ or (yv − yD)sinθ. If ∇η >

(
b∇η−η

)
, then the localization error is high;

therefore, the change in (xv − yv), i.e., (∇xv,∇yv) are updated as the new position of the
vehicle. The η ∈ boundary condition is satisfied by the updated position, which results in
less

(
1− ∇xv

xv

)
and

(
1− ∇yv

yv

)
, reducing the localization error, which is shown in Figure 7.

In Table 3, the localization error for the above comparison is tabulated.
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Table 3. Localization error analysis.

Metric d (m) DD-ADAS DOCTraMS TrafficNet BRM

Localization
Error

1000 0.179 0.143 0.109 0.06117

2000 0.191 0.158 0.126 0.0928

3000 0.227 0.181 0.173 0.138

4000 0.231 0.203 0.187 0.143

4.3. Information Overhead

Due to the frequent exchange of information, the navigation/driving assistance mes-
sage that is shared from the heading vehicle is high. This increases the information overhead
and also decreases the efficiency of the driving assistance system. Figure 8 analyses the
information overhead for the varying road segments and vehicle densities. In all four cases,
the information is filtered based on a regression analysis. The behaviour model is defined
using td, η and θ, and then the independent and joint (relationship) analyses are performed
step-by-step. In each case, the expected and actual td is computed, within which the η, due
to localization, and td, the trajectory, are verified for condition satisfaction. The information
exchanged in the

(
atdtd

)
interval for ∑ L

rc
is filtered using ηdL and ηθ (based on trajectory).

Some conditions, such as the η > boundary and tai = atd + td, are handled as exceptions,
in which the information is not disseminated, whereas the error in the localization for the
trajectory or time is reported. Therefore, the necessary information sharing in the proposed
BRM at the ηt intervals is restricted, reducing the information overhead. The comparative
analysis of the information overhead is presented in Table 4.
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Table 4. Information overhead analysis.

Metric Vehicle DD-ADAS DOCTraMS TrafficNet BRM

Information
Overhead

(Mb)

4 5.32 3.93 2.29 1.88

8 5.74 5.17 4.13 2.47

12 7.44 6.22 4.78 2.76

16 6.93 5.09 4.27 3.16

5. Conclusions

This paper presents a BRM for providing reliable driving assistance information to
ITS users in a smart city environment. The proposed model classifies the useful informa-
tion based on regression analyses, by defining the independent and joint analyses of the
behavioural attributes. These attributes are defined based on the driving time, localization
error, and trajectory conditions, in order to refine the useful information from the exchanged
information. This process is performed dependently to identify the less information over-
head that is used for assisting driving in the trailing connected vehicles. The experimental
process shows that the proposed BRM achieves a high detection accuracy and less informa-
tion overhead and localization errors. The results showed that the proposed model provides
an efficient and effective solution for traffic monitoring and driving assistance in the context
of smart cities. This model generates recommendations for traffic-congestion-free driving
assistance, with a reduced reactive time. The model uses the smart computation capabilities
of connected vehicles and the cloud to gather and analyse traffic conditions, and to provide
assisted driving recommendations to users. Though the model is reliable in achieving
high roadside assistance under a controlled overhead, multi-variation data handling is less
feasible. Therefore, incorporating a self-decisive data handling process can be planned.
This process performs a classification and data analysis using multiple traffic and vehicle
observation instances. Therefore, the data must be multimodal to prevent varying analyses.
Future work on in-vehicle behaviour-based response models for traffic monitoring and
driving assistance in smart cities may involve developing more sophisticated and adaptable
models, improving user interfaces, establishing standard protocols and regulations, and
evaluating the effectiveness and impact of these models in real-world settings. The focus
will be on interdisciplinary collaboration, scalability, adaptability, and user-friendliness.
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